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1 Introduction

The AdS/CFT correspondence in the planar limit can be described by a two-dimensional

integrable quantum field theory. The finite-volume energy levels of this integrable theory

correspond on one side to the string energies in the curved AdS5 × S5 background, while

to the scaling dimensions of gauge-invariant single-trace operators on the other side. In-

tegrability provides tools to solve the finite-volume spectral problem exactly. (For recent

reviews with many references, see [1, 2].)

For large volume, L, (long operators of size L), the asymptotic Bethe ansatz [3, 4]

determines the spectrum including all polynomial corrections in L−1. In the weak-coupling

limit, this result is exact up to L loops; but over L loops, wrapping diagrams start to

contribute [5]. In the integrable quantum field theory, they show up as exponentially small

vacuum polarization effects: virtual particles circling around the space-time modifies the

energy levels [6]. These effects have a systematic expansion which counts how many times

virtual particles encircle the space-time cylinder (or diagrams wrap around). The leading-

order (LO) Lüscher correction corresponds to a single circle or wrapping. Together with the

asymptotic Bethe ansatz, they provide an exact result up to 2L loops. The next-to-leading

(NLO) Lüscher correction corresponds to two circles and double wrapping. Including their

contribution describes the energy levels/scaling dimensions exactly up to 3L loops.

For an exact description, valid for any number of loops, one has to sum up all vir-

tual processes. For the ground state, this is done by the thermodynamic Bethe ansatz

(TBA), which evaluates the saddle point of the partition function for large Euclidean

times in the mirror (space-time rotated) description [7–14]. The TBA provides coupled

integral equations for infinitely-many unknown functions, whose solutions determine the

exact ground-state energy and satisfy the so-called Y-system relations, which are charac-

teristic for the model and are the same for all the excited states [15]. What is different for

the excited states is the analytical structure of these Y-functions [16–18]. Using additional

inputs, such as discontinuity relations [19, 20] and analytical structure, the Y-system can

be turned into integral equations for excited states [21, 22], which provide the solution of

the finite-volume spectral problem. An ultimate solution would be to replace the infinite

Y-system with a finite T-Q system (see attempts [22–26] in this direction), which would

lead to nonlinear integral equations (NLIE) for only finitely-many unknowns.

In the present paper, we would like to analyze the ground state of the three-parameter

family of γ-deformed planar AdS/CFT theories in the sense of [27–31], to which we refer

as γ-deformed theory from now on. In these theories the S5 part of the background is de-

formed such that the bosonic su(4) part of the psu(2, 2|4) symmetry is Drinfeld-Reshetikhin

twisted [32] with three parameters: γ1, γ2, γ3. Contrary to the undeformed or β-deformed

theories, in the most general case, no supersymmetry is preserved, so the ground state is

indeed nontrivial and affected by wrapping corrections. The planar gauge theory is never-

theless ultraviolet finite and scale-invariant [33]. This is an ideal laboratory to test ideas

directly on the ground state, which actually contains all information about the theory.

The γ-deformation can be implemented in several distinct ways: in [34] it was de-

scribed as an operatorial twisted boundary condition (the twist depends on the excitation
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number1); in [35, 36] as a (c-number) twisted boundary condition and a twisted scattering

matrix; finally in [37] the authors showed that the untwisted Y-system with twisted asymp-

totic conditions is consistent with the LO Lüscher (single wrapping) correction as calculated

on the gauge-theory side. In this paper, based on our previous work [36], we choose twisted

boundary condition and twisted S-matrix. Out of the three-parameter family of deforma-

tions, γ1 gives rise to the Drinfeld-Reshetikhin twist of the scattering matrix, while γ2, γ3

appear in the twisted boundary condition [36]. We show that the ground-state energy does

not depend on the Drinfeld-Reshetikhin twist, i.e. on γ1, merely on the other two parame-

ters γ2, γ3. This can also be understood from the fact that the particular choice of vacuum,

Tr(ZJ) on the gauge-theory side, is left invariant by the generators multiplying γ1.

We begin by analyzing in section 2 the effect of a twisted boundary condition on the

ground state in general. We derive exact expressions for the LO and NLO Lüscher correc-

tions valid for any integrable theory with a twisted boundary condition. The LO correction

contains information about the spectrum of the (mirror) theory, while the NLO contains

the logarithmic derivative of the scattering matrix. We show that a Drinfeld-Reshetikhin

type twist [32] of the scattering matrix does not affect the ground-state energy. We then

demonstrate the effect of the twist in the TBA equations in general. These equations pro-

vide the exact description of the ground state for any finite size. By expanding the result

for large sizes, we must recover the LO and NLO Lüscher corrections. This is explicitly

elaborated in the examples that follow.

As a warm up in a simpler case, we analyze in section 3 the O(4) model with twisted

boundary conditions. After calculating the LO and NLO Lüscher corrections, we derive the

so-called raw (canonical) TBA equations, which contain the twist as chemical potentials.

Interestingly, the twist does not show up in the simplified TBA equations except in the

asymptotic behavior of the Y-functions. As a consequence, the Y-system is the same as

the untwisted one. We solve the simplified TBA equations at NLO and compare with the

NLO Lüscher correction. We find complete agreement.

We turn in section 4 to the γ-deformed AdS/CFT model. We calculate first the LO

Lüscher correction. In calculating the NLO correction, we determine the determinant of

the two-particle S-matrix SQ1Q2 in all the su(2)L⊗su(2)R sectors for the generic Q1 and Q2

bound-state case. We then derive the raw TBA equations from first principles by evaluating

exactly the chemical potentials originating from the twisted boundary condition. (For the

untwisted case, the TBA equations were formulated in [10–14].) The twist disappears from

the simplified equations, just as it does in the O(4) case. (See [38] for a general argument

on this.) The twist nevertheless reappears in the asymptotic boundary conditions for the

Y-functions. Since the simplified equations are not twisted, neither is the Y-system, as

was anticipated by the authors of [37, 39]. Our derivation confirms their assumption. We

then expand the TBA equations to NLO and compare with the result of the NLO Lüscher

correction. We find complete agreement again.

1In particular, the γ1 twist is multiplied with the excitation number, and thus does not contribute to

the vacuum energy.
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Figure 1. Two possible locations of a defect. On the left it is located in space, and it introduces

a twisted boundary condition. On the right it is located in (Euclidean) time, and it acts as an

operator on the periodic Hilbert space.

We evaluate in section 5 the weak-coupling expansion of the NLO Lüscher correction,

which corresponds to double-wrapping diagrams. We explicitly compute this correction for

L = 3, thereby obtaining the anomalous dimension of the operator TrZ3 in the twisted

gauge theory up to six loops.

Finally, section 6 contains our conclusion and outlook.

2 Finite-size corrections of the vacuum energy

In this section we analyze the finite-size corrections for the ground state with a twisted

boundary condition. We consider an integrable (1 + 1)-dimensional quantum field theory

that possesses just one multiplet of particles with the same dispersion relation. The parti-

cles are labeled by α, and their interaction is described by the two-particle scattering matrix

Sδγ
αβ(p1, p2), which does not admit any bound states.2 We are interested in the ground-state

energy of a system of size L with a c-number twisted boundary condition in terms of the

scattering data. The twisted boundary condition is defined by means of a conserved charge

J , which commutes with the scattering matrix [J, S] = 0. The twists are implemented by

introducing a so-called defect line on the circle. It has the effect that, whenever a particle of

type α crosses the defect line from the left to the right, it picks up the transmission phase

eiγJα , where γ is the twist angle supposed to be real. If the particle moves oppositely,

then it picks up the inverse phase e−iγJα . This ensures that if we formulate the Bethe-

Yang equation by moving one particle around the circle and scattering with all the other

particles and with the defect line in both directions, then we obtain equivalent equations.

In deriving the finite-size energy of the vacuum with the defect line, Ed
0(L), we analyze

the twisted Euclidean torus partition function from two different perspectives, see figure 1.

By compactifying the time-like direction with period R and taking the R → ∞ limit, the

ground-state energy of the twisted system can be extracted from the twisted partition

function as

lim
R→∞

Zd(L,R) = lim
R→∞

Tr
(

e−Hd(L)R
)

= e−Ed
0 (L)R + . . . . (2.1)

2With a view to later applying this formalism to AdS/CFT, we do not assume relativistic invariance;

hence, the two-particle S-matrix need not be a function of the difference of the particles’ momenta.
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In the alternative description in which the rôles of Euclidean time, x̃ = −it, and space,

x, are exchanged, the defect will be localized at a constant imaginary time t̃ = −ix of

the mirror model. It acts as an operator of the periodic Hilbert space of the mirror model

defined by the configurations on a fixed-t̃ slice. The action of this operator can be calculated

from the transmission phase [40]. In the present case, the operator is simply eiγJ , and we

can evaluate the twisted partition function alternatively as

Zd(L,R) = Tr(e−H̃(R)LeiγJ ) , (2.2)

where we use a tilde ˜ to help distinguish quantities in the mirror model. In the first

subsection, we suppose that the volume L is large and expand the partition function at

leading and next-to-leading orders. In this way, we derive the LO and NLO Lüscher-

type corrections for the ground state energy of the twisted system. Then, in the second

subsection, we comment on how one can evaluate the partition function in the saddle-point

approximation to obtain the twisted thermodynamic Bethe ansatz (TBA) equations.

2.1 Large-volume expansion

In this subsection, we evaluate the twisted partition function at LO and NLO for large

volumes (i.e., L is large, and R → ∞). This means that we keep the first two nontrivial

terms in the expansion of the twisted partition function

lim
R→∞

Tr(e−H̃(R)LeiγJ ) = 1 +
∑

k,α

eiγJα−ǫ̃(p̃k)L +
∑′

k,l,(α,β)

eiγJ(α,β)−(ǫ̃(p̃k)+ǫ̃(p̃l))L + . . . , (2.3)

where k, l are the labels of the allowed mirror momenta p̃; α is the color index of the one-

particle and (α, β) is that of the two-particle state. The sum
∑′ is taken over the distinct

two-particle states. J is the conserved charge such that Jα denotes its eigenvalue on the

one particle, while J(α,β) is its eigenvalue on the two-particle state. Finally, ǫ̃(p̃) denotes

the energy of the mirror particle. Clearly, the defect does not affect the energy levels, but

nevertheless modifies the twisted partition function. Calculations based on the expansion

of the partition function for large volumes can be found for boundary entropies in [41],

while for the boundary ground state energy in [42].

