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In this paper we study the renormalization group flow of the (p, q) minimal (non-unitary) CFT perturbed by the ~1.3 operator 
with a positive coupling. In the perturbative region q:rr, (q-p), we find a new IR fixed point which corresponds to the (2p-q, p) 
minimal CFT. The perturbing field near the new IR fixed point is identified with the irrelevant ¢)3.1 operator. We extend this 
result to show that the non-diagonal ( (A, D)-type) modular invariant partition function of the (p, q) minimal CFT flows into 
the (A, D)-type partition function of the (2p-q, p) minimal CFT and the diagonal partition function into the diagonal. 

1. Conformal field theories (CFTs)  [ 1 ] perturbed by relevant operators have provided a theoretical frame- 
work for constructing integrable scale non-invariant 2D quantum field theories (QFTs) .  There are two interest- 
ing classes: One is a class of  massive integrable QFTs whose scattering matrices are exactly solvable due to an 
infinite number  o f  conserved currents [ 2 ]. The other is a class o f  scale non-invariant QFTs with no massive 
particles which have new RG fixed points at which the scale invariance and conformal symmetries are restored 
[3,4]. 

The minimal CFTs [ 1 ] are characterized by two coprime integers p, q ( q > p ) .  We will denote the (p, q) 
minimal CFT by J/(p,q). The principal series of  (p, p +  1 ) correspond to the unitary CFTs in the sense that the 
states created by the Virasoro generators have positive definite norm [ 5]. Except for the string theory, the 
unitarity of  these Virasoro modules seems not the first principle to be satisfied. Interesting applications of  the 
non-unitary CFTs have been made in the integrable lattice models, matrix models and others. 

We start with the following perturbed CFT: 

~p,q) (g) = Jl<p,q) + g  J- d2z ~ l , 3 ( Z ,  Z) , ( 1 ) 

where the dimension of  the least relevant operator ~b~,3 of~ll(p,q) is 

A ( ~ , 3 ) =  1 2 ( q - p )  (2)  
q 

The theories can be represented in one-dimensional parameter space spanned by g because ~ , 3  satisfies a closed 
operator product expansion, 

[(~)1,3] X [~1 ,3 ]  = [(~)1,3] " (3) 

I f  g <  0, the theory is a massive integrable QFT, the "restricted sine-Gordon theory" both for the unitary CFTs 
[ 6 ] and the non-unitary CFTs [ 7 ]. I f  g >  0, the perturbed theory remains as a massless theory while the scale 
invariance is broken. For the unitary CFT J/(~,p+ 1), Zamolodchikov [3 ] and Ludwig and Cardy [4 ] found a 
new IR fixed point corresponding to another unitary theory ~¢/~p _ ~,p) for d ( ~ , 3  ) = 1 - ~ with ~ = 2 / (p + 1 ) << 1. 
The perturbing field ~1,3 becomes irrelevant field ~3,~ near the new fixed point. 
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In this paper, we study the RG flows of the non-unitary CFTs ~#tp,q) to show that ~¢/¢p.q) perturbed by t~,3 
flows into ./tt2p_ q,p) perturbed by q~3, a for q >> ( q - p ) .  This is an extension of the unitary CFTs [ 3,4,9 ] and has 
been noticed in a different context in ref. [ 10 ]. We further analyze the RG flows of the non-diagonal modular 
invariant partition functions (MIPFs) of./t '(p,q) [8 ]  tO find that the (A, A) and (A, D) MIPFs flow into the 
(A, A) and (A, D) MIPFs, respectively. This result is consistent with some early results on the RG flows of the 
unitary CFTs in refs. [ 11,12 ]. 

