New Integrable RG Flows with Parafermions

Changrim Ahn

Ewha Womans University

Based on

Z. Bajnok & CA [arXiv:2407.06582]

Integrability, Duality and Related topics 2024, APCTP

Introduction

2D CFTs

CFTs are special

- Correlation functions exactly calculable in terms of CFT data (c, Δ_i)
- Pretty much classified (Minimal, WZW, super, W-algebra, ...)
- (Ex) Minimal (unitary) CFTs: \mathcal{M}_p , $c_p = 1 \frac{6}{p(p+1)}$

QFTs which are both UV and IR complete

- Exact RG flows: UV CFT+relevant fields \rightarrow IR CFT + irrelevant fields
- Need non-perturbative methods, e.g. integrability
- Exactly solvable in all scale

Can we classify these UV-IR complete QFTs?

No systematic approach: many such pairs are known mainly by conjectures

- Non-invertible symmetries may help [Nakayama's talk]
- But mostly effective QFTs and focus on both CFTs only
- Identifications by exact S-matrices or explicit Lagrangians are needed

Different RG flows from a UV CFT

Different relevant fields may lead to different IR CFTs (only finite cases)

6/32

Different RG flows into a IR CFT

RG flows into a IR CFT in different irrelevant fields directions (infinite possibilities)

New approach: Inverse RG flows

- Integrability approach: RG flows from IR to UV
- Complete classification if all UV CFTs are found for each (IR) CFT
- Challenge: How to identify UV CFTs and relevant fields?

Inverse RG flows

Conventional Approach (top down)

- UV CFT+a relevant field \mapsto IR CFT+ irrelevant fields
 - Only a special relevant field maintains the integrability
 - Common in CMP since physics at low T is important to find non-trivial (Wilson-Fisher) fixed points
- (Ex) Zamolodchikov Flows originally based on conjectured TBA

$$\mathcal{M}_{p+1} + \lambda \Phi_{1,3} \rightarrow \mathcal{M}_{p} + \lambda' \Phi_{3,1}, \quad p = 3, 4, \cdots$$

- Many more RG flows have been conjectured
 - have been guessed based on conjectured TBA or NLIE
 - Lagrangians / exact S-matrices are missing

New approach (bottom up) [CA, A. LeClair (2022)]

- IR CFT+ irrelevant fields \longmapsto UV CFT+a relevant field
- Natural since S-matrices are defined in the IR (infinite volume)
- Common in HEP where UV complete theory is being searched (GUT, SUSY, Superstring, ...)

11/32

• Use $T\overline{T}$ as a ladder

$T\overline{T}$ deformations

- Very active developments [Tateo,Zamolodchikov,...]
- Energy-momentum tensor T_2
- All higher conserved charges = { $[T\overline{T}]_s$ }

$$[T\overline{T}]_{s} = T_{s+1}\overline{T}_{s+1} - \Theta_{s-1}\overline{\Theta}_{s-1}, \quad \partial_{\overline{z}}T_{s+1} = \partial_{z}\Theta_{s-1}$$

- Preserve integrability
- Exact results possible for even non-integrable theories

Space of 2D IQFTs [Smirnov-Zamolodchikov (2017)]

- Expands the integrable space in infinite dimensions
- If the mother theory is integrable, new integrable QFTs

New IQFTs = an IQFT +
$$\sum_{s=1}^{\infty} \alpha_s [T\overline{T}]_s$$

• Exact S-matrices are given by additional CDD factors

$$\mathsf{S}(heta) = \prod_{s=1}^{\infty} e^{2ilpha_s M^{2s} \sinh(s heta)} \cdot \mathsf{S}_0(heta)$$

イロト 不得下 イヨト イヨト 二日

Swampland (Hagedorn singularity) to cross for UV

• Burgers Equation (s = 1) $[CFT + \alpha_1[T\overline{T}]_1]$

$$\partial_{\alpha}E + E\partial_{R}E = 0 \quad \rightarrow \quad c_{\mathrm{eff}}(R) = rac{2c_{0}}{1 + \sqrt{1 + rac{2\pilpha_{1}c_{0}}{3R^{2}}}}$$

with square root singularity at $R_c = \sqrt{rac{2\pi |lpha_1| c_0}{3}}$

- Singularity occurs also for each $[T\overline{T}]_s$ with $s \ge 1$
- We show that the singularities can be avoided if we fine-tune all α_s

S-matrices of CFTs from a massless limit

• Consider "massive" integrable deformation of a CFT e.g.

$$[G]_k \equiv rac{G_1 \otimes G_k}{G_{k+1}} + \lambda \, \Phi_{\mathrm{least rel}}$$