2.1.1 Leading-order calculation

In evaluating the twisted partition function at LO, we analyze the one-particle contribu-

tions. In a finite but large volume, R, the momentum is quantized as

eip̃kR = 1 → R

2π
p̃k = k ∈ Z , (2.4)

which is independent of the color index α = 1, . . . , N . In the R→ ∞ limit, the allowed mo-

menta become dense, and the summation can be turned into integration. The change from

the discrete label k to the continuous momentum variable p̃ is dictated by the Bethe-Yang

equation above as
∑

k

→ R

∫

dp̃

2π
. (2.5)
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Taking the logarithm of the twisted partition function, the ground-state energy can be

obtained

Ed
0 (L) = − lim

R→∞
R−1 log

[

Tr(e−H̃(R)LeiγJ )
]

. (2.6)

Expanding the log as log(1 + x) = x+O
(

x2
)

and keeping the first term, we obtain

Ed
0 (L) = E

(1)
0 (L) +O(e−2ǫ̃(0)L) , E

(1)
0 (L) = −Tr(eiγJ)

∫

dp̃

2π
e−ǫ̃(p̃)L , (2.7)

where the color summation gives
∑

α e
iγJα = Tr(eiγJ ), which is basically the character of

the particles’ representation. The physical meaning of this formula is clear: The finite-

volume vacuum contains virtual particles, and they modify the vacuum energy by virtual

processes. The leading volume-dependent process is when a particle and anti-particle pair

appears from the vacuum, and then the particle travels around the world and annihilates

with the anti-particle on the other side. Clearly, in so doing, it crosses the defect line and

picks up the phase which, when summed up for the multiplet, results in the character.

2.1.2 Next-to-leading order calculation

At the NLO energy correction, we have to expand the logarithm of the partition func-

tion (2.6) to second order: log(1+x) = x− x2

2 +O
(

x3
)

. This will include the square of the

one-particle term and the two-particle term. The former, however, contains a factor R2

which would lead to a divergence in the R→ ∞ limit, and has to be canceled against a sim-

ilar part of the two-particle term. We evaluate now the two-particle contribution and see

the needed cancellation. From the remaining terms, we obtain the NLO energy correction.

In calculating the two-particle term, we must first determine the allowed momenta. In

very large volume R, the momentum quantization conditions are given by the Bethe-Yang

(or, in other terminology, the asymptotic Bethe ansatz) equations. As the scattering mixes

the color indices, we begin by diagonalizing the two-particle S-matrix:

eiRp̃kSν
µ(p̃k, p̃l)ψν = ψµ → eiRp̃keiδµ(p̃k,p̃l) = 1 . (2.8)

The two-particle S-matrix has N2 eigenvalues, and we denote their phases by δµ(p̃k, p̃l)

for µ = 1, . . . , N2. Unitarity implies δµ(p̃k, p̃l) = −δµ(p̃l, p̃k) mod 2π. We assume that

the particles are fermionic: S(p̃, p̃) = −I, thus δµ(p̃, p̃) = π. Taking the logarithm of the

equations (2.8) for a given eigenvalue, we arrive at the Bethe-Yang equations

R

2π
p̃k +

1

2π
δµ(p̃k, p̃l) = k ,

R

2π
p̃l −

1

2π
δµ(p̃k, p̃l) = l . (2.9)

The fermionic nature of the particles excludes k = l; and in summing up over two-

particle states, k > l is understood. In changing to momentum integration, it is better

to reorganize the sum as
∑

k>l f(k, l) = 1
2

∑

k,l f(k, l) − 1
2

∑

k f(k, k), since the summand

f(k, l) = eiγJ−(ǫ̃(p̃k)+ǫ̃(p̃l))L is symmetric. The diagonal part, −1
2

∑

k f(k, k), has the one-

particle quantization rule (2.4); thus, changing to integration as in (2.5) the contribution

– 6 –
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to the energy turns out to be:

E
(2,1)
0 (L) =

1

2
Tr(eiγJ )2

∫

dp̃

2π
e−2ǫ̃(p̃)L , (2.10)

where we used that
∑

(α,β) e
iγJ(α,β) =

∑

µ e
iγJµ = Tr(eiγJ )2.

We now transform 1
2

∑

k,l f(k, l) into a double integral. To this end, we compute the

Jacobian for the change of variables (k, l) → (p̃k, p̃l):
∣

∣

∣

∣

∣

∣

∣

∂k
∂p̃k

∂k
∂p̃l

∂l
∂p̃k

∂l
∂p̃l

∣

∣

∣

∣

∣

∣

∣

=
1

(2π)2

∣

∣

∣

∣

∣

R+ δµ,k δµ,l

−δµ,k R− δµ,l

∣

∣

∣

∣

∣

=
1

(2π)2
[

R2 +R(δµ,k − δµ,l)
]

, (2.11)

where δµ,k = ∂p̃k
δµ(p̃k, p̃l) and δµ,l = ∂p̃l

δµ(p̃k, p̃l). As already mentioned, the terms which

contribute to the ground-state energy have to be proportional to R. Indeed the dangerous

R2 term
R2

2
Tr(eiγJ )2

∫

dp̃1

2π

∫

dp̃2

2π
e−(ǫ̃(p̃1)+ǫ̃(p̃2))L (2.12)

will cancel against the −x2

2 term of the expansion of the logarithm of the one-particle con-

tribution. The second term of the Jacobi determinant (2.11) is proportional to the volume

R, and contributes to the ground-state energy as

E
(2,2)
0 (L) = −

∫

dp̃1

2π
e−ǫ̃(p̃1)L

∫

dp̃2

2π
e−ǫ̃(p̃2)L

∑

µ

eiγJµ∂p̃1δµ(p̃1, p̃2) , (2.13)

where we have used that δµ(p̃1, p̃2) is antisymmetric in its arguments; and that, as the twist

commutes with the scattering matrix [eiγJ , S] = 0, both can be diagonalized in the same

basis. We note that
∑

µ

eiγJµ∂p̃1δµ(p̃1, p̃2) = −i∂p̃1Tr(eiγJ log[S(p̃1, p̃2)]) . (2.14)

In particular, this implies that if the S-matrix is twisted (à la Drinfeld-Reshetikhin [32])

with another conserved charge S̃ = FSF , such that [eiγJ , F ] = 0, then the finite-size

correction is the same as in the undeformed case:

∂p̃1Tr(eiγJ log(S̃)) = ∂p̃1

∑

α

eiγJαTrα log(FαSαFα) = ∂p̃1

∑

α

eiγJα log det(FαSαFα)

= ∂p̃1

∑

α

eiγJα log detSα = ∂p̃1Tr(eiγJ log(S)) , (2.15)

where we have denoted by Fα (Sα) the matrix F (S) in the subspace where J has eigenvalue

Jα, respectively; and we have used the fact that det(FαSαFα) = detSα detF 2
α.

We conclude that the LO and NLO corrections to the finite-volume vacuum energy in

the twisted theory come only from the twisted boundary condition, and are given by

Ed
0 (L) = E

(1)
0 (L) + E

(2,1)
0 (L) + E

(2,2)
0 (L)

= −Tr1(e
iγJ )

∫

dp̃

2π
e−ǫ̃(p̃)L +

1

2
Tr1(e

iγJ )2
∫

dp̃

2π
e−2ǫ̃(p̃)L

+

∫

dp̃1

2π
e−ǫ̃(p̃1)L

∫

dp̃2

2π
e−ǫ̃(p̃2)Li∂p̃1Tr2(e

iγJ log[S(p̃1, p̃2)]) , (2.16)

– 7 –
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where the omitted terms are of order of O(e−3ǫ̃(0)L), and Tri() for i = 1, 2 means that

the trace is taken over the one- or two-particle states, respectively. This derivation is

an alternative formulation of the virial expansion of the partition function in statistical

physics. (See also the result for the O(n) case [43].)

Our result (2.16) can also be used to make the connection between the scattering de-

scription and other descriptions of the theory. Indeed, given an integral equation for the

ground-state energy, we can extract from it the S-matrix by expanding for large volume to

NLO.

2.2 Twisted TBA

We have so far supposed that the physical volume L is large, and we have calculated the

LO and NLO energy corrections. If the volume is not large and we are interested in the

exact description of the vacuum, we have to evaluate the contributions of multiparticle

states. This, in the untwisted case, is done by the TBA; and we shall now see how the

derivations are modified in the presence of the twist.

The first step in calculating the partition function is the determination of the mo-

mentum quantization of multiparticle states. This is done by solving the Bethe-Yang

equations by means of the asymptotic Bethe ansatz (BA). Here, in addition to the physical

momentum-carrying particles, one has to introduce so-called magnonic particles that take

care of the non-diagonal nature of the scattering. They are useful objects, since in terms

of them the scattering can be regarded as diagonal. One then analyzes the various “diag-

onal” scattering matrices and looks for bound states: i.e., complex string-like solutions of

the asymptotic BA equations. The scattering matrices of the bound states are determined

from the scattering matrices of their constituents. Let us label the particles (momentum-

carrying, magnonic and their bound states) by a multilabel n; and their scattering matrices

by Snm(un
1 , u

m
2 ), where uni

i is some generalized rapidity of a particle of type ni. Greek in-

dices such as α will denote magnons only. The asymptotic BA equations for large particle

numbers (thermodynamic limit) takes the generic form

− 1 = eip̃n(un
k )R
∏

m

∏

l

Snm(un
k , u

m
l ) , (2.17)

where the mirror momentum vanishes for magnons p̃α(uα) = 0, and Snn(un
k , u

n
k ) = −1. We

note that not only the momentum, but also the energy vanishes for magnons, ǫ̃α = 0. Thus,

the magnonic equations can be inverted, without changing their physical meaning. We have

to choose such equations which give rise to positive particle densities in the thermodynamic

limit. In this limit, the partition function is dominated by finite-density configurations.