2. Under the scale transformation xu~ ( 1 + 1/2dt)xu, the parameter g changes according to the equation [ 3 ] 

2 ( q - p )  dg=~g-½Cg2+O(g3), E = - - ,  (4) # ( g )  = q 

where the coefficient of a ( diagonal ) three-point function C= C~ 1.3 ) ~ ~, 3) t 1,3) is [ 13 ] 

F(E) (~,a(1--E/Z)~'/2~,(r+I--s--(1--s)E) 
C~l.3)~r,s)tr,s)~ F ( l - e )  \ 7 ( 2 - 3 ~ / 2 ) ]  ?(r - s+( l+s)~)  ' (5) 

with 7(x) =F(x) /F(  1 - x ) .  For ~ << 1, C= 4 /~ /3+O(E) .  
From eq. (4),  one can find a new fixed point at g=g,, 

p(g , )  =0_.,g,,.~ x/~ 2 ( q - p )  (6) 
2 q 

One can identify this as the IR fixed point from the fact that g, = g( t ,  ) with t, = ~ from eq. (4). Following ref. 
[ 3 ], we introduce the 'c-function' which gives the central charges at the fixed points and satisfies the following 
RG equation: 

dc 
=f l (g)  ~ c ( g ) =  - lZp2(g) (7) 

Eq. (7) shows that the c-function is monotonically decreasing as t increases in the q~,3 direction such that the 
inequality CtJv > cm holds ~. From eqs. (4) and ( 7 ), the central charge of the IR CFT is given by 

CxR=C(g,)=CtJv--6~g2+2Cg3+O(g4*), CUV=I 6(q--p)2 1 6(q--p)2 pq p( 2p--q ) =c[ ~2,-q.p) ] • (8) 

The conformal dimension of the perturbing field near the new fixed point is determined by 

0fig.  = l ' t ' e q - E 2 q - O ( E 3 ) ' ~  2p--q q = - 4 [ ~ 3 , 1 ]  forJ[(2p_q,p). (9) zJ(cJ~l,3) --  1 - 

This completes the RG flow of ~¢~p,q) perturbed by qb~,3 into ~//~2p-q,p) perturbed by ~b3,~ for q>> (q-p) .  This 
means that the (p,q) minimal CFTs can be grouped into an infinite number of series for each value of q - p  such 
that the CFTs in each series are connected by the RG flows under the ~1,3 perturbations: 

...--. (p+ n, p +  2n)--, (p, p+ n) --, (p-n ,  p) --. ( p -  2n, p - n )  . . . .  

for p>> n and n=  1, 2, .... The n=  1 case gives the RG flows of the principal series (the unitary CFTs). No 
unitary CFTs flow into the non-unitary ones and vice versa. 

3. We now consider how each MIPF of the minimal CFTs will flow under the perturbation. There are three 

#1 This does not contradict to the fact that "c-theorem" [ 3 ] is not valid for the non-unitary CFTs. Although the c-function is not mono- 
tonically decreasing for any relevant perturbation, there can still exist certain perturbations which makes c decrease. 
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types of the MIPFs for the (p, q) minimal CFT, denoted by Z(p,q) (A, A), Z(p,q) (A, D), and Z(p, q) (A, E) [8 ]. 
The diagonal MIPFs Zip,q) (A, A) are possible for all (p, q) and contain only spinless fields. The non-diagonal 
MIPFs Zip.q) (A, D) are possible for p or q even and included some primary fields with spins. The exceptional 
MIPFs Ztp,q ) (A, E) are allowed only for a few discrete values o fp  and q. We will consider the RG flows of the 
Z(p,q) (A, A) and Z(p,q) (A, D) MIPFs here. 

The partition functions of the perturbed (p, q) minimal CFTs on the RG trajectory can be written in the 
following schematic form: 

Z(g)= ~ [~o] exp{-~p.q)(g)[~o]}= f [~o] exp[-(~lp/q+g f d2z~,.3(z,,))], (10) 

where ~0 denotes the field degree of freedom which has no direct consequence in the following context. For a 
small g. << 1, eq. (10) gives with Z(0)  =Zip, q) and Z(g. ) =Z(2p_q.p), 

OZ=Z(2p_q,p) (A, Y) - Z(,,q) (A, X) = - g ,  ~ < (/)1,3 >torts, ( 1 1 ) 

where z 2 is the imaginary part of the modular parameter r. For a given MIPF of ~¢/tp,q ) (X=A or D),  we need to 
find the corresponding Y for the MIPFs of ~//(2p_ q,p). We will show that Y= A if X--A and Y= D if X= D using 
eq. (11). 

