

Dimer integrable systems

Haniltonians on a chess board

Norton Lee

IBS Center for Geometry and Physics

N. L 2312.13133. Kimyeong Lee, **N. L** 2406.00925, 2409.03483

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-48-0) 1 / 47

1 [Motivation](#page-2-0)

- 2 [Dimer Integrable Systems](#page-11-0)
- ³ [New dimer models](#page-22-0)
- **4** [Quantization](#page-34-0)

 299 × ∍

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 2 / 47

1 [Motivation](#page-2-0)

- **2** [Dimer Integrable Systems](#page-11-0)
- ³ [New dimer models](#page-22-0)
- 4 [Quantization](#page-34-0)
- **5** [Summary](#page-46-0)

メロメ メ御 メメ ヨメ メヨメ 299 ∍

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 3 / 47

Dimer model, also known as brane tiling or domino tiling, is a study of tessellation of Euclidean plane by dominoes. Equivalently, it is a study of perfect matching on a lattice graph.

Figure. 1: A domino tiling of 8×8 chess board.

[Dimer integrable systems](#page-0-0) 4 / 47

Norton Lee **IBS Center for Geometry and Physics**

Why are physicists interested in dimer model?

← □ ▶ ← *□* Þ 299 Ξ × 活

Norton Lee International Communication of the IBS Center for Geometry and Physics

[Dimer integrable systems](#page-0-0) 5 / 47

Why are physicists interested in dimer model?

- *•* There is a one-to-one correspondence between periodic dimer model and a ground state of fully-frustrated Ising model on 2d periodic lattice. [Barahona '82]
- *•* Any dimer model on a torus defines a relativistic integrable system whose conserving Hamiltonians can be read off from the *loops* of the dimer graph. $[Goncharov, Kenyon'11]$

A bipartitle graph $\Gamma = (B, W, E)$ is a triad embedded on an oriented 2-surface *S*:

- a finite set of black nodes B.
- a finite set of white nodes W, and
- a finite set E of edges, consisting of embedded closed intervals e on *S* such that one boundary of e belongs to B and the other boundary belongs to W .

such that any edge can intersect another edge only at its boundary. $\Gamma = (B, W, E)$ is a dimer model if

- *•* Every equivalent node is on the boundary of *S*, and
- *•* every faces of Γ is simply-connected.

 209

 \rightarrow

Here we only consider the case $\mathcal{S}= \mathcal{T}^2.$ The periodicity on the torus is realized by the unit cell.

A perfect matching M *∈* E is a collection of edges such that all nodes in a unit cell is connected by exactly one edge.

Figure. 2: The eight perfect matching of a 2×2 square dimer graph.

We choose the default orientation of the edges to be pointing from a black node to a white node.

A weight is assigned to a perfect matching M based on the orientation of its edges that pass through the boundary of the unit cell.

[Dimer integrable systems](#page-0-0) 8 / 47

The 1-loops are paths on the dimer graph connecting from one white node to the same white node across unit cell boundary. The 1-loops are obtained by taking difference between a perfect matching with the reference perfect matching. There are four 1-loops and two Casimir C_{+} in the 2×2 square dimer:

The *n*-loop is the product of *n* non-overlapping 1-loops. There is a single 2-loop u_1u_2 for the 2×2 square dimer.

The spectral curve is obtained by Kasteleyn matrix [Kenyon '03]:

The spectral curve:

$$
\Sigma = \left\{ (X,Y) \in \mathbb{C}^2 | \ 0 = \det \mathsf{K} = \tilde{\mathsf{h}}_1 \mathsf{h}_2 \left[X - \mathsf{H}_1 + \frac{\mathsf{H}_2}{X} - \mathsf{C}_+ \, Y - \frac{\mathsf{C}_-}{Y} \right] \right\}
$$

with
$$
H_1 = u_1 + u_2 + d_1 + d_2
$$
, $H_2 = u_1 u_2$.