The density of the particles (holes) of type n can be introduced as ρn = ∆Nn

R∆p̃
, (ρ̄n = ∆N̄n

R∆p̃
),

where ∆Nn(∆N̄n) denotes the number of particles (holes) in the interval (p̃, p̃ + ∆p̃), re-

spectively. In terms of these densities, the energy of the configuration is

Ẽ[ρ] = R
∑

n

∫

dp̃ ρn(p̃) ǫ̃n(p̃) = R
∑

n

∫

du ρn(u) ǫ̃n(u) , (2.18)
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while the entropy is

S[ρ, ρ̄] = R
∑

n

∫

du [(ρn + ρ̄n) log(ρn + ρ̄n) − ρn log ρn − ρ̄n log ρ̄n] . (2.19)

The particle and the hole densities are not independent, and the derivative of the logarithm

of the asymptotic BA (2.17) connects them as

ρn + ρ̄n − 1

2π
∂up̃n =

∫

du′
∑

m

Knm(u, u′)ρm(u′) =: Knm ⋆ ρm , (2.20)

where Knm(u, u′) = 1
2πi
∂u log Snm(u, u′). If we had inverted any of the asymptotic BA

equations, then we would have obtained the sign-changed kernel here. By choosing the

proper signs of the kernels for the magnons, we can ensure the positivity of all the densi-

ties. If we had started instead with the Drinfeld-Reshetikhin-twisted S-matrix, then Snm

in (2.17) would be replaced by S̃nm, which differs from Snm by constant phases; and these

phases would disappear from the kernel Knm. Consequently, the TBA equations are inde-

pendent of twists of the S-matrix, as is the Lüscher correction (2.15).

We have seen that the twist does not change the energy levels of the periodic mirror

system, but nevertheless modifies the partition function. Since the twist commutes with

the scattering matrix, the particles of the asymptotic BA equations which diagonalize the

multiparticle scatterings will have diagonal twist eigenvalues, too. Let us denote the eigen-

value of iγJ on a particle with label n by µn. The total contribution of the twist on the

multiparticle state is

µ[ρ] = R
∑

n

∫

du ρn(u)µn . (2.21)

In terms of these quantities, the partition function can be written as

Zd(L,R) = Tr(e−H̃(R)LeiγJ ) =

∫

∏

n

d[ρn, ρ̄n]eS[ρ,ρ̄]+µ[ρ]−LẼ[ρ] . (2.22)

Evaluating the integrals in the saddle-point approximation, the minimizing condition for

the pseudo-energies ǫn = log ρ̄n

ρn
turns out to be

ǫn + µn = ǫ̃nL− log(1 + e−ǫm) ⋆ Kmn . (2.23)

Once we have calculated the pseudo-energies, the ground-state energy can be extracted

from the saddle-point value as

Ed
0 (L) = −

∑

n

∫

du

2π
∂up̃n log(1 + e−ǫn) . (2.24)

Clearly the only difference compared with the untwisted case is the appearance in the TBA

equations (2.23) of the chemical potential µn, which is proportional to the charge of the par-

ticle. (TBA equations with chemical potentials have been studied previously; see e.g. [44].)

As the determination of the magnons and their charges is model dependent, we work

out the details in the following for the O(4) model, and then for twisted planar AdS/CFT.
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3 Case study: O(4) model

In this section, as a warm-up, we elaborate explicitly the simpler case of the twisted O(4)

model, also known as the su(2) principal chiral model. We calculate the LO and NLO

Lüscher corrections, derive the twisted TBA equations, and compare the two approaches

by expanding the TBA equations up to second order.

The O(4) model is a relativistic theory containing one multiplet of particles with mass

m. The dispersion relation E(p) =
√

m2 + p2 can be parameterized in terms of the rapid-

ity as

E(θ) = m coshπθ , p(θ) = m sinhπθ . (3.1)

The particles transform under the bifundamental representation of su(2). The two-particle

S-matrix is the simplest su(2)⊗su(2) symmetric, unitary and crossing-invariant scattering

matrix [45, 46]

S(θ) =
S2

0(θ)

(θ − i)2
Ŝ(θ) ⊗ Ŝ(θ) , Ŝ(θ) = θ I − iP , (3.2)

where θ = θ1 − θ2, and the scalar factor

S0(θ) = i
Γ(1

2 − iθ
2 )Γ( iθ

2 )

Γ(1
2 + iθ

2 )Γ(− iθ
2 )

(3.3)

does not have any poles in the physical strip, showing the absence of physical bound states.

We analyze this theory on a circle of size L with a twisted boundary condition. We twist

the theory with independent twist angles γ∓ for the left and right su(2) factors, respectively:

eiγJ = eiγ−J0⊗I+iγ+I⊗J0 = eiγ−J0 ⊗ eiγ+J0 = diag(q̇, q̇−1) ⊗ diag(q, q−1) , (3.4)

where J0 has eigenvalues ±1 on the two components of the doublet, and q̇ = eiγ− , q = eiγ+ .

We could also twist the S-matrix, i.e. change S → FSF , but this would have no effect on

the ground-state energy, as explained in (2.15).

3.1 Lüscher corrections

We now proceed to evaluate the Lüscher correction for the vacuum (2.16). As the theory

is relativistically invariant, the mirror dispersion relation is ǫ̃(p̃) =
√

m2 + p̃2, which we

parameterize in terms of the rapidity as above: p̃(θ) = m sinhπθ. In this parameterization,

the leading-order result for the ground-state energy is

E
(1)
0 (L) = −[2]q[2]q̇m

∫

dθ

2
cosh πθ e−mL cosh πθ , (3.5)

where we used that

Tr(eiγJ ) = Tr(eiγ−J0)Tr(eiγ+J0) = (q̇ + q̇−1)(q + q−1) = [2]q[2]q̇ . (3.6)

It is useful to introduce the q-numbers

[n]q =
qn − q−n

q − q−1
= qn−1 + qn−3 + · · · + q3−n + q1−n , (3.7)

– 10 –
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for which [n]q → n in the untwisted limit q → 1.

In the second-order correction, we have the term without the scattering matrix

E
(2,1)
0 (L) =

1

2
[2]2q [2]

2
q̇m

∫

dθ

2
coshπθ e−2mL cosh πθ . (3.8)

In the other term, we have to diagonalize the two-particle S-matrix

S(θ) = S2
0(θ)S1(θ) ⊗ S2(θ) , S1(θ) = S2(θ) =

1

θ − i
Ŝ(θ) =













1 0 0 0

0 θ
θ−i

−i
θ−i

0

0 −i
θ−i

θ
θ−i

0

0 0 0 1













. (3.9)

The twist matrix acts on the two-particle states as

eiγJ = eiγ−J0 ⊗ eiγ+J0 = Ȧ⊗A = diag(q̇2, 1, 1, q̇−2) ⊗ diag(q2, 1, 1, q−2) , (3.10)

and commutes with the scattering matrix. The twist and the S-matrix can be diagonalized

in the same basis, where the S-matrix eigenvalues take the form

S = S2
0 Λ ⊗ Λ = S2

0 diag(1, 1,
θ + i

θ − i
, 1) ⊗ diag(1, 1,

θ + i

θ − i
, 1) . (3.11)

For the Lüscher correction, we need to calculate Tr(eiγJ (−i∂θ) log S). As the scattering

matrix has the specific tensor product structure (3.9), we can write

Tr(eiγJ logS) = Tr((Ȧ⊗A) (2 log S0I ⊗ I + logS1 ⊗ I + I ⊗ log S2)) (3.12)

= Tr(Ȧ)Tr(A)2 log S0 + Tr(A)Tr(Ȧ log S1) + Tr(Ȧ)Tr(A log S2)

= 2Tr(Ȧ)Tr(A) log S0 + Tr(A)
∑

i

Ȧi log Λi + Tr(Ȧ)
∑

i

Ai log Λi .

In Fourier space, the logarithmic derivatives take a particularly simple form:

K00(θ) =
1

2πi
∂θ logS2

0(θ) → K̃00(ω) =
2t

t+ t−1
,

K(θ) =
1

2πi
∂θ log

θ + i

θ − i
→ K̃(ω) = −t2 , (3.13)

where we have indicated the Fourier transform by tilde, and t = e−
|ω|
2 . The integrand of

the second order Lüscher correction is finally

1

2π
Tr(eiγJ (−i∂θ) log S) = [2]2q [2]

2
q̇K00 +

(

[2]2q + [2]2q̇
)

K . (3.14)

In terms of these quantities, the second part of the Lüscher correction is

E
(2,2)
0 (L) = −[2]2q [2]

2
q̇

m

2

∫

dθ1 e
−mL cosh πθ1

∫

dθ2 coshπθ2 e
−mL cosh πθ2

×
{

K00(θ1 − θ2) + ([2]−2
q + [2]−2

q̇ )K(θ1 − θ2)
}

. (3.15)
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3.2 Twisted TBA

Following the general procedure outlined in section 2.2, in order to formulate the twisted

TBA equations, we need to classify the particles: momentum-carrying, magnons and their

bound states. We also have to calculate their scattering matrices; and, additionally to the

untwisted case, we also must identify the twist charge on all the excitations.

3.2.1 Raw twisted TBA

In order to derive the mirror nested asymptotic BA equations, we start with an N -particle

state consisting of down-spin particles only. We label these particles by 0. They scatter on

each other as

S00(θ) = S0(θ)
2 , (3.16)

and they have the dispersion relation ǫ̃0(p̃) = ǫ̃(p̃). As the J0 eigenvalue of the lower com-

ponent is −1 on both su(2) sides, the chemical potential is µ0 = −iγ− − iγ+. We can now

introduce up-spins in the sea of down-spins. These are the magnons, which do not change

the energy and momentum, rather describe the polarization degrees of freedom. We label

them by 1 for the right su(2) factor, and by −1 for the left su(2) factor. Let us first focus

on the positive (right) part, and denote magnon rapidities by u. The magnons scatter on

the massive particles and on themselves as

S01(θ − u) =
θ − u+ i

2

θ − u− i
2

, S11(u− u′) =
u− u′ − i

u− u′ + i
, (3.17)

respectively. The magnons do not have any energy and momentum ǫ̃1(u) = p̃1(u) = 0, but

they do have chemical potential. Since a magnon swaps a spin from down to up, it changes

the charge by 2: µ1 = 2iγ+. This means that a state with m up-spins and N −m down-

spins, which contains N type-0 particles and m type-1 particles, has J0 charge −N + 2m.