For the purpose, it is convenient to express the MIPFs of the minimal CFTs in terms of the Coulomb gas form 
[14]: 

Z(p,q) (A, D) = ~ 
kPq/ kPq/_l 

Zc(N)=  ir/(z--~--I 2 .... Ez eXp[ ½7riz( e/ ~rN+ mx/~)2] exp[ - ½nie( e / x / ~ - m " / N ) 2 ]  . (12) 

We first compute 6Z for the diagonal and non-diagonal MIPFs separately assuming that (A, A) flows into 
(A, A) and (A, D) to (A, D): 

(q-p) 1 12F(pq)_FO(~2) OA Z=Z(2p_q,p) ( A, A ) - Z(p,q) ( A, A ) ~- 27~T2 
q I~(~)  

OoZ=Z(zp_q,p) (A, D) -Z(p,q) (A, D) =2~r2 (q-P-----~) 1 [F(pq) -F(pq/4) ] +O(~2) (13) 
q Irt(~) I 2 

using Zc(N) = Zc(1 /N)  and 

ON 1 
OZc(N) =Zc(N+ON) - Z c ( N )  = -2~'c 2 N Ir/(r)I ~F(N) ' 

F ( N ) =  ~ ( m2N e~--N) . . . .  Z~k ~ exP[½nir(e/x/~+mx/~) z] exp[-½nif(e/x/~-mx/~)2]. (14) 

From the asymptotic expression of F(N) 

1 x//N for N>> 1 , (15) F(N)~ 2nz~/3 2 

206 



Volume 294, number 2 PHYSICS LETTERS B 12 November 1992 

one can find 6AZ and 6oZ to be 

( q - p )  1 ( q - p )  1 
6AZ ~ _ 2 x / ~  2 i r / ( z ) [ 2  , 6DZ___--4--~2 [r/(z) 12. (16) 

Next we compute the one-point function on the torus using the method used in refs. [ 9,10 ]. Since A [ ~1,3 ] - 1, 
one can express the one-point function with the characters 

(~ l , 3 ) to~s (z , f )=4 r t l z [  2 ~ (dAFIq~1.3(Z,g) I~F)Zh(Z)~F;(O=47tIz[ 2 ~ C(l,3),lZ.F)~h("().~('~), (17) 
Fed  Fed  

where ~¢ denotes a complete set of  primary fields F with conformal dimension (h, h-). The characters are ex- 
pressed as a sum of infinite terms as follows: 

Kr,s(z) - K,,_s(z) (2pqn+qr_ps )2~  
Kr,s(Z)= ~,., exp 2ztiT . (18) 

x,-.~("c) = ,z(~) ' ,=_o~ 4 m  ) 

Since p, q>> 1 and ~'2>0, most terms in Kr.s vanish except those with n = 0  and q r - p s ~ p ,  q. By the same 
reason, Kr,_s becomes negligible. Therefore, the character can be approximated as 

1 ('znz (qr-ps)2"~ . (19) Zr, s(z)  ~- - ~  exp 2pq ] 

The integer 2 = q r - p s  covers all integers between - p q  and pq only once for l ~ r ~ p and 1 ~< s ~ q for (A, A) and 
all the odd integers for (A, D).  Furthermore, as pointed out in ref. [ 10], the non-diagonal combinations like 
Zr,~ Zr, q--~ are negligible because I q r - p ( q - s ) [  ~Pq if  [qr-ps l  ~ O(  1 ). 

Using these observations and the coefficients of the diagonal three-point functions in eq. (5), one can obtain 
the one-point function on the torus to be 

,,]2 r( 

q/rE T O/ qn 
~_ct a---/~-~i~l ~ ' , '  ~ dx  x2 e x p ( - m 2 x Z ) =  inlz2x~23/2, (20) 

-oo 

where a = 1 or ½ for the (A, A) and (A, D)  MIPFs, respectively. Comparing this with eq. (6), one can confirm 
eq. (16)  with X =  Y= A and X =  Y= D: 

"~CP, q) (A, A)-*J[(Zp-q,p) (A, A ) ,  ,g~p,q) (A, D)-*.A[(2p_q,p)(A , D ) .  (21) 