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

1 [Motivation](#page-2-0)

- **2** [Dimer Integrable Systems](#page-11-0)
- ³ [New dimer models](#page-22-0)
- 4 [Quantization](#page-34-0)

メロメ メ御 メメ ヨメ メヨメ 299 ∍

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 11 / 47

Define Poisson commutation relation between two 1-loops sharing an edge [Goncharov, Kenyon '03]:

$$
\{\gamma, \gamma'\} = \epsilon_{\gamma, \gamma'} \gamma \gamma', \ \epsilon_{\gamma, \gamma'} = \sum_{\mathbf{v}} \text{sgn}(\mathbf{v}) \delta_{\mathbf{v}}(\gamma, \gamma')
$$

 $\delta_{\mathsf{v}} \in \frac{1}{2}$ $\frac{1}{2}{\mathbb Z}$ is a skew-symmetric bilinear form. Examples that we will encounter:

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 12 / 47['] and the systems 12 / 47['] and the system of the systems 12 / 47['] and the systems 12 / 47[']

The four 1-loops u_n , d_n , $n = 1, 2$, in the 2×2 square dimer

satisfy

$$
\{u_n,d_n\}=u_nd_n, \ \{d_2,u_1\}=d_2u_1, \ \{d_1,u_2\}=d_1u_2. \qquad (1)
$$

 \leftarrow \Box

The Casimirs C*[±]* commute with all 1-loops.

[Dimer integrable systems](#page-0-0) 13 / 47

The 1-loops in 2 *×* 2 square dimer can be expressed by canonical coordinates (q_n, p_n) , $p_{n+2} = p_n$, $q_{n+2} = q_n$.

$$
u_n = e^{p_n}, \ d_n = R^2 e^{q_{n-1} - q_n} e^{p_n}
$$
 (2)

The commuting Hamiltonians are

$$
H_1 = \sum_{n=1}^{2} u_n + d_n = \sum_{n=1}^{2} e^{p_n} + R^2 e^{q_{n-1} - q_n} e^{p_n}
$$

\n
$$
H_2 = u_1 u_2 = e^{p_1 + p_2}.
$$
\n(3)

It is the type A relativistic Toda lattice of two particles.

∢ロ ▶ ∢伺 ▶ ∢ミ ▶

Dimer integrable system

Definition

A *n*-loop is a product of *n* non-overlapping 1-loops.

Definition

The *n*-th Hamiltonian H_n is a sum over *n*-loops:

$$
H_n = \sum n\text{-loops}.
$$

Theorem [Goncharov-Kenyon]

A dimer graph defines an integrable system.

$$
\{H_n, H_m\} = 0, \ n, m = 1, \dots, N
$$

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

 QQ

Dimer integrable system

Relativistic Toda lattice (RTL) belongs to a family of cluster integrable system called $\,Y^{N,k}\,$ dimer model with spectral curve:

$$
\Sigma = \left\{ (X, Y) \in \mathbb{C}^2 | C_+ Y + \frac{C_- X^k}{Y} = T(X) \right\}, \ T(X) = \sum_{n=0}^N H_n X^{n - \frac{N}{2}}.
$$

The dual graphs of these dimer graphs are planar, periodic quiver gauge theories which arise from a stack of D3 branes probing a singular, toric CY3. [Franco, Hanany, Kennaway, Vegh, Wecht '05] A string dual exists on $AdS_5 \times X_5$, where X_5 is a Sasaki-Einstein manifold whose metric $Y^{N,k}$ is labeled by two integers $k\leq N.$

[Benvenuti, Hanany, Kazakopoulos '04].

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 16 / 47

A dimer graph can be construct based on a given toric diagram:

Norton Lee IBS Center for Geometry and Physics (Norton Lee IBS Center for Geometry and Physics

[Dimer integrable systems](#page-0-0) 17 / 47

The 1-loops $\{u_n, d_n\}_{n=1}^N$ obeys

$$
\{u_n, d_n\} = u_n d_n,
$$

\n
$$
\{d_{n+1}, u_n\} = d_{n+1} u_n,
$$

\n
$$
\{d_{n+1}, d_n\} = d_{n+1} d_n.
$$

The first Hamiltonian H_1 is \hat{A}_{N-1} relativistic Toda Hamiltonian.

$$
H_1=\sum_{n=1}^N\left(1+R^2e^{q_n-q_{n-1}}\right)e^{-p_n}.
$$

Figure. 3: The 1-loops in a $Y^{N,0}$ square dimer model when N is even.

€ □ >

 QQ

 $Y^{N,N}$ model is the hexagon diagram.

The 1-loops $\{u_n, d_n\}_{n=1}^N$ obeys

$$
\begin{aligned} \{u_n, d_n\} &= u_n d_n, \\ \{d_{n+1}, u_n\} &= d_{n+1} u_n, \end{aligned}
$$

Figure. 4: The 1-loops in a $Y^{N,N}$ hexagon dimer model.