Inspecting the magnon scattering matrices, we can conclude that a magnon and a massive

particle cannot form bound states. In contrast, magnons among themselves can bound.

Bound states in the thermodynamic limit consist of strings of any length M ∈ N:

uj = u+ i
M + 1 − 2j

2
, j = 1, . . . ,M . (3.18)

We label this string as M . Clearly, the M = 1 string is the magnon itself. The scattering

of the M -string and the massive particle can be calculated from the bootstrap,

S0M (θ − u) =

M
∏

j=1

S01(θ − uj) =
θ − u+ i

2M

θ − u− i
2M

. (3.19)
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As S0M (θ−u)SM0(u−θ) = 1, we conclude that S0M (u) = SM0(u). Similarly, the magnon-

magnon scatterings are given by

SMM ′(u− u′) =
M
∏

j=1

M ′
∏

j′=1

S11(uj − u′j′) (3.20)

=

(

u− u′ − i
2 |M −M ′|

u− u′ + i
2 |M −M ′|

)(

u− u′ − i
2(|M −M ′| + 2)

u− u′ + i
2(|M −M ′| + 2)

)2

× . . .

(

u− u′ − i
2(M +M ′ − 2)

u− u′ + i
2(M +M ′ − 2)

)2(

u− u′ − i
2 (M +M ′)

u− u′ + i
2 (M +M ′)

)

.

These bound states have no energy and momentum ǫ̃M (u) = p̃M (u) = 0, while their

chemical potential is the sum of their constituents’: µM = 2Miγ+.

Similar considerations apply to the left excitations, which are denoted by −M . They

scatter only on themselves and on the massive particle, such that the scattering is inde-

pendent of the sign of M . The only difference is in the chemical potential, as the twists

are different on the two sides: µ−M = 2Miγ−.

Summarizing, we have particles for any M ∈ Z. The only massive excitation that has

nontrivial energy and momentum has the label 0; all others are magnons. The scattering

kernels in Fourier space have the form

K̃00 =
2t

(t+ t−1)
, K̃0n = K̃n0 = −tn , K̃nm =

t+ t−1

t− t−1
(tn+m − t|n−m|) − δnm ,

(3.21)

where t = e−
|ω|
2 and n,m > 0. For the other values, we have K0n = K0−n, Kn0 = K−n0,

K−n−m = Kn m and K−n m = Kn−m = 0.

In the general procedure, one has to invert the magnonic equations before introduc-

ing the magnon densities. In so doing, one obtains the “raw” (canonical) twisted TBA

equations

ǫ0 + µ0 = Lǫ̃0 − log(1 + e−ǫ0) ⋆ K00 +
∑

M 6=0

log(1 + e−ǫM ) ⋆ KM0 , (3.22)

ǫM + µM = − log(1 + e−ǫ0) ⋆ K0M +
∑

M ′ 6=0

log(1 + e−ǫM′ ) ⋆ KM ′M , M 6= 0 . (3.23)

These equations for the untwisted (µ = 0) case reduce to those in [47], although in slightly

different convention.

3.2.2 Universal TBA and Y-system

Using identities among the kernels, we now bring the TBA equations (3.22), (3.23) to a

universal local form. This means that the pseudo-energies can be associated with vertices

of a two-dimensional lattice, such that only neighboring sites couple to each other with the

following universal kernel

s IMN = δMN − (K + 1)−1
MN , s(θ) =

1

2 cosh πθ
, (3.24)
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where IMN = δM+1,N + δM−1,N and (K + 1)−1
MN ⋆ (KNL + δNL) = δML. We also have

(Kn1 + δn1) ⋆ s = −K0n, which can be easily seen in Fourier space where s̃ = 1
t+t−1 .

Let us introduce the Y-functions:

Y0 = e−ǫ0 , YM = eǫM , M 6= 0 . (3.25)

We take the equations (3.23) for YM , act with the operator δMN − s IMN = (K + 1)−1
MN

from the right, and use the kernel identity K0N ⋆ (K+1)−1
NM = −s δM,1. Since the chemical

potentials are annihilated by the discrete Laplacian

µM ⋆ (sIMN − δMN ) =
1

2
(µN−1 + µN+1) − µN = 0 , (3.26)

they completely disappear from the equations, and we arrive at

log YM = IMM ′ log(1 + YM ′) ⋆ s , M 6= 0 . (3.27)

Finally, we take the equations for M = ±1 and convolute them with the kernel s. We

combine these equations with the massive equation (3.22). Using the magic property of

the kernel K00 = −2s ⋆ K01, and exploiting that µ0 + 1
2(µ1 + µ−1) = 0, we obtain the

equation for the massive node

log Y0 +mL coshπθ = (log(1 + Y1) + log(1 + Y−1)) ⋆ s . (3.28)

Thus, the twists completely disappear from the “simplified” equations (3.27), (3.28). Nev-

ertheless, they enter in the asymptotics of the Y -functions as

lim
M→∞

1

M
log Y±M = −2iγ± , (3.29)

since the kernels in (3.23) vanish in this limit. After all, it should not come as a surprise

that the Y -system is not twisted,

Y +
MY

−
M = (1 + YM−1)(1 + YM+1) , Y ±(θ) = Y (θ ± i

2
) . (3.30)

The ground-state energy contains the contribution of the only massive node,

E0(L) = −m
2

∫

dθ coshπθ log(1 + Y0) . (3.31)

3.2.3 Asymptotic expansion

We now make a LO and NLO asymptotic expansion of the simplified TBA equa-

tions (3.27), (3.28) for L→ ∞.

At leading order, Y0 is exponentially small and the other Y functions are constant.

Let us expand the Y -functions as

YM = YM (1 + yM) + . . . , (3.32)

and determine all functions iteratively. The Y-system at leading order will be split into

two independent constant Y -systems. The solutions with the correct initial and asymptotic
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behaviors will determine the exponentially small leading-order Y0 in terms of Y±1. Then, in

calculating the NLO yM functions, we can proceed independently for the two parts. Again,

the initial condition is provided by Y0, which appears as a multiplicative factor; while

uniqueness is provided by the vanishing asymptotics limM→∞ yM = 0. The y±1 obtained

in this way will determine the NLO correction y0, which is needed for the energy correction.

Let us now carry out these calculations. Using the fact that s⋆f = 1
2f if f is constant,

we see from (3.28) that

logY0 = −mL coshπθ +
1

2
log(1 + Y1) +

1

2
log(1 + Y−1) , (3.33)

where the LO constant Y -functions satisfy the relations

(YM )2 = (1 + YM−1)(1 + YM+1) , M 6= 0 , (3.34)

as follows from (3.27). The solution with the correct asymptotics (3.29) is3

YM = [M ]q[M + 2]q , Y−M = [M ]q̇[M + 2]q̇ . (3.35)

Clearly, the twist dependence reenters through the asymptotic solution. This means that

at leading non-vanishing order

Y0 ≈ Y0 =
√

(1 + Y1)(1 + Y−1)e
−mL cosh πθ = [2]q[2]q̇e

−mL cosh πθ , (3.36)

which, when substituted back into the energy formula (3.31), reproduces the leading-order

Lüscher correction (3.5). Actually, expanding the log in the energy formula (3.31) to second

order log(1 +Y0) = Y0 − 1
2Y2

0 reproduces also E
(2,1)
0 in (3.8). Thus, we need to expand the

Y -functions to NLO to obtain the remaining E
(2,2)
0 in (3.15).

We see from (3.28) and (3.32) that the massive node has the NLO expansion

Y0 = Y0

(

1 + s ⋆

( Y1

1 + Y1
y1 +

Y−1

1 + Y−1
y−1

))

+ . . . . (3.37)

We need to calculate y±1. We expand the TBA equations (3.27), keeping only the linear

terms in y,

yk = s ⋆

( Yk+1

1 + Yk+1
yk+1 +

Yk−1

1 + Yk−1
yk−1

)

, k 6= 0 . (3.38)

We solve this equation by Fourier transform

(t+ t−1)ỹk =
[k + 1]q[k + 3]q

[k + 2]2q
ỹk+1 +

[k − 1]q[k + 1]q
[k]2q

ỹk−1 , (3.39)

where we have also used the result (3.35) and the identity 1+ [k− 1]q[k+ 1]q = [k]2q . Being

a second-order difference equation, the generic solution contains two parameters. These

3The twists γ± have small positive imaginary parts in order to suppress large-M magnonic contributions

to the partition function (2.22).
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parameters can be fixed by demanding that limk→∞ ỹk = 0 and Ỹ0 = limk→0 Ykỹk. The

result is

ỹk = tk
[k + 1]q

[2]q[k]q[k + 2]q
([k + 2]q − [k]qt

2)Ỹ0 , ỹ−k = ỹk(q → q̇) , (3.40)

which is just the deformed version of the O(4) solution [47]. Thus, for the needed y±1, we

have

ỹ1 =

(

t1 − t3

[3]q

)

Ỹ0 , ỹ−1 =

(

t1 − t3

[3]q̇

)

Ỹ0 . (3.41)

Performing inverse Fourier transform,

y1 = −
(

K01 −
K03

[3]q

)

⋆ Y0 , y−1 = −
(

K01 −
K03

[3]q̇

)

⋆ Y0 . (3.42)

Substituting back into (3.37), we obtain

Y0 =[2]q[2]q̇e
−mL cosh πθ

(

1+s ⋆
[

(K03−[3]qK01)[2]−2
q +(K03−[3]q̇K01)[2]−2

q̇

]

⋆ [2]q[2]q̇e
−mL cosh πθ

)

.

(3.43)

Comparing the double-convolution term with E
(2,2)
0 in (3.15) in Fourier space, we obtain

complete agreement.