- Integrable with exact S-matrix S₀ [Bernard, LeClair, CA (1990)]
- Take $\lambda \to 0^-$ or $M \to 0$ limit
 - rescale the rapidity

$$M \to 0 \& \theta = \pm \Lambda + \hat{\theta}$$
 with finite $Me^{\Lambda} = \mu$

• R and L particles appear depending on \pm

$$(R): E = P = \frac{\mu}{2}e^{\hat{ heta}}, \qquad (L): E = -P = \frac{\mu}{2}e^{-\hat{ heta}}$$

- S-matrices between RR, LL are the same $S^{RR}(\hat{\theta}) = S^{LL}(\hat{\theta}) = S_0(\hat{\theta})$
- S-matrices between RL, LR are trivial since $heta_{12}
 ightarrow \pm \infty$

S-matrices for deformed CFTs by $T\overline{T}$'s

• CDD factors become trivial in RR, LL sectors

$$\prod_{s=1}^{\infty} e^{2i\alpha_s M^{2s} \sinh(s\theta)} \to 1 \quad \text{as} \quad M \to 0$$

• CDD factors become non-trivial in RL, LR sectors

$$\prod_{s=1}^{\infty} e^{2i\alpha_s \mathcal{M}^{2s} \sinh(s\theta)} \to \prod_{s=1}^{\infty} e^{\pm i\alpha_s \mu^{2s} e^{\pm s\hat{\theta}}} \equiv \mathsf{S}_{\mathsf{CDD}}(\hat{\theta})$$

Summary

$$S^{RR}(\theta) = S^{LL}(\theta) = S_0, \ S^{RL}(\theta) = S^{LR}(-\theta) = S_{CDD}(\theta)$$

How to restrict S_{CDD} ?

- Find all possible $\mathsf{S}_{\mathsf{CDD}}$ for a given S_0 which satisfy
- UV completeness
 - No Hagedorn singularities
 - c_{eff} in the UV limit is **finite**, rational
- Crossing-Unitarity

$$S_{CDD}(\theta)S_{CDD}(\theta+i\pi)=1$$

from which $S_{\mbox{CDD}}$ are arbitrary products of only two factors

$$\mathsf{S}_{\mathsf{CDD}}^{(1)} = -\tanh\left(\frac{\theta - \beta}{2} - \frac{i\pi}{4}\right), \quad \mathsf{S}_{\mathsf{CDD}}^{(2)} = \frac{\sinh\theta - i\sin\beta}{\sinh\theta + i\sin\beta}$$

- All α_s are fixed exactly in terms of β 's
- We can work with UV limit of TBA, namely, "plateaux equations"

Focus on "diagonal" S-matrices theories

- S-matrices for [G]₁ have been known [Zamolodchikov,...]
- A CFT can have different S-matrices depending on the choice of the integrable relevant field perturbations (ex) Ising CFT by G = su(2), E₈
- Plateaux equations

$$x^R_{a} = \prod_{b=1}^r (1+x^R_b)^{k_{ab}} \prod_{b=1}^r (1+x^L_b)^{ ilde{k}_{ab}}$$

where exponents are integrals of logarithmic derivatives of S-matrices S_0^{ab} and S_{CDD}^{ab} ($\tilde{k}_{ab} = \frac{1}{2}, 1$ or sum of them)

• $c_{\rm eff}$ in terms of some dilog identities

Results: UV CFTs which can flow into Ising CFT \mathcal{M}_3

· From the Plateaux equations, we find only

$$c_{\mathrm{eff}} = rac{7}{10}, \; rac{21}{22}, \; rac{3}{2}, \; rac{15}{2}, \; rac{31}{2}$$

- " $\frac{7}{10}$ " is the Zamolodchikov flow $\mathcal{M}_4 \to \mathcal{M}_3$ ([su(2)]₂ \to [su(2)]₁)
- " $\frac{21}{22}$ " is the coset flow $[E_8]_2 \rightarrow [E_8]_1$
- $(\frac{3}{2})^{"}$ is the massless SShG model which flows from super-Liouville theory (later) [Kim, Rim, Zamolodchikov,CA (2002)]
- New: " $\frac{31}{2}$ " is supposed to be a flow from E_8 WZW with level 2
- New: " $\frac{15}{2}$ " (?)
- We analyzed other group G = su(3), su(4) etc to classify all possible UV CFTs based on central charges
- But central charges are **not enough** to identify the QFTs