Eager, Franco, and Schaeffer prove that Y ^N*,*^k dimer graph can be obtained by gluing vertexes in Y ^N*,*^N model consecutively at $k, \ldots, N-1$ hexagons. [Eager, Franco, Schaeffer '11]

The non-vanishing 1-loop Poisson commutations are

$$
\{u_n, d_n\} = u_n d_n,
$$

\n
$$
\{d_{n+1}, u_n\} = d_{n+1} u_n,
$$

\n
$$
\{d_{n+1}, d_n\} = d_{n+1} d_n, n = k, ..., N - 1.
$$

Remark: All first Hamiltonian of Y ^N*,*^k model has the same non-relativistic limit $p_n \to R p_n$, $R \to 0$:

$$
\lim_{R\to 0} H_1|_{Y^{N,k}} = N + R \sum_{n=1}^N p_n + R^2 \left[\sum_{n=1}^N \frac{p_n^2}{2} + e^{q_n - q_{n-1}} \right] + \mathcal{O}(R^3)
$$

The R^2 term is the non-relativistic \hat{A}_{N-1} Toda lattice.

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 21 / 47

 QQ

1 [Motivation](#page-2-0)

- **2** [Dimer Integrable Systems](#page-11-0)
- ³ [New dimer models](#page-22-0)
- 4 [Quantization](#page-34-0)

メロメ メ御 メメ ヨメ メヨメ 299 活

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 22 / 47

K ロ ト K 何 ト K 手

 \mathbf{p}

New dimer models

Here we introduce two ways to modify existing dimer graphs to generate new ones:

- Non-standard gluing [NL '23]
- Introducing impurity [Lee-NL '24]

Norton Lee **IBS Center for Geometry and Physics**

Non-standard gluing

Denote S *⊂ {*1*,* 2*, . . . ,* N*}* as the gluing set with $|S| = N - k$. $Y^{N,k}[S]$ is obtaining by gluing at the *n*-th hexagon if $n \in S$.

$$
G_S(n) = \begin{cases} 0 & n \in S \\ 1 & n \notin S \end{cases}.
$$

The non-vanishing 1-loop Poisson commutation relations are

$$
\{u_n, d_n\} = u_n d_n,
$$

\n
$$
\{d_{n+1}, u_n\} = d_{n+1} u_n,
$$

\n
$$
\{d_{n+1}, d_n\} = d_{n+1} d_n \text{ if } n \in S.
$$

Figure. 5: Two non-equivalent gluing of $Y^{4,2}[S]$ dimer. The standard dimer graph on the left and the alternative on the right.

The third Hamiltonian of the standard $\mathsf{Y}^{4,2}[\{2,3\}]$ dimer:

$$
H_3|_{\text{standard}} = u_3 u_2 u_1 + u_2 u_1 u_4 + u_1 u_4 u_3 + u_4 u_3 u_2 + u_3 u_2 d_1 + u_2 u_1 d_4 + u_1 u_4 d_3 + u_4 u_3 d_2 + u_3 d_2 d_1 + u_2 d_1 d_4 + d_2 d_1 d_4
$$
 (4)

The third Hamiltonian of the non-standard $\mathsf{Y}^{4,2}[\{1,3\}]$ dimer:

$$
H_3|_{\text{non-standard}} = u_3u_2u_1 + u_2u_1u_4 + u_1u_4u_3 + u_4u_3u_2
$$

+ $u_3u_2d_1 + u_2u_1d_4 + u_1u_4d_3 + u_4u_3d_2$ (5)
+ $u_2d_1d_4 + u_4d_3d_2$

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 25 / 47

活

 299

メロメ メタメメ ミメメ 毛

Question: What is the relation between $Y^{N,k}[S]$ model with different gluing sets S?

Norton Lee IBS Center for Geometry and Physics

[Dimer integrable systems](#page-0-0) 26 / 47

∍

K ロ ▶ K 何 ▶

4 重 \rightarrow ∍

Question: What is the relation between $Y^{N,k}[S]$ model with different gluing sets S? **Conjecture:** Seiberg duality of Y ^N*,*^k quiver gauge theories?

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 26 / 47

Introduce impurities

Our aim here is to find dimer graphs for RTL of type B,C,D. Sklyanin proved that type B,C,D RTL can be viewed as type A with special boundary conditions. Spectral curves are known through the Lax formalism. [Sklyanin]

'88]

Figure. 6: Toric diagram associated to spectral curve of $\mathfrak{so}(8) = D_4$ RTL.