4 Twisted AdS/CFT

In this section, we apply the previous methodology to the twisted AdS/CFT model. After

defining the model by its scattering matrix, dispersion relation and twist matrix, we derive

the LO and NLO Lüscher corrections. As the model has infinitely many massive bound

states Q ∈ N, in the NLO Lüscher correction we have a sum of the form
∑∞

Q1,Q2=1. We first

elaborate the summand Q1 = Q2 = 1 in detail, and we then treat the general case, which

entails detailed knowledge of all scattering matrices SQ1Q2. We next derive the twisted TBA

equations by evaluating the charges of the magnons and their bound states in the thermody-

namic limit of the mirror asymptotic BA. The twist, just as in the O(4) model, disappears

from the universal equations, which lead to the untwisted Y -system. We expand the TBA

equations to NLO and compare to the Lüscher correction, and again find perfect agreement.

The AdS/CFT integrable model has an su(2|2) ⊗ su(2|2) symmetry. The elementary

particle transforms under the bifundamental representation of su(2|2). For one copy of

su(2|2), Latin indices a = 1, 2 label the bosonic, while Greek indices α = 3, 4 label the

fermionic components of the four-dimensional representation. We will introduce twist

in the bosonic subspace by the generator L0, which has nonvanishing diagonal matrix

elements: (L0)
1
1 = 1 and (L0)

2
2 = −1.

– 16 –



J
H
E
P
1
2
(
2
0
1
1
)
0
5
9

The symmetry completely determines the left/right scattering matrix, which has the

nonvanishing amplitudes

Saa
aa = Sab

ab + Sba
ab = a1 =

x−2 − x+
1

x+
2 − x−1

√

x+
2

x−2

√

x−1
x+

1

, Sba
ab = −a2 , (4.1)

Sαα
αα = Sαβ

αβ + Sβα
αβ = a3 = −1 , Sβα

αβ = −a4 , (4.2)

Sαβ
ab = −ǫabǫ

αβa7 , Sab
αβ = −ǫαβǫ

aba8 , (4.3)

Saα
aα = a5 , Sαa

aα = a9 , Saα
αa = a10 , Sαa

αa = a6 , (4.4)

where a, b ∈ {1, 2} with a 6= b; α, β ∈ {3, 4} with α 6= β; and the various coefficients can

be extracted from [48].4 For Q1 = Q2 = 1 we shall need explicitly only a1, since — as a

consequence of some identities among the various coefficients — we shall be able to express

the Lüscher corrections purely in terms of it. The scattering matrix depends independently

on the momenta of the particles p1 and p2 via

x+

x−
= eip , x+ +

1

x+
− x− − 1

x−
=

2i

g
, (4.5)

where g =
√
λ/(2π) and λ = g2

Y MN is the ’t Hooft coupling. The full scattering matrix

has the form

S11(p1, p2) = S11
sl(2)(p1, p2)

[

S11
su(2|2)(x

±
1 , x

±
2 ) ⊗ S11

su(2|2)(x
±
1 , x

±
2 )
]−1

, (4.6)

where S11
sl(2)(p1, p2) is the scalar factor

S11
sl(2)(u, u

′) =
u− u′ + i

g

u− u′ − i
g

Σ−2
11 , Σ11 =

1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

σ , (4.7)

with σ being the dressing factor. We note that S11 denotes actually the inverse of the AFZ

S-matrix [48], since we are using the relativistic convention 1 = eipL
∏

j S(p, pj) , as in

section 2, instead of eipL =
∏

j S(p, pj).

The dispersion relation can be easily expressed in terms of x± as

E = − ig
2

(

x+ − 1

x+
− x− +

1

x−

)

. (4.8)

In analogy with the O(4) model, we introduce different twists for the two su(2|2) factors,

which we label by α = ±,

eiγJ = eiγ−L0 ⊗ eiγ+L0 = diag(q̇, q̇−1, 1, 1) ⊗ diag(q, q−1, 1, 1) , (4.9)

where again q = eiγ+ , q̇ = eiγ− ; and γ± are related to the deformation parameters γi used

in [29, 30] by γ± = (γ3 ± γ2)
L
2 .

The scattering matrix has poles, which signal the existence of bound states. These

states transform under the 4Q-dimensional totally symmetric representation of su(2|2) for

4Indeed, a1, . . . , a10 are given by the coefficients of the ten terms in eq. (8.7) in [48], respectively.
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any Q ∈ N. The dispersion relation of the bound states can be obtained from (4.8) by

changing the shortening condition to

x+ +
1

x+
− x− − 1

x−
=

2iQ

g
. (4.10)

The matrix part of the scattering matrix can be fixed [49] from the Yangian symmetry [50],

while the scalar factor can be determined [51] from the bootstrap principle.

The mirror model has the analytically-continued scattering matrix: x±(p) → x±(p̃),

where p̃ = −iE. Since the physical domains of p and p̃ are different, the bound states

are different, too. The mirror bound states transform under the 4Q-dimensional totally

antisymmetric representation of su(2|2), and the twist charge acts as

eiγ+L0 = diag(IQ−1, IQ+1, qIQ, q
−1

IQ) . (4.11)

The scattering matrix of the antisymmetric bound states are related to those of the sym-

metric ones by changing the labels 1 ↔ 3, 2 ↔ 4 and simultaneously flipping x± ↔ x∓

inside the matrix part. Combining this with the previously mentioned notational differ-

ences, we can use the following scattering matrices to calculate the Lüscher correction:

S = SQ1Q2

sl(2) (SQ1Q2

su(2|2) ⊗ SQ1Q2

su(2|2)) , (4.12)

where

SQ1Q2

sl(2) (u1, u2) =

Q1
∏

j1=1

Q2
∏

j2=1

S11
sl(2)(u

1
j1
, u2

j2
) , un

jn
= un + (Qn + 1 − 2jn)

i

g
, (4.13)

and SQ1Q2

su(2|2) denotes the symmetric-symmetric bound state scattering matrix in the con-

ventions of [49].

4.1 Lüscher corrections

The derivation of section 2 is not general enough to describe the AdS/CFT problem. We
have to incorporate two new features: the existence of fermions, and of multiple species of
particles that are labeled by the charge Q. The fermionic nature can be taken into account
by changing the trace to the supertrace. This is equivalent to imposing antiperiodic
boundary conditions on the fermions, which can be implemented by an eiπF twist, where
F is the fermion number operator:

STrQ(eiγJ)=TrQ((−1)F eiγJ)=TrQ(ei(πF+γJ))=STrQ(eiγ−L0)STrQ(eiγ+L0)=([2]q−2)([2]q̇−2)Q2 .

(4.14)

Clearly, the supertrace vanishes in the untwisted q → 1 limit. The generalization of

the derivation of section 2 will contain the scattering matrices SQ1Q2. They arise from

two-particle states with charges Q1 and Q2. As the species are different, we should not

constrain the summation on the quantization numbers
∑

k<l, and must keep all
∑

k,l, as

they label distinct two-particle states. One can verify that the dangerous R2 terms from

the determinant cancel against the cross terms coming from the square of the one-particle
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contribution. Otherwise the derivation goes along the same lines as before. As a final

result, we obtain the LO and NLO Lüscher correction as follows:

E
(1)
0 = −

∑

Q

STrQ(eiγJ )

∫

dp̃

2π
e−ǫ̃Q(p̃)L , (4.15)

E
(2,1)
0 =

1

2

∑

Q

STrQ(eiγJ )2
∫

dp̃

2π
e−2ǫ̃Q(p̃)L , (4.16)

E
(2,2)
0 =

∞
∑

Q1,Q2=1

∫

dp̃1

2π
e−Lǫ̃Q1

(p̃1)

∫

dp̃2

2π
e−Lǫ̃Q2

(p̃2)i∂p̃1STrQ1Q2(e
iγJ log SQ1Q2(p̃1, p̃2)), (4.17)

cf. eqs. (2.7), (2.10) and (2.13), (2.14), respectively. Here and below it is understood that

p̃i = p̃Qi
.

In evaluating these expressions, we note that the mirror dispersion relation is defined

via p̃ = −iE and ǫ̃ = −ip. This dispersion relation can be then encoded into

eǫ̃Q(p̃) =
x−

x+
,

2p̃

g
= x− − 1

x−
− x+ +

1

x+
, (4.18)

where the shortening condition (4.10) is satisfied.

The leading Lüscher correction for the vacuum (4.15) receives contributions from each

particle

E
(1)
0 = −([2]q − 2)([2]q̇ − 2)

∑

Q

Q2

∫

dp̃

2π
e−ǫ̃Q(p̃)L . (4.19)

The simple part of the NLO correction (4.16) is also straightforward to compute

E
(2,1)
0 =

1

2
([2]q − 2)2([2]q̇ − 2)2

∑

Q

Q4

∫

dp̃

2π
e−2ǫ̃Q(p̃)L . (4.20)

In order to calculate the E
(2,2)
0 -part of the NLO correction, we need the supertrace of the

logarithmic derivative of the mirror S-matrix (4.12):

STr
(

eiγ−L0 ⊗ eiγ+L0 log S
)

. (4.21)

We now diagonalize the twist matrix and the scattering matrix on the same basis,

eiγ−L0 ⊗ eiγ+L0 = Ȧ⊗A = diag(Ȧ1, . . . , Ȧn) ⊗ diag(A1, . . . , An) ,

S = Λ ⊗ Λ = diag(Λ1, . . . ,Λn) ⊗ diag(Λ1, . . . ,Λn) , (4.22)

where Λi are the eigenvalues of SQ1Q2

su(2|2), and n = 16Q1Q2. Calculation similar to the one

in the O(4) model gives

STr(eiγJ log S) = STr
(

Ȧ⊗A(log SQ1Q2

sl(2) I ⊗ I + log SQ1Q2

su(2|2) ⊗ I + I ⊗ log SQ1Q2

su(2|2))
)

(4.23)

= STr(Ȧ) STr(A) log SQ1Q2

sl(2) +
∑

i

(−1)Fi

(

STr(A)Ȧi + STr(Ȧ)Ai

)

log Λi .

