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Motivation

Dimer model, also known as brane tiling or domino tiling, is a
study of tessellation of Euclidean plane by dominoes.
Equivalently, it is a study of perfect matching on a lattice graph.

Figure. 1: A domino tiling of 8× 8 chess board.
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Motivation

Why are physicists interested in dimer model?

• There is a one-to-one correspondence between periodic dimer
model and a ground state of fully-frustrated Ising model on 2d
periodic lattice. [Barahona ’82]

• Any dimer model on a torus defines a relativistic integrable
system whose conserving Hamiltonians can be read off from
the loops of the dimer graph. [Goncharov, Kenyon ’11]
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Dimer model

A bipartitle graph Γ = (B,W ,E ) is a triad embedded on an
oriented 2-surface S:

• a finite set of black nodes B,
• a finite set of white nodes W , and
• a finite set E of edges, consisting of embedded closed

intervals e on S such that one boundary of e belongs to B
and the other boundary belongs to W .

such that any edge can intersect another edge only at its boundary.
Γ = (B,W ,E ) is a dimer model if

• Every equivalent node is on the boundary of S, and
• every faces of Γ is simply-connected.
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Dimer model

Here we only consider the case S = T 2. The periodicity on the
torus is realized by the unit cell.
A perfect matching M ∈ E is a collection of edges such that all
nodes in a unit cell is connected by exactly one edge.

Figure. 2: The eight perfect matching of a 2× 2 square dimer graph.
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Dimer model

We choose the default orientation of the edges to be pointing from
a black node to a white node.
A weight is assigned to a perfect matching M based on the
orientation of its edges that pass through the boundary of the unit
cell.
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Dimer model

The 1-loops are paths on the dimer graph connecting from one
white node to the same white node across unit cell boundary.
The 1-loops are obtained by taking difference between a perfect
matching with the reference perfect matching. There are four
1-loops and two Casimir C± in the 2× 2 square dimer:

The n-loop is the product of n non-overlapping 1-loops. There is a
single 2-loop u1u2 for the 2× 2 square dimer.
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Dimer model

The spectral curve is obtained by Kasteleyn matrix [Kenyon ’03]:

h2

h1

h̃2

h̃1

v1 ṽ2

ṽ1 v2

, K =

(
h1 − h̃1X v2Y + ṽ2
v1 + ṽ1

Y −h2 + h̃2
X

)
.

The spectral curve:

Σ =

{
(X ,Y ) ∈ C2| 0 = det K = h̃1h2

[
X − H1 +

H2

X − C+Y − C−
Y

]}
with H1 = u1 + u2 + d1 + d2, H2 = u1u2.
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Dimer integrable system

Define Poisson commutation relation between two 1-loops sharing
an edge [Goncharov, Kenyon ’03]:

{γ, γ′} = ϵγ,γ′γγ′, ϵγ,γ′ =
∑

v
sgn(v)δv (γ, γ

′)

δv ∈ 1
2Z is a skew-symmetric bilinear form. Examples that we will

encounter:

{γ, γ′} = γγ′.

γ

γ′
{γ, γ′} = 0.

γ

γ′
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Dimer integrable system

The four 1-loops un, dn, n = 1, 2, in the 2× 2 square dimer

satisfy

{un, dn} = undn, {d2, u1} = d2u1, {d1, u2} = d1u2. (1)

The Casimirs C± commute with all 1-loops.
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Dimer integrable system

The 1-loops in 2× 2 square dimer can be expressed by canonical
coordinates (qn, pn), pn+2 = pn, qn+2 = qn:

un = epn , dn = R2eqn−1−qnepn (2)

The commuting Hamiltonians are

H1 =

2∑
n=1

un + dn =

2∑
n=1

epn + R2eqn−1−qnepn

H2 = u1u2 = ep1+p2 .

(3)

It is the type A relativistic Toda lattice of two particles.
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Dimer integrable system

Definition
A n-loop is a product of n non-overlapping 1-loops.

Definition
The n-th Hamiltonian Hn is a sum over n-loops:

Hn =
∑

n-loops.

Theorem [Goncharov-Kenyon]
A dimer graph defines an integrable system.