4 **D** F

Introducing Impurities

The dimer graph for D_N can be build based on Y 2N*−*4*,*0 square dimer. A pair of vertical lines in the toric diagram introduces impurity to the square dimer graph. The newly introduced red nodes modifies the edges inside the square.

4 0 F

Introducing Impurities

It is allowed to introduce impurity multiple times in a single square in the Y ²N*−*⁴ dimer.

Two pairs of vertical lines in the toric diagram introduces double impurity to the square dimer graph. The newly introduced red nodes modifies the edges inside the square.

4 0 F

Introducing Impurity

Figure. 7: Two bipartite graphs generated by toric diagram for D_4 . The left graph is constructed by placing double impurity at the first and third square in Y ⁴*,*⁰ graph. The right one place single impurity in each of the square in the $\mathsf{Y}^{4,0}$ graph.

> 4 0 K 4 何 ▶

Introducing Impurity

K ロ ⊁ K 伊 ⊁ K 毛 299 ×

Norton Lee IBS Center for Geometry and Physics (Norton Lee IBS Center for Geometry and Physics

[Dimer integrable systems](#page-0-0) 31 / 47

To obtain dimer for $\hat{D}_{\boldsymbol{\mathsf{N}}}$ RTL, we perform folding through

- *•* Two double impurities placed furthest away in Y ²N*−*4*,*⁰ dimer.
- Assign $2N + 2N$ canonical coordinates to the 1-loops based on their Poisson commutation.
- Cut # canonical coordinates by half by requiring $H_n = H_{2N-n}$.
- *•* Canonical transformation at two double impurities:

$$
e^q \to \frac{\cosh \frac{p}{2}}{\sinh q}, \quad e^p \to \frac{\cosh \frac{p-2q}{2}}{\cosh \frac{p+2q}{2}}.
$$

 $H_1 = H_{2N-1}$ recovers \hat{D}_N Toda lattice Hamiltonian.

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 32 / 47

1 [Motivation](#page-2-0)

- **2** [Dimer Integrable Systems](#page-11-0)
- ³ [New dimer models](#page-22-0)
- **4** [Quantization](#page-34-0)

メロメ メ御 メメ ヨメ メヨメ 299 ∍

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 33 / 47

The classical system can be promote to quantum by replacing

$$
\{\gamma,\gamma'\} = \gamma\gamma' \to \hat{\gamma}\hat{\gamma}' - e^{-\hbar}\hat{\gamma}'\hat{\gamma} = 0.
$$

4000

Question: How to solve for wavefunction?

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 34 / 47

Quantization

Bethe/Gauge correspondence:

Promotion to quantum with Ω -deform in 4d/5d gauge theory. The stationary states of the quantum integrable system are the vacua of the effective 2d $\mathcal{N} = (2, 2)$ or 3d $\mathcal{N} = 2$ theories.

← ロ ▶ → イ 何 ▶

Couple 1d fermionic d.o.f to bulk 5d theory s.t. it is half-BPS.

$$
S_{1d} = \int_{S^1} dt \; \chi^{\dagger} (\partial_t - iA_t + \Phi + x) \chi.
$$

It is a co-dim 4 observable in 5d theory. By localization

$$
\frac{\mathcal{Z}_{1d/5d}}{\mathcal{Z}_{5d}} = \langle X_k(X = e^X) \rangle = \left\langle Y(Xe^{\varepsilon_1 + \varepsilon_2}) + \frac{\mathfrak{q}X^k}{Y(X)} \right\rangle = \sum_{n=0}^N X^{n - \frac{N}{2}} W_{\wedge^n}
$$

W_{∧n}: n-th anti-sym. rep. of Wilson loop. [Tong, Wong '14] [Kim '16] $\mathcal{X}_k(X)$: qq-character, whose vev is regular in x. It is the quantum uplift of the Seiberg-Witten curve. [Nekrasov '15]

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

Gauge theory placed on orbifolded spacetime $\hat{\mathbb{C}}_1 \times \left(\hat{\mathbb{C}}_2/\mathbb{Z}_\mathsf{N}\right)$. The quotient space can be identified with \mathbb{C}^2_{12} the complex manifold via

$$
\hat{\mathbb{C}}_1 \times (\hat{\mathbb{C}}_2/\mathbb{Z}_N) \to \mathbb{C}^2_{12}
$$
\n
$$
(\hat{\mathbf{z}}_1, \hat{\mathbf{z}}_2) \mapsto (\mathbf{z}_1 = \hat{\mathbf{z}}_1, \mathbf{z}_2 = \hat{\mathbf{z}}_2^N)
$$
\n(6)