– 19 –



J
H
E
P
1
2
(
2
0
1
1
)
0
5
9

Using the derivative of this expression, we can express the NLO Lüscher correction (4.17)

in the following form:

E
(2,2)
0 =

∞
∑

Q1,Q2=1

Q1Q2

∫

dp̃1

2π
e−Lǫ̃Q1

(p̃1)

∫

dp̃2

2π
e−Lǫ̃Q2

(p̃2)i∂p̃1 ×
[

Q1Q2(2 − [2]q)
2(2 − [2]q̇)

2 log SQ1Q2

sl(2) (p̃1, p̃2)

+
∑

i

(−1)Fi

(

Ȧi(2 − [2]q)
2 +Ai(2 − [2]q̇)

2
)

log ΛQ1Q2
i (p̃1, p̃2)

]

.(4.24)

4.1.1 NLO Lüscher correction: the case Q1 = Q2 = 1

To warm up, let us evaluate the NLO Lüscher correction for the simplest Q1 = Q2 = 1 case.

We focus on the matrix part in (4.24). Performing the calculation explicitly, we obtain

(2 − [2]q̇)
2i∂p̃1

{

([3]q − 1) log a1 + log
[

a1a
3
3 ((a1 + 2a2)(a3 + 2a4) − 4a7a8)

]

−2[2]q log(a5a6 − a10a9)} + (q ↔ q̇) , (4.25)

where we used (−1)F = (1, 1,−1,−1). Using the explicit expressions for the coefficients

found in [48], we observe the following identities

a5a6 − a10a9 = a1 , (a1 + 2a2)(a3 + 2a4) − 4a7a8 = −a1 . (4.26)

Substituting these identities into (4.25), we obtain a very simple expression for the matrix

part of the NLO Lüscher correction for Q1 = Q2 = 1 in terms of only a1,

(2− [2]q)
2(2− [2]q̇)

2

(

[2]q̇
2 − [2]q̇

+
[2]q

2 − [2]q

)∫

dp̃1

2π
e−Lǫ̃1(p̃1)

∫

dp̃2

2π
e−Lǫ̃1(p̃2)i∂p̃1 log a1(p̃1, p̃2) .

(4.27)

4.1.2 NLO Lüscher correction: the general case (Q1, Q2)

Although the above approach can also be used for the cases (Q1, Q2) = (1, 2), (2, 2) for

which the explicit S-matrices are available [52], it is impractical for higher-dimensional

cases. Clearly, a more powerful approach is needed to treat the general case. Observe

from (4.24) that the NLO Lüscher correction involves the quantity
∑

i(−1)FiAi log ΛQ1Q2

i ,

and a similar quantity with Ai replaced by Ȧi. We exploit the fact that the su(2|2)
part of the γ+ twist eiγJ = I ⊗ eiγ+L0 involves nontrivially only the su(2)R factor in

su(2)L⊗su(2)R ⊂ su(2|2), as is evident from (4.11). Since su(2)L⊗su(2)R is the symmetry

of the scattering matrix, we can perform an expansion in the left (sL) and right (sR) spins:

∑

i

(−1)FiAi log ΛQ1,Q2
i =

∑

(sL,sR)

STr[(I ⊗ eiγ+L0) log SQ1Q2(sL, sR)]

=
∑

(sL,sR)

(−1)2sR(2sL+1) [2sR+1]q log detSQ1Q2(sL, sR), (4.28)
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where SQ1Q2(sL, sR) is the 2-particle S-matrix in the sector with left and right

su(2) spins sL and sR,5 and we calculated the traces as TrsL
(I) = 2sL + 1 and

STrsR
(eiγ+L0) = (−1)2sR [2sR + 1]q, respectively. The sum is over all the possible values of

sL and sR for the given values of Q1 and Q2.

The problem of computing the NLO Lüscher correction therefore reduces to the de-

termination of detSQ1Q2(sL, sR) for general values of Q1 and Q2, and for all the possible

corresponding values of sL and sR. This is a formidable technical challenge. It turns

out that — remarkably — these determinants have simple compact expressions, which are

constructed from a small number of elementary building blocks.

We propose that, with both particles in symmetric representations and Q1 , Q2 > 1,

the determinants are given by the expressions in table 1. In order to save writing, we have

introduced the following notation

U0 =
x−1 − x+

2

x+
1 − x−2

, U1 =

√

x+
1

x−1
, U2 =

√

x−2
x+

2

, U3 =
x+

1 x
+
2 − 1

x−1 x
−
2 − 1

, SQ =
u1 − u2 − iQ

g

u1 − u2 + iQ
g

,

(4.29)

where x±j are the parameters of the Qj bound-state representation, and uj± iQj

g
= x±j + 1

x±
j

.

Note that there are only three possible values of the right-spin, namely sR = 0, 1
2 , 1, as 2sR

counts the number of fermions in the basis of the Hilbert space. If at least one of either

Q1 or Q2 is 1, then the corresponding results are collected in table 2. A brief account of

how these results were obtained is presented in appendix A.

Substituting the results from tables 1 and 2 into (4.28), and carefully simplifying the

resulting expression, we obtain

∑

i

(−1)FiAi log ΛQ1Q2
i = [3]q

(

Q1Q2 logU0U1U2 + KQ1Q2
)

(4.30)

−[2]q
(

(4Q1Q2 −Q1 −Q2) logU0 + 2Q2(2Q1 − 1) logU1

+2Q1(2Q2 − 1) logU2 + (Q2 −Q1) logU3 + 4KQ1Q2
)

+[1]q
(

(5Q1Q2 − 2Q1 − 2Q2) logU0 +Q2(5Q1 − 4) logU1

+Q1(5Q2 − 4) logU2 + 2(Q2 −Q1) logU3 + 5KQ1Q2
)

,

where we have defined

KQ1Q2 =

Q1−1
∑

j=0

(Q2 −Q1 + 2j + 1)

Q1−j−1
∑

k=1

log SQ2−Q1+2j+2k . (4.31)

In deriving the result (4.30), we have made use of the fact that log SQ is an antisymmetric

function of Q (i.e., log S−Q = − logSQ, up to an irrelevant additive constant), which in par-

ticular implies that KQ1Q2 = KQ2Q1 . We emphasize that (4.30) holds for any Q1, Q2 ∈ N.

An analogous result can be derived for
∑

i(−1)FiȦi log ΛQ1Q2
i by replacing q → q̇ in (4.30).

5In other words, detS(sL, sR) =
Q

i Λi(sL, sR), where Λi(sL, sR) are the eigenvalues of the 2-particle S-

matrix corresponding to eigenstates which are also su(2)L ⊗ su(2)R highest-weight states with given values

of sL and sR. For further details, see appendix A. As usual, the spins sL, sR are non-negative integers or

half-odd integers.
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sR detSQ1Q2(sL, sR) sL

1 U0U1U2S2sL+2S2sL+4 . . . SQ1+Q2−2
1
2 |Q12|, 1

2 (|Q12| + 2), . . . , 1
2 (Q1 +Q2 − 2)

1
2 U0U1U2

1
2 (Q1 +Q2 − 1)

1
2 (U0U1U2)

4 S2
2sL+1S

4
2sL+3 . . . S

4
Q1+Q2−2

1
2 (|Q12| + 1), . . . , 1

2 (Q1 +Q2 − 3)

1
2 (U0U1U2)

2
(

U2U3

U1

)δ21

S2
|Q12|+2S

2
|Q12|+4 . . . S

2
Q1+Q2−2

1
2 (|Q12| − 1) ≥ 0

0 1 1
2 (Q1 +Q2)

0 (U0U1U2)
3
S2sL

1
2 (Q1 +Q2 − 2)

0 (U0U1U2)
5
S2sL

S4
2sL+2

1
2 (Q1 +Q2 − 4)

0 (U0U1U2)
5
S2sL

S4
2sL+2S

5
2sL+4 . . . S

5
Q1+Q2−2

1
2 (|Q12| + 2), . . . , 1

2 (Q1 +Q2 − 6)

0 (U0U1U2)
4
(

U2U3

U1

)δ21

S3
|Q12|+2S

4
|Q12|+4 . . . S

4
Q1+Q2−2

1
2 |Q12| 6= 0

0 U0U1U2

(

U2U3

U1

)δ21

S|Q12|+2S|Q12|+4 . . . SQ1+Q2−2
1
2 (|Q12| − 2) ≥ 0

0 (U0U1U2)
3 S2

2S
3
4S

3
6 . . . S

3
Q1+Q2−2 0 = Q12

Table 1. The values of detSQ1Q2(sL, sR) for Q1, Q2 > 1 and for all possible sR and sL, where

δ21 = Q21

|Q21|
= ±1, and Qij = Qi −Qj . See (4.29) for further notations.

sR detSQ1Q2(sL, sR) sL

1 U0U1U2
1
2(Q1 +Q2 − 2)

1
2 U0U1U2

1
2(Q1 +Q2 − 1)

1
2 (U0U1U2)

2
(

U2U3
U1

)δ21 1
2(|Q12| − 1) ≥ 0

0 1 1
2(Q1 +Q2)

0 (U0U1U2)
2
(

U2U3
U1

)δ21 1
2 |Q12| 6= 0

0 U0U1U2

(

U2U3
U1

)δ21
1
2(|Q12| − 2) ≥ 0

0 U0U1U2 0 = Q12 (Q1 = Q2 = 1)

Table 2. The values of detSQ1Q2(sL, sR) for all possible sR and sL if either Q1 or Q2 is 1.
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Thus, in order to calculate the Lüscher correction, we have to plug (4.30) into the

formula (4.24):

E
(2,2)
0 =

∞
∑

Q1,Q2=1

Q1Q2

∫ ∞

−∞

dp̃1

2π
e−Lǫ̃Q1

(p̃1)

∫ ∞

−∞

dp̃2

2π
e−Lǫ̃Q2

(p̃2)

× i∂p̃1

{

(2 − [2]q̇)
2
[

[3]q
(

Q1Q2 logU0U1U2 + KQ1Q2
)

−[2]q

(

(4Q1Q2 −Q1 −Q2) logU0 + 2Q2(2Q1 − 1) logU1

+2Q1(2Q2 − 1) logU2 + (Q2 −Q1) logU3 + 4KQ1Q2

)

+[1]q

(

(5Q1Q2 − 2Q1 − 2Q2) logU0 +Q2(5Q1 − 4) logU1

+Q1(5Q2 − 4) logU2 + 2(Q2 −Q1) logU3 + 5KQ1Q2

)]

+(q ↔ q̇)

+Q1Q2(2 − [2]q)
2(2 − [2]q̇)

2 logSQ1Q2

sl(2) (p̃1, p̃2)

}

. (4.32)

We shall compare this result to the TBA output in section 4.4.4.