{Hn,Hm} = 0, n,m = 1, . . . ,N
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Dimer integrable system

Relativistic Toda lattice (RTL) belongs to a family of cluster
integrable system called Y N,k dimer model with spectral curve:

Σ =

{
(X ,Y ) ∈ C2|C+Y +

C−X k

Y = T (X )

}
, T (X ) =

N∑
n=0

HnXn−N
2 .

The dual graphs of these dimer graphs are planar, periodic quiver
gauge theories which arise from a stack of D3 branes probing a
singular, toric CY3. [Franco, Hanany, Kennaway, Vegh, Wecht ’05]

A string dual exists on AdS5 × X5, where X5 is a Sasaki-Einstein
manifold whose metric Y N,k is labeled by two integers k ≤ N.
[Benvenuti, Hanany, Kazakopoulos ’04].
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Dimer integrable system

A dimer graph can be construct based on a given toric diagram:
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Y N,0 square dimer

The 1-loops {un, dn}N
n=1 obeys

{un, dn} = undn,

{dn+1, un} = dn+1un,

{dn+1, dn} = dn+1dn.

The first Hamiltonian H1 is ÂN−1

relativistic Toda Hamiltonian.

H1 =

N∑
n=1

(
1 + R2eqn−qn−1

)
e−pn . Figure. 3: The 1-loops in a Y N,0

square dimer model when N is even.
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Hexagon Y N,N dimer

Y N,N model is the hexagon
diagram.
The 1-loops {un, dn}N

n=1 obeys

{un, dn} = undn,

{dn+1, un} = dn+1un,

Figure. 4: The 1-loops in a Y N,N

hexagon dimer model.
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Y N,k dimer

Eager, Franco, and Schaeffer
prove that Y N,k dimer graph can
be obtained by gluing vertexes in
Y N,N model consecutively at
k, . . . ,N − 1 hexagons. [Eager, Franco,

Schaeffer ’11]

The non-vanishing 1-loop
Poisson commutations are

{un, dn} = undn,

{dn+1, un} = dn+1un,

{dn+1, dn} = dn+1dn, n = k, . . . ,N − 1.
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Remark: All first Hamiltonian of Y N,k model has the same
non-relativistic limit pn → Rpn, R → 0:

lim
R→0

H1|Y N,k = N + R
N∑

n=1

pn + R2

[ N∑
n=1

p2
n
2

+ eqn−qn−1

]
+O(R3)

The R2 term is the non-relativistic ÂN−1 Toda lattice.
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New dimer models

Here we introduce two ways to modify existing dimer graphs to
generate new ones:

• Non-standard gluing [NL ’23]

• Introducing impurity [Lee-NL ’24]
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Non-standard gluing

Denote S ⊂ {1, 2, . . . ,N} as the
gluing set with |S| = N − k.
Y N,k [S] is obtaining by gluing at
the n-th hexagon if n ∈ S.

GS(n) =
{
0 n ∈ S
1 n /∈ S

.

The non-vanishing 1-loop Poisson
commutation relations are

{un, dn} = undn,

{dn+1, un} = dn+1un,

{dn+1, dn} = dn+1dn if n ∈ S.

Figure. 5: Two non-equivalent gluing
of Y 4,2[S] dimer. The standard
dimer graph on the left and the
alternative on the right.
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Non-standard gluing

The third Hamiltonian of the standard Y 4,2[{2, 3}] dimer:

H3|standard = u3u2u1 + u2u1u4 + u1u4u3 + u4u3u2
+ u3u2d1 + u2u1d4 + u1u4d3 + u4u3d2
+ u3d2d1 + u2d1d4 + d2d1d4

(4)

The third Hamiltonian of the non-standard Y 4,2[{1, 3}] dimer:

H3|non−standard = u3u2u1 + u2u1u4 + u1u4u3 + u4u3u2
+ u3u2d1 + u2u1d4 + u1u4d3 + u4u3d2
+ u2d1d4 + u4d3d2

(5)
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Non-standard gluing

Question: What is the relation between Y N,k [S] model with
different gluing sets S?

