Exact Correlators in Integrable AdS/CFT

Changrim Ahn Ewha Womans University Seoul, South Korea

contains work in progress with Zoltan Bajnok (Budapest)

East Asia Joint Workshop at KEK, Japan

Main goal of QFTs

Compute correlation functions non-perturbatively

$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$$

Generic, non-BPS operators

Dynamical with local coordinates dependence

Quantitatively exact

 $F(x_1,\ldots,x_N;\boldsymbol{\lambda})$

Still unsolved problem! No success so far except ...

Integrability

• Infinite conserved charges

 $\mathbf{S}_{12}(p_1, p_2) \, \mathbf{S}_{13}(p_1, p_3) \, \mathbf{S}_{23}(p_2, p_3) = \mathbf{S}_{23}(p_2, p_3) \, \mathbf{S}_{13}(p_1, p_3) \, \mathbf{S}_{12}(p_1, p_2)$

S-matrix at core of integrable AdS/CFT

• SYM side : scattering of fields on the spin chain

• String side : scattering on the world sheet

$\mathrm{AdS}_{d+1}/\mathrm{CFT}_d$

N=4 SYM $\leftarrow \rightarrow AdS_5 xS^5$

 $ABJM \leftarrow \rightarrow AdS_4 x CP^3$

 $CFT_2 \leftarrow \rightarrow AdS_3 x S^3 x M^4$

$$\begin{split} S_{aa}^{aa} &= A, \quad S_{\alpha\alpha}^{\alpha\alpha} = D, \\ S_{ab}^{ab} &= \frac{1}{2}(A-B), \quad S_{ab}^{ba} = \frac{1}{2}(A+B), \\ S_{\alpha\beta}^{\alpha\beta} &= \frac{1}{2}(D-E), \quad S_{\alpha\beta}^{\beta\alpha} = \frac{1}{2}(D+E), \\ S_{ab}^{\alpha\beta} &= -\frac{1}{2}\epsilon_{ab}\epsilon^{\alpha\beta}C, \quad S_{\alpha\beta}^{ab} = -\frac{1}{2}\epsilon^{ab}\epsilon_{\alpha\beta}F, \\ S_{a\alpha}^{a\alpha} &= G, \quad S_{a\alpha}^{\alpha\alpha} = H, \quad S_{\alpha\alpha}^{a\alpha} = K, \quad S_{\alpha\alpha}^{\alpha\alpha} = L \end{split}$$

$$\begin{split} A &= S_0 \frac{x_2^2 - x_1^+ \eta_1 \eta_2}{x_2^+ - x_1^- \tilde{\eta}_1 \tilde{\eta}_2}, \\ B &= -S_0 \left[\frac{x_2^2 - x_1^+}{x_2^+ - x_1^-} + 2 \frac{(x_1^- - x_1^+)(x_2^- - x_2^+)(x_2^- + x_1^+)}{(x_1^- - x_2^+)(x_1^- x_2^- - x_1^+ x_2^+)} \right] \frac{\eta_1 \eta_2}{\tilde{\eta}_1 \tilde{\eta}_2}, \\ C &= S_0 \frac{2ix_1^- x_2^-(x_1^+ - x_2^+)\eta_1 \eta_2}{x_1^+ x_2^+(x_1^- - x_2^+)(1 - x_1^- x_2^-)}, \quad D = -S_0, \\ E &= S_0 \left[1 - 2 \frac{(x_1^- - x_1^+)(x_2^- - x_2^+)(x_1^- + x_2^+)}{(x_1^- - x_2^+)(x_1^- x_2^- - x_1^+ x_2^+)} \right], \\ F &= S_0 \frac{2i(x_1^- - x_1^+)(x_2^- - x_2^+)(x_1^+ - x_2^+)}{(x_1^- - x_2^+)(1 - x_1^- x_2^-)\tilde{\eta}_1 \tilde{\eta}_2}, \\ G &= S_0 \frac{(x_2^- - x_1^-)\eta_1}{(x_2^+ - x_1^-)\tilde{\eta}_1}, \quad H = S_0 \frac{(x_2^+ - x_2^-)\eta_1}{(x_1^- - x_2^+)\tilde{\eta}_2}, \\ K &= S_0 \frac{(x_1^+ - x_1^-)\eta_2}{(x_1^- - x_2^+)\tilde{\eta}_1}, \quad L = S_0 \frac{(x_1^+ - x_2^+)\eta_2}{(x_1^- - x_2^+)\tilde{\eta}_2} \end{split}$$