4.2 Twisted TBA equations

In [11–13, 19, 20], the authors derived the TBA equations for the AdS/CFT model with

the most general chemical potentials. Hence, the TBA equations for the γ-deformed

theories correspond to some special cases. However, since we must determine precisely

the charges/chemical potentials of the various excitations in terms of the deformation

parameters, we now briefly sketch the derivation.

In order to derive the TBA equations, we have to recall the various types of excitations

(both massive and magnonic) and their scattering matrices; and we must calculate their

twist charges. We label the fundamental massive particle as Q = 1, corresponding to the

(33̇) label of the fundamental representation. The S-matrix of this kind of particles is in

fact given by (4.7) and they can form bound states for any Q with string-like complex

roots defined like in (4.13). We label such a massive composite particle by Q and the

scattering matrix of such particles is (4.13). Since the twist charge acts trivially in the

(3, 4) subspace, the massive particles are not charged: µQ = 0.

We now focus on the magnonic excitations. They encode the color su(2|2) structure of

the scattering, and come in independent left and right copies. We first consider the right

part. We label a magnon, which introduces label 2 in the sea of massive 3-particles, by y.

It scatters trivially on itself, but nontrivially on the massive particles

S1y(u, y) =
x−(u) − y

x+(u) − y

√

x+(u)

x−(u)
, SQy(u, y) =

Q
∏

j=1

S1y(uj , y) . (4.33)

The twist charge of the y particles is µy = −iγ+.
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We can also introduce the label 1 in the sea of 2-particles. These particles are labeled

by w. They scatter nontrivially only on the y particles and on themselves:

Syw(y,w) = S−1(v(y) −w) , Sww(w,w′) = S2(w − w′) , (4.34)

where v(y) = y + y−1, and Sn(u) is defined as in (4.29), namely

Sn(u) =
u− in

g

u+ in
g

. (4.35)

The twist charge of these particles is µw = 2iγ+.

As the scattering matrix Syw(y,w) has a difference form in the variable v(y) = y+y−1,

we might use the parameter v instead of y. The inverse of the relation, however, is not

unique. Defining y−(v) = 1
2(v − i

√
4 − v2) with the branch cuts running from ±∞ to

±2, we can describe any y with ℑm(y) < 0 for v ∈ [−2, 2]. Clearly y+(v) = y−(v)−1

describes the other ℑm(y) > 0 case; and in the scattering matrices S1y which de-

pend on y, and not on v, we have to specify which root is taken. As a consequence,

we have two types of y particles y|δ with δ = ±; and the scattering matrices split

as S1y(u, y) → S1y|δ(u, v) := S1y(u, yδ(v)). Clearly, the y|δ magnons scatter on the

momentum bound states as SQ y|δ(u, v) =
∏

j S1 y|δ(uj , v).

Let us now focus on the magnonic bound states. Detailed investigation showed [53]

that v and w particles can form bound states for any positive integer M . It consist of 2M

v-particles v±(M+2−2j) = v ± (M + 2 − 2j) i
g

for j = 1, . . . ,M with yj = (y−1
−j )

∗, and M

w-particles with synchronized parameters wj = v + (M + 1 − 2j) i
g

for j = 1, . . . ,M . The

scattering matrix of the v|M particle with all other particles is simply the product of the

scatterings of each of its individual constituents

Sv|M i(v, q) =

M+1
∏

j=1

Sy|− i(vM+2−2j , q)

M
∏

j

Swi(wj , q)

M−1
∏

j=1

Sy|+ i(vM−2j , q) . (4.36)

The twist charge of the bound state simply sums up to µv|M = 2M(−iγ+) +M2iγ+ = 0.

The w-type particles can form bound states among themselves: an N -string of

w-particles can be formed as wj = w+ (N + 1− 2j) i
g
. The scattering of the N -string with

any other particle is

Sw|N i(w, q) =

N
∏

j=1

Sw i(wj , q) , (4.37)

while the twist charge is µw|N = 2Niγ+.

We summarize the various scattering matrices and chemical potentials in table 3.

Once we know the chemical potentials, we can calculate the kernels

Kjj′(u, u
′) =

1

2πi
∂u log Sjj′(u, u

′) , (4.38)

and write the TBA equations one by one. To ensure positive particle densities, we have to

invert the equations for v|M and for y|−. The equation for the massive nodes then read as

ǫQ2 = Lǫ̃Q2−log(1+e−ǫQ1 )⋆KQ1Q2+
∑

α=±

log(1+e
−ǫα

v|M )⋆Kv|M Q2
−δ log(1+e

−ǫα
y|δ)⋆Ky|δ Q2

.

(4.39)
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Q2 v|M2 w|N2 y|δ2 µ

Q1 SQ1Q2 SQ1 v|M2
1 SQ1 y|δ2 0

v|M1 Sv|M1 Q2
Sv|M1 v|M2

1 Sv|M1 y|δ2 0

w|N1 1 1 Sw|N1 w|N2
Sw|N1 y|δ2 2N1iγ

y|δ1 Sy|δ1 Q2
Sy|δ1 v|M2

Sy|δ1 w|N2
1 −iγ

Table 3. Scattering matrices of the various particles and their chemical potentials for any of the

two su(2|2) wings.

Note that for particles of type v|M and y|δ, we must include contributions of the two
su(2|2) copies, which we denote by α = ±. The remaining equations are valid for the two
su(2|2) factors separately, so we omit the α index:

ǫv|M = − log(1 + e−ǫQ2 ) ⋆ KQ2 v|M + log(1 + e−ǫv|M′ ) ⋆ Kv|M′ v|M − δ log(1 + e−ǫy|δ ) ⋆ Ky|δ v|M ,

ǫw|N = −µw|N − log(1 + e−ǫw|N′ ) ⋆ Kw|N′ w|N − δ log(1 + e−ǫy|δ ) ⋆ Ky|δ w|N , (4.40)

ǫy|δ = iπ − µy|δ − log(1 + e−ǫQ2 ) ⋆ KQ2 y|δ + log(1 + e−ǫv|M ) ⋆ Kv|M y|δ − log(1 + e−ǫw|N ) ⋆ Kw|N y|δ .

Once these equations are solved, the ground-state energy can be obtained as

E0(L) = −
∞
∑

Q2=1

∫

du

2π
∂up̃Q2 log(1 + e−ǫQ2 ) . (4.41)

In [19, 20] the authors analyzed the TBA equations with generic chemical potentials,

and formulated the requirement under which the Y-system remains unchanged. Our chem-

ical potentials, which correspond to γ-deformations, satisfy their requirement.

4.3 Universal TBA equations and Y-system

The TBA equations can usually be brought into a local form. As already remarked, this

means that the pseudo-energies can be drawn on a two-dimensional lattice, such that only

neighboring sites couple to each other with the universal kernel

s IMN = δMN − (K + 1)−1
MN , s(u) =

g

4 cosh gπu
2

, (4.42)

where IMN = δM+1,N + δM−1,N and (K + 1)−1
MN ⋆ (KNL + δNL) = δML. To simplify the

notation, we introduce the following Y -functions6

YQ = e−ǫQ , Yv|M = eǫv|M , Yw|N = eǫw|N , Yδ = −eǫy|δ . (4.43)

Clearly, we have two copies for the magnonic Y -functions: Y α
v|M , Y

α
w|N , Y

α
δ where α = ±

refers to the two su(2|2) copies. Acting with the operator (4.42) on the TBA equa-

tions (4.39), (4.40), and using kernel identities such as (K + 1)−1
MN ⋆ KN = s δM,1 as

well as the special properties of the chemical potentials µw|N−1 − 2µw|N + µw|N+1 = 0

6To compare with [13, 14], we note that Yw|N = Y AF
N|w, Yv|M = Y AF

M|vw and KQ1Q2
vx = KQ1Q2 AF

vwx . Also,

Kn(u) = 1
2πi

d
du

log Sn(u), where Sn(u) is defined in (4.35); its Fourier transform is K̃n = sign(n)t|n|,

t = e−
|ω|
g .
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and µw|1 = −2µy, we arrive at their simplified form [14]. For later purposes, we write the

simplified equations for v|M and w|N magnons, and a useful combination (hybrid) of the

un-simplified equations for Q and y particles [16]

log YQ2 = −Lǫ̃Q2 + log(1 + YQ1) ⋆
(

KQ1Q2

sl(2) + 2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=±

[

log

(

1+Y α
v|1

)

⋆ s ⋆̂KyQ2+log(1+Y α
v|Q2−1) ⋆ s−log

1−Y α
−

1−Y α
+

⋆̂s ⋆ K1Q2
vx

+
1

2
log

1 − 1
Y α
−

1 − 1
Y α
+

⋆̂KQ2 +
1

2
log(1 − 1

Y α
−

)(1 − 1

Y α
+

)⋆̂KyQ2

]

, (4.44)

log Y α
−Y

α
+ = − log(1 + YQ2) ⋆ KQ2 + 2 log(1 + YQ2) ⋆ K

Q21
xv ⋆ s+ 2 log

1 + Y α
v|1

1 + Y α
w|1

⋆ s , (4.45)

log
Y α

+

Y α
−

= log(1 + YQ2) ⋆ KQ2y , (4.46)

log Y α
v|M = − log(1 + YM+1) ⋆ s+ IMN log(1 + Y α

v|N ) ⋆ s+ δM1 log
1 − Y α

−

1 − Y α
+

⋆̂s , (4.47)

log Y α
w|M = IMN log(1 + Y α

w|N) ⋆ s+ δM1 log
1 − 1

Y α
−

1 − 1
Y α
+

⋆̂s , (4.48)

where in the convolution ⋆̂ we integrate over the interval [−2, 2] only. To conform with

part of the literature, we have renamed some kernels KMQ
vx = Kv|M Q, KQM

xv = KQ v|M ,

KyQ = Ky|−Q + Ky|+ Q, KQy = KQ y|− − KQ y|+. The ground-state energy is given by

summing the contributions of the massive nodes only:

E0(L) = −
∞
∑

Q=1

∫

du

2π
∂up̃Q log(1 + YQ) . (4.49)

Evidently, as in the case of the O(4) model, the chemical potentials and so the twists

completely disappear from the simplified equations: They show up only in the asymptotics

of the Yw|N functions, as limN→∞ log Yw|N = −µw|N . It follows that the Y -system relations

are not modified by the twists, as was supposed in [37]. Equations (4.48)–(4.49) together

with the asymptotic prescription give the complete solution for the finite-size energy of

the twisted AdS/CFT model for any coupling g. We now check this solution against LO

and NLO Lüscher corrections.