Conjecture: Seiberg duality of Y N,k quiver gauge theories?
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Introduce impurities

Our aim here is to find dimer
graphs for RTL of type B,C,D.
Sklyanin proved that type B,C,D
RTL can be viewed as type A
with special boundary conditions.
Spectral curves are known
through the Lax formalism. [Sklyanin

’88]

Figure. 6: Toric diagram associated
to spectral curve of so(8) = D4

RTL.
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Introducing Impurities

The dimer graph for DN can be
build based on Y 2N−4,0 square
dimer. A pair of vertical lines in
the toric diagram introduces
impurity to the square dimer
graph. The newly introduced red
nodes modifies the edges inside
the square.
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Introducing Impurities

It is allowed to introduce impurity
multiple times in a single square
in the Y 2N−4 dimer.
Two pairs of vertical lines in the
toric diagram introduces double
impurity to the square dimer
graph. The newly introduced red
nodes modifies the edges inside
the square.
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Introducing Impurity

Figure. 7: Two bipartite graphs generated by toric diagram for D4. The
left graph is constructed by placing double impurity at the first and third
square in Y 4,0 graph. The right one place single impurity in each of the
square in the Y 4,0 graph.
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Introducing Impurity
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Introducing Impurity

To obtain dimer for D̂N RTL, we perform folding through
• Two double impurities placed furthest away in Y 2N−4,0 dimer.
• Assign 2N +2N canonical coordinates to the 1-loops based on

their Poisson commutation.
• Cut # canonical coordinates by half by requiring Hn = H2N−n.
• Canonical transformation at two double impurities:

eq →
cosh p

2

sinh q , ep →
cosh p−2q

2

cosh p+2q
2

.

H1 = H2N−1 recovers D̂N Toda lattice Hamiltonian.

Norton Lee IBS Center for Geometry and Physics
Dimer integrable systems 32 / 47



Motivation Dimer Integrable Systems New dimer models Quantization Summary

1 Motivation

2 Dimer Integrable Systems

3 New dimer models

4 Quantization

5 Summary

Norton Lee IBS Center for Geometry and Physics
Dimer integrable systems 33 / 47



Motivation Dimer Integrable Systems New dimer models Quantization Summary

Quantization

The classical system can be promote to quantum by replacing

{γ, γ′} = γγ′ → γ̂γ̂′ − e−h̄γ̂′γ̂ = 0.

Question: How to solve for wavefunction?
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Quantization

Bethe/Gauge correspondence:

Promotion to quantum with Ω-deform in 4d/5d gauge theory.
The stationary states of the quantum integrable system are the
vacua of the effective 2d N = (2, 2) or 3d N = 2 theories.
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Quantization

Couple 1d fermionic d.o.f to bulk 5d theory s.t. it is half-BPS.

S1d =

∫
S1

dt χ†(∂t − iAt +Φ+ x)χ.

It is a co-dim 4 observable in 5d theory. By localization

Z1d/5d
Z5d

= 〈Xk(X = ex )〉 =
⟨

Y (Xeε1+ε2) +
qX k

Y (X )

⟩
=

N∑
n=0

Xn−N
2 W∧n

W∧n : n-th anti-sym. rep. of Wilson loop. [Tong, Wong ’14] [Kim ’16]

Xk(X ): qq-character, whose vev is regular in x . It is the quantum
uplift of the Seiberg-Witten curve. [Nekrasov ’15]

Norton Lee IBS Center for Geometry and Physics
Dimer integrable systems 36 / 47



Motivation Dimer Integrable Systems New dimer models Quantization Summary

Quantization

Gauge theory placed on orbifolded spacetime Ĉ1 ×
(
Ĉ2/ZN

)
. The

quotient space can be identified with C2
12 the complex manifold via

Ĉ1 ×
(
Ĉ2/ZN

)
→ C2

12

(ẑ1, ẑ2) 7→
(

z1 = ẑ1, z2 = ẑN
2

) (6)

The theory on the orbifold space Ĉ1 ×
(
Ĉ2/ZN

)
is equivalent to

gauge theory on the smooth space C2
12 with a specific boundary

condition along C1 on ẑ2 = 0

Aµdxµ ∼ diag(α1, . . . , αN)dθ. (7)