The theory on the orbifold space $\hat{\mathbb{C}}_1\times\left(\hat{\mathbb{C}}_2/\mathbb{Z}_\mathsf{N}\right)$ is equivalent to gauge theory on the smooth space \mathbb{C}^2_{12} with a specific boundary condition along \mathbb{C}_1 on $\hat{\mathbf{z}}_2 = 0$

$$
A_{\mu}dx^{\mu} \sim \text{diag}(\alpha_1,\ldots,\alpha_N)d\theta. \tag{7}
$$

Gauge symmetry is broken to its maximal torus $U(1)^N \subset U(N)$.

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 37 / 47

Monodromy defect

By localization, the path integral of the 5d $\mathcal{N}=1$ gauge theory on a orbifold reduces to a finite dimensional integral over the instanton moduli space $\mathfrak{M}^{\operatorname{orb}}_{\hat{\mathbb{C}}^2_{12}}$ It can be constructed by \widetilde{ADHM} . construction described by the \mathbb{Z}_N chainsaw quiver. [Kanno, Tachikawa '11]

Figure. 8: \mathbb{Z}_8 Chainsaw quiver

4 **D** F

Quantization

There exists a natural projection $\rho: \mathfrak{M}^{\rm orb}_{\hat{\mathbb{C}}^2_{12}} \to \mathfrak{M}_{\mathbb{C}^2_{12}}.$

• Integration over $\mathfrak{M}^{\operatorname{orb}}_{\hat{\mathbb{C}}^2_{12}} \implies$ Integration over $\mathfrak{M}_{\mathbb{C}^2_{12}} +$ integration over fiber of the projection.

$$
\hat{\mathcal{Z}}_{\hat{\mathbb{C}}_{12}^2} = \int_{\mathfrak{M}_{\hat{\mathbb{C}}_{12}^2}^{\text{orb}}} 1 = \int_{\mathfrak{M}_{\mathbb{C}_{12}^2}} \Psi(\hat{\mathfrak{q}}) = \langle \Psi(\hat{\mathfrak{q}}) \rangle \mathcal{Z}_{\mathbb{C}_{12}^2}
$$
(8)

 $\hat{\bm{\mathsf{q}}} = (\bm{\mathsf{q}}_\omega)_{\omega=0}^{\bm{\mathsf{N}}-1}$ are counting parameters of $\mathbb{Z}_{\bm{\mathsf{N}}}$ -orbifold charges. The defect is characteried by bijective coloring function of Coulomb moduli

$$
c:\{1,\ldots,N\}\to\mathbb{Z}_N
$$

and fractional CS-levels on the 3d theory k_n obeying

$$
k_n \in \{0, 1\}, \ \sum_{n=1}^N k_n = k.
$$

The line defect on $\mathcal{S}^1 \times \hat{\mathbb{C}}^2_{12}$ as fractional qq -character is a regular function in x :

$$
\langle \chi_{\omega}(X = e^{X}) \rangle_{\mathbb{Z}_{N}} = \frac{1}{\hat{\mathcal{Z}}_{\hat{\mathbb{C}}_{12}^{2}}} \sum_{\hat{\lambda}} \prod_{\omega=0}^{N-1} \mathfrak{q}_{\omega}^{k_{\omega}} \hat{\mathcal{Z}}[\hat{\lambda}] \mathcal{X}_{\omega}(x)[\hat{\lambda}]
$$

$$
= \langle Y_{\omega+1}(Xe^{\varepsilon_{1}}) \rangle_{\mathbb{Z}_{N}} + \left\langle \frac{\mathfrak{q}_{\omega} X^{k_{\omega}}}{Y_{\omega}(X)} \right\rangle_{\mathbb{Z}_{N}}
$$

 \Rightarrow 299 **K ロ ▶ K 何 ▶** 4 重 €

Norton Lee IBS Center for Geometry and Physics (Norton Lee IBS Center for Geometry and Physics

.