 $\eta_1 = \eta(p_1)e^{ip_2/2}, \quad \eta_2 = \eta(p_2), \quad \tilde{\eta}_1 = \eta(p_1), \quad \tilde{\eta}_2 = \eta(p_2)e^{ip_1/2}$

Δ from S-matrix

Thermodynamic Bethe Ansatz (Al. B. Zamolodchikov)

Channel Duality

- Mirror channel
 - Scatterings between asymptotic particles are valid since $R \rightarrow \infty$
 - Bethe ansatz equation from the PBC

$$\widetilde{Z}(R,L) = \operatorname{Tr}\left[e^{-L\widetilde{H}(R)}\right]$$

- Physical channel
 - Partition function $Z(L,R) = \text{Tr}\left[e^{-RH(L)}\right] \approx e^{-RE_0(L)}$ as $R \to \infty$

$$\widetilde{Z}(R,L) = Z(L,R) \quad \to \quad E_0(L) = -\frac{1}{R} \ln \widetilde{Z}(R,L) = \frac{L}{R} \widetilde{\mathcal{F}}(L)$$

- Minimize mirror free energy with the PBC
 - TBA equation

+ Boundary (D-brane, Wilson-Loop,...)

(ex) Lüscher corrections of Δ

• Strong coupling " μ "-term of $(AdS_5/CFT_4)_{\eta}$ [C.A. 2016]

match with string theory computation

NEXT Challenge

3-pt correlator or structure constant

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\rangle = \frac{C_{123}(\lambda)}{|x_1 - x_2|^{\Delta_1 + \Delta_2 - \Delta_3} \dots}$$

from

Integrability (S-matrix)?

exact result in terms of S-matrix

- Sum over complete states $|\psi, \psi', \psi''\rangle$
- Sum over partitions
- Finite-size effects
- Effective in weak coupling
- Difficult to apply to strong coupling

Our approach: Form factor

• form factor:

 $\langle 0|\mathcal{O}|p_1,\ldots,p_N\rangle$

asymp. Particle states $L \rightarrow \infty$

Form Factor Axioms [Karowski,Weisz;Smirnov] Watson equation: $F(p_1, p_2, \cdots) = S(p_1, p_2) \cdot F(p_2, p_1, \cdots)$ p_N p_2 p_N $F(p_1,\ldots,p_N) = P_{\text{sym}}(p_1,\ldots,p_N) \cdot \left[\int F_{\min}(p_i,p_j) \right]$ i > jp $p_1 \cdots p_N$

Form factor expansion of correlators

- Difficult for "non-diagonal" S-matrix
- Impossible to sum over internal states
- Not realistic to apply to AdS/CFT ...

- Technical details to regularize
- Operators have finite-size : particle-states in finite volume

• Heavy $(\Delta \sim \sqrt{\lambda})$ -Heavy-Light 3-pt in large coupling limit $C_{HHL} = V_L[\Psi_H] \qquad \langle V_H(x_1)V_H(x_2)V_L(x_3) \rangle$

• Heavy: Giant magnon state

• Finite-size effect of structure constant [Bozhilov,C.A.]

$$C = \sqrt{\lambda} \sin \frac{p}{2} - \left(4\sqrt{\lambda} \sin^3 \frac{p}{2} + L \sin^2 \frac{p}{2}\right) e^{-\frac{L}{\sqrt{\lambda} \sin \frac{p}{2}}}$$

Form factor for HHL [Bajnok,C.A.]

 $_{L}\langle p_{2}, p_{1}|\mathcal{O}|p_{1}, p_{2}\rangle_{L} = \frac{F_{2}(p_{1}, p_{2}) + \rho_{1}(p_{1})F_{1}(p_{2}) + \rho_{1}(p_{2})F_{1}(p_{1})}{\rho_{2}(p_{1}, p_{2})}$

• Matches with the finite-size structure constant !

Summary

- Integrability (S-matrix) is essential for exact correlators
- Integrable AdS/CFTs are multiplying
- Form factor approach is a way toward this goal
 - We are applying to many deformed cases in various dimensions
 - Challenge is to find FF at arbitrary coupling constant
 - HHH ?

Thank you for attention!