Identifying UV complete QFTs

RSOS (non-diagonal) scattering theory

• Consider
$$k = p - 2$$
 with $G = su(2)$

$$\mathcal{M}_{\rho} + \lambda \Phi_{1,3}, \qquad \lambda < 0$$

• Particle spectrum: massive kinks

$$a \int b = K_{ab}(\theta), \quad a, b = 0, \frac{1}{2} \cdots, \frac{p}{2} - 1, \quad \text{with} \quad |a - b| = \frac{1}{2}$$

• S-matrix of kinks $S^{[\mathrm{p}]}_{\mathrm{RSOS}}(heta)$: non-diagonal [Bernard, LeClair (1990)]

$$\begin{split} & \mathcal{K}_{ab}(\theta_1)\mathcal{K}_{bc}(\theta_2) \quad \to \quad \mathcal{K}_{ad}(\theta_2)\mathcal{K}_{dc}(\theta_1) \\ & \mathsf{S}_p(\theta)_{dc}^{ab} = U(\theta) \; (X_{db}^{ac})^{\frac{i\theta}{2\pi}} \left[(X_{db}^{ac})^{\frac{1}{2}} \sinh\left(\frac{\theta}{p}\right) \, \delta_{db} + \sinh\left(\frac{i\pi - \theta}{p}\right) \, \delta_{ac} \right] \end{split}$$

Massless S-matrices [Fendley, Saleur, Zamolodchikov ('93)]

• Massless limit $\lambda \to 0^-$

$$\mathsf{S}_{p}^{RR}(\theta) = \mathsf{S}_{p}^{LL}(\theta) = \mathsf{S}_{p}(\theta)$$

YBE and Crossing-Unitarity relations determine

$$\mathsf{S}_{p}^{\mathsf{RL}}(heta)=\mathsf{S}_{p}^{\mathsf{LR}}(- heta)\propto\mathsf{S}_{p}\left(heta-rac{ip\pi}{2}
ight)$$

for the S-matrices of the IR theory $\mathcal{M}_{\textit{p}} + \lambda' \Phi_{3,1}$

• Derived the conjectured TBA (partially) shown before

$$\epsilon_{a}(\theta) = \frac{\mu R}{2} (\delta_{a0} e^{\theta} + \delta_{a,p-2} e^{-\theta}) - \sum_{b=0}^{p-2} \mathbb{I}_{ab} \varphi \star \log[1 + e^{-\epsilon_{b}}](\theta)$$

TBA for $[T\overline{T}]_s$ deformed minimal CFT \mathcal{M}_p • $[T\overline{T}]_s$ deformations

$$\mathcal{M}_{\rho} + \lambda' \, \Phi_{3,1} + \sum_{s \geq 1} \alpha_s \, [T \, \overline{T}]_s$$

Introduce CDD factors to RL, LR sectors

$$\tilde{\mathsf{S}}_{p}^{\textit{RL}}(\theta) = \mathsf{S}_{\textsf{CDD}} \cdot \mathsf{S}_{p}^{\textit{RL}}(\theta)$$

• Being diagonal, S_{CDD} introduces additional kernels between R & L

23 / 32

UV complete theories

• Plateaux equations

$$egin{array}{rcl} x_n &=& (1+x_{n-1})^{1/2}(1+x_{n+1})^{1/2}, & n=1,\cdots,p-3, \ x_0 &=& (1+x_1)^{1/2}(1+x_{p-2})^{ ilde{k}}, & x_{p-2}=(1+x_{p-3})^{1/2}(1+x_0)^{ ilde{k}} \end{array}$$

- UV complete only with ${ ilde k}={1\over 2}$ which means

$$S_{CDD}^{(1)} = -\tanh\left(rac{ heta - eta}{2} - rac{i\pi}{4}
ight) \quad
ightarrow \quad arphi_{RL} = rac{1}{\cosh(heta - eta)}$$

which gives UV central charge

$$c_{\mathrm{eff}} = 3 \, rac{p-1}{p+1}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 24/32

For p = 3, massless Super sinh-Gordon model

• sinh-Gordon model with N = 1 super [Kim, Rim, Zamolodchikov, CA (2002)]

$$\mathcal{L} = ext{Kin.} - rac{i}{2} \psi \overline{\psi} W''(\phi) + 2\pi [W'(\phi)]^2, \quad W(\phi) = -\mu \sinh(b\phi)$$