[Dimer integrable systems](#page-0-0) 40 / 47

Obtain Hamiltonian

A function $f(X = e^X)$ regular in x means it can only has pole at $X = \infty$ and $X = 0$. Consider $X >> 1$ and $X << 1$ expansion of $\langle \mathcal{X}_\omega(X) \rangle / \sqrt{X}$:

• Large X:

$$
\frac{\langle \mathcal{X}_{\omega}(X) \rangle_{\mathbb{Z}_N}}{\sqrt{X}} = \sum_{j=0}^{\infty} \langle c_{j,\omega}^{(+)} \rangle_{\mathbb{Z}_N} X^{-j}
$$

• Small X:

$$
\frac{\langle \mathcal{X}_{\omega}(X) \rangle_{\mathbb{Z}_N}}{\sqrt{X}} = \frac{1}{X} \underset{X=0}{\text{Res}} \frac{\langle \mathcal{X}_{\omega}(X) \rangle_{\mathbb{Z}_N}}{\sqrt{X}} + \sum_{j=0}^{\infty} \langle c_{j,\omega}^{(-)} \rangle_{\mathbb{Z}_N} X^j
$$

Taking difference and matching X *−*1 coefficient gives

$$
\left\langle \textbf{c}^{(+)}_{1,\omega} - \underset{X=0}{\text{Res}} \frac{\mathcal{X}_{\omega}(X)}{\sqrt{X}} \right\rangle_{\mathbb{Z}_N} = 0.
$$

Norton Lee **IBS Center for Geometry and Physics**

Take linear combination

$$
\sum_{\omega=0}^{N-1} \hat{C}_{\omega} \left\langle c_{1,\omega}^{(+)} - \underset{X=0}{\text{Res}} \frac{\mathcal{X}_{\omega}(X)}{\sqrt{X}} \right\rangle_{\mathbb{Z}_N} \hat{\mathcal{Z}}_{\hat{\mathbb{C}}_{12}^2} = 0
$$

with proper coefficients $\hat{\mathsf{C}}_\omega$. We obtain

$$
\hat{H}_{\textit{N}-1}|_{\textit{Y}^{\textit{N},\textit{k}}[S]}\langle\Psi(\hat{\textit{q}})\rangle=\langle\textit{S}\Psi(\hat{\textit{q}})\rangle,
$$

 $\mathfrak{g}_\omega = R^2 e^{q_{\omega+1}-q_\omega}$ and

$$
G_S(n)=k_n.
$$

← □ ▶ ← *□*

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 42 / 47

 299

 \Rightarrow

∍

4 重

In the NS-limit the bulk instanton is locked to limit shape **Λ**.

$$
\lim_{\varepsilon_2 \to 0} \langle \Psi(\hat{\mathfrak{q}}) \rangle = \psi(\hat{\mathfrak{q}}), \quad \lim_{\varepsilon_2 \to 0} \langle \mathbf{S}\Psi(\hat{\mathfrak{q}}) \rangle = \mathbf{S}[\mathbf{\Lambda}]\psi(\hat{\mathfrak{q}})
$$

We obtain Schrödinger equation:

$$
\hat{H}_{N-1}|_{Y^{N,k}[S]}\psi(\hat{\mathfrak{q}})=S[\Lambda]\psi(\hat{\mathfrak{q}}).
$$

 \leftarrow \Box \rightarrow \rightarrow \Box

Ξ

Norton Lee IBS Center for Geometry and Physics (Norton Lee IBS Center for Geometry and Physics

[Dimer integrable systems](#page-0-0) 43 / 47

∍

K ロ ▶ K 何 ▶ K 手

Remark: $\psi(\hat{\mathfrak{q}})$ is the common eigenfunction of all commuting Hamiltonians. This is proven by constructing the Lax matrices (and reflection matrices in the case of type D) of the integrable system from *qq*-character.

Norton Lee **IBS Center for Geometry and Physics IBS Center for Geometry and Physics**

1 [Motivation](#page-2-0)

- **2** [Dimer Integrable Systems](#page-11-0)
- **3** [New dimer models](#page-22-0)
- 4 [Quantization](#page-34-0)

メロメ メ御 メメ ヨメ メヨメ 299 活

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 45 / 47

K ロ ▶ K 何 ▶ K 手

Summary:

- We construct new dimer integrable systems by modifying existing dimer graph.
- *•* The wavefunction of quantum dimer integrable system is proven to be co-dimensional two monodromy defect in 5d $\mathcal{N}=1$ gauge theory.

Future direction:

- *•* Find dimer graph for type B, C or even E.
- *•* The BPS quiver dual to the modified dimer graphs.
- *•* More general modification of dimer graph.
- *•* Dimer graphs for non-toric SUSY theories or non-convex toric diagrams.

Thank you for your attention!

Norton Lee **IBS Center for Geometry and Physics**

[Dimer integrable systems](#page-0-0) 47 / 47