Gauge symmetry is broken to its maximal torus U(1)N ⊂ U(N).
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Monodromy defect

By localization, the path integral
of the 5d N = 1 gauge theory on
a orbifold reduces to a finite
dimensional integral over the
instanton moduli space Morb

Ĉ2
12

.
It can be constructed by ADHM
construction described by the ZN
chainsaw quiver. [Kanno, Tachikawa ’11]

Figure. 8: Z8 Chainsaw quiver
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Quantization

There exists a natural projection ρ : Morb
Ĉ2
12

→ MC2
12

.
• Integration over Morb

Ĉ2
12

=⇒ Integration over MC2
12

+
integration over fiber of the projection.

ẐĈ2
12

=

∫
Morb

Ĉ212

1 =

∫
MC212

Ψ(q̂) = 〈Ψ(q̂)〉ZC2
12

(8)

q̂ = (qω)
N−1
ω=0 are counting parameters of ZN -orbifold charges. The

defect is characteried by bijective coloring function of Coulomb
moduli

c : {1, . . . ,N} → ZN

and fractional CS-levels on the 3d theory kn obeying

kn ∈ {0, 1},
N∑

n=1

kn = k.
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Quantization

The line defect on S1 × Ĉ2
12 as fractional qq-character is a regular

function in x :

〈Xω(X = ex )〉ZN =
1

ẐĈ2
12

∑
λ̂

N−1∏
ω=0

qkω
ω Ẑ[λ̂]Xω(x)[λ̂]

= 〈Yω+1(Xeε1)〉ZN +

⟨
qωX kω

Yω(X )

⟩
ZN

.

Norton Lee IBS Center for Geometry and Physics
Dimer integrable systems 40 / 47



Motivation Dimer Integrable Systems New dimer models Quantization Summary

Obtain Hamiltonian

A function f (X = ex ) regular in x means it can only has pole at
X = ∞ and X = 0. Consider X >> 1 and X << 1 expansion of
〈Xω(X )〉/

√
X :

• Large X :
〈Xω(X )〉ZN√

X
=

∞∑
j=0

〈c(+)
j,ω 〉ZN X−j

• Small X :
〈Xω(X )〉ZN√

X
=

1

X Res
X=0

〈Xω(X )〉ZN√
X

+

∞∑
j=0

〈c(−)
j,ω 〉ZN X j

Taking difference and matching X−1 coefficient gives⟨
c(+)
1,ω − Res

X=0

Xω(X )√
X

⟩
ZN

= 0.
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Obtain Hamiltonian

Take linear combination
N−1∑
ω=0

Ĉω

⟨
c(+)
1,ω − Res

X=0

Xω(X )√
X

⟩
ZN

ẐĈ2
12

= 0

with proper coefficients Ĉω. We obtain

ĤN−1|Y N,k [S]〈Ψ(q̂)〉 = 〈SΨ(q̂)〉,

with qω = R2eqω+1−qω and

GS(n) = kn.
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Obtain Hamiltonian

In the NS-limit the bulk instanton is locked to limit shape Λ.

lim
ε2→0

〈Ψ(q̂)〉 = ψ(q̂), lim
ε2→0

〈SΨ(q̂)〉 = S[Λ]ψ(q̂)

We obtain Schrödinger equation:

ĤN−1|Y N,k [S]ψ(q̂) = S[Λ]ψ(q̂).
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Remark: ψ(q̂) is the common eigenfunction of all commuting
Hamiltonians. This is proven by constructing the Lax matrices
(and reflection matrices in the case of type D) of the integrable
system from qq-character.
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Summary:
• We construct new dimer integrable systems by modifying

existing dimer graph.
• The wavefunction of quantum dimer integrable system is

proven to be co-dimensional two monodromy defect in 5d
N = 1 gauge theory.

Future direction:
• Find dimer graph for type B, C or even E.
• The BPS quiver dual to the modified dimer graphs.
• More general modification of dimer graph.
• Dimer graphs for non-toric SUSY theories or non-convex toric

diagrams.
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Thank you for your attention!
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