• Supersymmetry is spontaneous broken

$$V(\phi) \propto [W'(\phi)]^2 = \cosh^2(b\phi) > 0$$

- massless Goldstino fermion is only spectrum in the IR limit (Ising model)
- S-matrices are simple: $S^{RR} = S^{LL} = -1, S^{RL} = S^{(2)}_{CDD}$
- TBA is given by

$$\epsilon^{R}(\theta) = \frac{\mu R}{2} e^{\theta} - \varphi^{RL} \star \log[1 + e^{-\epsilon^{L}}],$$

$$\varphi^{RL}(\theta) = \frac{1}{\cosh(\theta - ia)} + \frac{1}{\cosh(\theta + ia)}, \quad a = \frac{1 - b^{2}}{1 + b^{2}}$$

Two theories match when $\beta = 0$ and a = 0

- Ising model $\mathcal{M}_{p=3}$ deformed by $[T\overline{T}]_s$ with $(\beta = 0)$ = SshG model at self-dual coupling
- Conjecture: $\mathcal{M}_{p\geq 3}$ deformed by $[T\overline{T}]_s$ with $(\beta = 0) = \mathbb{Z}_{p-1}$ Parafermionic shG model at self-dual coupling

Parafermionic shG model

PshG model

$$\mathcal{L}_{\mathsf{PShG}} = \mathcal{L}_{\mathsf{PF}} + rac{1}{4\pi} (\partial_{\mu}\phi)^2 - \kappa \left(\psi_1 \overline{\psi}_1 e^{2b\phi} + \eta \, \psi_1^{\dagger} \overline{\psi}_1^{\dagger} e^{-2b\phi}
ight) + \cdots$$

•
$$\psi_1$$
 is a \mathbb{Z}_k PF with $\Delta = 1 - \frac{1}{k}$ $(k \equiv p - 1)$

- Fractional SUSY
 - $\eta = 0$ gives Parafermionic LFT [Baseilhac, Fateev (1998)]
 - $\eta = 1$ massive phase
 - + $\eta=-1$ massless phase where FSUSY is spontaneously broken
- These types of QFTs compute $c_{\rm eff}$ from momentum quantization using Reflection amplitudes

Reflection amplitudes of LFTs

• Primary fields $e^{2\alpha\phi}$ and $e^{2(Q-\alpha)\phi}$ identified upto constant

$$e^{2(\frac{Q}{2}+ip)\phi} = \mathcal{R}(p)e^{2(\frac{Q}{2}-ip)\phi}, \qquad \alpha = \frac{Q}{2}+ip, \quad Q = b + \frac{1}{kb}$$

 This amplitude has been computed in the PLFT [Baseilhac, Fateev (1998)]

Momentum quantization condition

• the perturbation introduces another wall

$$\delta^{(k)}(p) = \pi + 4Qp \ln \frac{R}{2\pi} = \sum_{n = \text{odd}} \delta_n p^n, \quad \mathcal{R}(p) = e^{i\delta^{(k)}(p)}$$

• Scaling function can be obtained from

$$c_{\text{eff}} = \frac{3k}{k+2} - 24p^2 + \mathcal{O}(R)$$

= $\frac{3k}{k+2} - \frac{3\pi^2}{2Q^2 \ln^2 x} - \frac{3\pi^2 \delta_1}{4Q^3 \ln^3 x} - \frac{9\pi^2 \delta_1^2}{32Q^4 \ln^4 x} - \frac{3(2\pi^2 \delta_1^3 + \pi^4 \delta_3)}{64Q^5 \ln^5 x} + \dots \quad (x = \frac{R}{2\pi})$

29/32

Reflection amplitude vs. massless TBA

• Need to solve numerically with high precision

$$c_{\text{eff}}(r) = \frac{3k}{k+2} + \sum_{n=2} \frac{c_n(k)}{(\log r)^n} + O(r)$$

• Two match very well at self-dual coupling $b = \frac{1}{\sqrt{k}}$

	<i>C</i> ₂	<i>C</i> 3	<i>C</i> 4	<i>C</i> 5
k = 2	7.402199	42.7620	185.218	714.563
	7.402203	42.7628	185.282	717.247
<i>k</i> = 3	11.10332	77.8573	409.598	1924.84
	11.10330	77.8543	409.425	1919.36
<i>k</i> = 4	14.8045	119.428	722.797	3898.75
	14.8044	119.4197	722.475	3892.55

Concluding Remarks

- We have found exact massless *S*-matrices from which we have derived TBA for new RG flows
- We have found that there is only one new RG flow to M_p for p > 3 if the CFT is in RSOS (can not exclude existence of other basis)
- We have found explicit Lagrangians (the PF sinh-Gordon models) which show new RG flows
- Can we generalize this approach to other irrelevant deformations than $T\overline{T}$'s?
- Can we find exact *S*-matrices behind conjectured UV-IR complete theories or claimed by non-invertible symmetries?

Thank you for attention!