4. We showed so far that there can exist a RG flow from the (p,q) minimal CFT to the ( 2 p - q ,  p) minimal 
CFT due to the least relevant operator qb~.3. Although our argument is rigorous only for q>> ( q - p ) ,  it may be 
possible to extend our results to all possible pairs of  (p,q). For the unitary CFTs, in particular, Zamolodchikov 
showed the RG flows for any p using the conjectured thermodynamic Bethe Ansatz (TBA) equations [ 15 ]. For 
example, the RG flow connects the tricritical Ising model with the Ising model. Although the direct derivation 
of the TBA equations is still missing, the TBA analysis can support the conjecture that the RG flow exists for all 
(p, p +  1 ) unitary CFTs. The interesting point is that the conjectured TBA equations for the massless g>  0 field 
theories are given by those for the massive g <  0 theories, i.e. the restricted sine-Gordon theories with the mass- 
less left- and right-moving particles instead of the massive particles. It would be interesting to study the RG 
flows of the (p, q) minimal CFTs in the same way as the unitary cases. The conjectured TBA equations will be 
provided by those for the massive theories [ 16,17 ]. This TBA analysis of the RG flow of the minimal CFTs 
based on the TBA equations will be reported elsewhere [ 18 ]. 
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One  in te res t ing  app l i ca t i on  o f  the  R G  flow is to iden t i fy  a new in tegrable  m o d e l  which  flows in to  the " Y a n g -  
Lee edge s ingular i ty  m o d e l " ,  i den t i f i ed  wi th  ~g(2,5) [ 19 ]. Th is  new m o d e l  which  is Jg(5,s) can be rea l i zed  as an 
U V  (shor t  d i s t ance )  l imi t  o f  the  Y a n g - L e e  m o d e l  p e r t u r b e d  by  the d i m e n s i o n - f o u r  o p e r a t o r / ' 4  ( z )  which  is a 
d e c e n d e n t  f ie ld o f  the  v a c u u m  at  level  4: 

S¢s.8) = S v L  + g  f d 2Z T4(z)  ]P4(2 v) • ( 22 )  

F ina l ly ,  one  can  th ink  o f  the  R G  flows o f  the  S U ( 2 )  coset  C F T s  which  have  e x t e n d e d  symmet r i e s  l ike the  
supe rcon fo rma l  invar iance .  F o r  the  u n i t a ry  CFTs ,  it  has  been  c l a imed  tha t  there  exist  the R G  flows in to  new IR  
f ixed po in t s  by  the p e r t u r b a t i o n  o f  the  least  r e l evan t  o p e r a t o r  [20 ]. Based  on this  obse rva t ion ,  we can  con jec tu re  
the  fo l lowing R G  flows o f  the S U  (2 )  coset  n o n - u n i t a r y  C F T s  due  to  the least  r e levan t  opera to r :  

S U ( 2 ) x × S U ( 2 ) z  S U ( 2 ) K  × S U ( 2 ) L _ K  
SU(Z)K+L + gq~pert--' S U ( 2 ) L  +g 'Oper~ ,  ( 23 )  

whereL+2=p/(q-p)  and  z t (~pe~t )=  (K+L) / (K+L+2)  a n d / l ( O p ~ t )  = (K+L+2)/(K+L).  Also,  in teres t -  
ing is to  c o m p a r e  these mass less  f ie ld  theor ies  ( g >  0 )  wi th  the  mass ive  theor ies  ( g <  0 )  cons ide r ed  in  ref. [ 21 ] 
where  exact  S -ma t r i ce s  and  par t ic le  s p e c t r u m  are  p roposed .  

Note added. After  f in ish ing  this  paper ,  we rece ived  a p r ep r in t  [22 ] which  s tudies  the R G  flows o f  the  d iagona l  
n o n - u n i t a r y  CFTs .  

We t h a n k  our  col leagues  in the  T h e o r y  g roup  at  Corne l l  and  S. N a m  at Seoul  for  he lpfu l  d iscuss ions .  This  
work  was s u p p o r t e d  in pa r t  by  the  N a t i o n a l  Science F o u n d a t i o n .  
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