4.4 Asymptotic expansion

We now expand the simplified TBA equations to leading and next-to-leading order. We

expand any Y -functions as

Y = Y(1 + y + . . . ) . (4.50)

We solve iteratively these equations similarly to the O(4) case: At leading order, all the

massive nodes YQ are exponentially small, which splits the Y -system into two independent

subsystems which have constant asymptotic solutions. These constant values then deter-

mine the LO exponentially small expressions for YQ. At NLO, we obtain linear integral
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equations for the y corrections of the two subsystems, whose initial values are provided by

the asymptotic YQ functions. The solution of the linearized equations determine the NLO

correction for the massive nodes yQ, which provides the NLO energy correction.

4.4.1 Leading-order expansion

At LO, the massive YQ functions are exponentially small, and we can neglect the convo-

lutions involving all log(1 + YQ). The magnonic Yα
±, Yα

v|M , Yα
w|N functions are constants.

From (4.46), we see that Yα
+ = Yα

−. It then follows from (4.47) and (4.48) that the equations

for Yα
v|M and Yα

w|N are the same as those for one of the wings of the O(4) model (3.27).

From the asymptotic behavior, we see that the solution for v|M is the same as in the

undeformed model, while the solution for w|N is that of the deformed model:

Yα
v|M = M(M + 2) , Y+

w|N = [N ]q[N + 2]q , Y−
w|N = [N ]q̇[N + 2]q̇ . (4.51)

Since 1 ⋆ s = 1
2 , the equations (4.45) for Yα

± can be solved as

Yα
+ = Yα

− =

√

√

√

√

1 + Yα
v|1

1 + Yα
w|1

=
2

[2]α
, (4.52)

where we have further streamlined the notation by defining

[n]+ = [n]q , [n]− = [n]q̇ . (4.53)

The sign in (4.52) can be fixed by the last equation in (4.40), and is consistent with the

vanishing of the ground-state energy (4.56) in the undeformed (q, q̇ → 1) limit. We now

use that 1⋆̂KyQ = 1 (see (6.12) in [13]) to write

logYQ = −L ǫ̃Q +
1

2

∑

α=±

[

log

(

1 + Yα
v|1

)

+ log(1 + Yα
v|Q−1) + log

(

1 − 1

Yα
−

)(

1 − 1

Yα
+

)]

.

(4.54)

Using the asymptotic solution (4.51), (4.52), we obtain the leading-order result for YQ

YQ = (2 − [2]q)(2 − [2]q̇)Q
2e−Lǫ̃Q(p̃) . (4.55)

Substituting back into the energy formula (4.49), the LO correction reads as

E0(L) ≃ E
(1)
0 (L) = −

∞
∑

Q=1

∫

dp̃

2π
YQ = −(2 − [2]q)(2 − [2]q̇)

∞
∑

Q=1

Q2

∫

dp̃

2π
e−Lǫ̃Q(p̃) , (4.56)

which agrees with the result (4.19) that we obtained from the Lüscher calculation.

4.4.2 NLO expansion

Expanding the energy formula (4.49) to NLO, we obtain

E0(L) = −
∞
∑

Q=1

∫

dp̃

2π
log(1 + YQ) ≃ −

∞
∑

Q=1

∫

dp̃

2π
YQ(1 + yQ) +

∞
∑

Q=1

∫

dp̃

2π

1

2
Y2

Q . (4.57)
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The quadratic term nicely reproduces our previous result (4.20) for E
(2,1)
0 , since using

again (4.55) gives

E
(2,1)
0 (L) =

∞
∑

Q=1

∫

dp̃

2π

1

2
Y2

Q =
1

2
(2 − [2]q)

2(2 − [2]q̇)
2

∞
∑

Q=1

Q4

∫

dp̃

2π
e−2Lǫ̃Q(p̃) . (4.58)

In order to evaluate

E
(2,2)
0 (L) = −

∞
∑

Q=1

∫

dp̃

2π
YQyQ , (4.59)

we must first calculate yQ. This will be given by the solution of the following linearized

set of TBA equations:7

yQ2 = YQ1 ⋆
(

KQ1Q2

sl(2) +2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=±

[

Aα
v|1y

α
v|1 ⋆ s ⋆̂KyQ2 +Aα

v|Q2−1y
α
v|Q2−1 ⋆ s

−y
α
− − yα

+

1 − 1
Yα

+

⋆̂s ⋆ K1Q2
vx +

yα
− − yα

+

2(Yα
+ − 1)

⋆̂KQ2 +
yα
− + yα

+

2(Yα
+ − 1)

⋆̂KyQ2

]

, (4.60)

yα
+ + yα

− = 2
(

Aα
v|1y

α
v|1 −Aα

w|1y
α
w|1

)

⋆ s−YQ2 ⋆ KQ2 + 2YQ2 ⋆ K
Q21
xv ⋆ s , (4.61)

yα
+ − yα

− = YQ2 ⋆ KQ2y , (4.62)

yα
v|M =

(

Aα
v|M−1y

α
v|M−1 +Aα

v|M+1y
α
v|M+1

)

⋆ s−YM+1 ⋆ s+ δM1
yα
− − yα

+

1 − 1
Yα

+

⋆̂s , (4.63)

yα
w|N =

(

Aα
w|N−1y

α
w|N−1 +Aα

w|N+1y
α
w|N+1

)

⋆ s+ δN1
yα
+ − yα

−

1 − Yα
+

⋆̂s , (4.64)

where

Aα
v|M =

Yα
v|M

1 + Yα
v|M

=
M(M + 2)

(M + 1)2
, Aα

w|N =
Yα

w|N

1 + Yα
w|N

=
[N ]α[N + 2]α

[N + 1]2α
. (4.65)

We start with the equation (4.64) for yα
w|N . The difference between α = + and α = −

is only in the asymptotics (4.51), (4.52). Since one equation can be obtained from the other

by interchanging q ↔ q̇, we do not write out explicitly the α index. Replacing y+ − y−
in (4.64) with the contributions from the massive nodes (4.62), and using the explicit form

of the asymptotic solution, we obtain an equation similar to the one for the O(4) case:

yw|N =

(

[N − 1][N + 1]

[N ]2
yw|N−1 +

[N + 1][N + 3]

[N + 2]2
yw|N+1

)

⋆ s+ δN1c1 ⋆ s , (4.66)

where

c1 =
[2]

[2] − 2
YQ ⋆ K̂Qy , K̂Qy(u, v) = KQy(u, v) (Θ(v + 2) − Θ(v − 2)) , (4.67)

and Θ(v) is the standard unit step function. We solve the difference equation in Fourier

space. We use that s̃ = (2 cosh ω
g
)−1 = (t + t−1)−1 where t ≡ e

− |ω|
g . The solution which

7We note that in [17] there is an erroneous term in eq. (2.7): −Y 0
Q ⋆ s should be instead −Y 0

Q ⋆ KQ, as

in (4.61).
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decreases for large N (to respect the asymptotics of Yw|N) and is compatible with the δN,1

term is

ỹw|N =
c̃1t

[2]

(

[N + 1]

[N ]
tN−1 − [N + 1]

[N + 2]
tN+1

)

. (4.68)

We now analyze the equation (4.63) for yα
v|M . This difference equation is not the same

as for the undeformed O(4) model, as it has inhomogeneous terms,

yv|M =

(

(M − 1)(M + 1)

M2
yv|M−1 +

(M + 1)(M + 3)

(M + 2)2
yv|M+1

)

⋆ s− YM+1 ⋆ s+ δM1c2 ⋆ s ,

(4.69)

where

c2 =
2

[2] − 2
YQ ⋆ K̂Qy . (4.70)

Taking the Fourier transform, we obtain the difference equation

(t+t−1)ỹv|M =
(M − 1)(M + 1)

M2
ỹv|M−1+

(M + 1)(M + 3)

(M + 2)2
ỹv|M+1−ỸM+1+δM1c̃2 . (4.71)

The general solution with two arbitrary parameters A1 and A2 reads as

ỹv|M =

(

M + 1

M
tM−1 − M + 1

M + 2
tM+1

)

(

A1 −
M
∑

k=1

Ỹk+1t
−k−2

(

t−2k − k − 2
)

(t−2 − 1)3 (k + 1)

)

+

(

M + 1

M
t1−M − M + 1

M + 2
t−1−M

)

(

A2 −
M
∑

k=1

Ỹk+1t
k−2

(

t−2(k + 2) − k
)

(t−2 − 1)3 (k + 1)

)

. (4.72)

The parameters can be fixed from limM→∞ ỹv|M = 0 and from the M = 1 term as

A1 = t2
(

t−1

2
c̃2 −A2

)

, A2 =

∞
∑

k=1

Ỹk+1t
k−2

(

t−2(k + 2) − k
)

(t−2 − 1)3 (k + 1)
. (4.73)

The NLO hybrid equation for yQ2 is (4.60); we plug into it the equations (4.61)

and (4.62), and obtain

yQ2 =YQ1 ⋆
(

KQ1Q2

sl(2) +2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=1,2

[

Aα
v|1

1− 1
Yα

+

yα
v|1 ⋆ s⋆̂KyQ2−

Aα
w|1

Yα
+−1

yα
w|1 ⋆ s⋆̂KyQ2

+
YQ1 ⋆ K

Q11
xv

Yα
+ − 1

⋆ s⋆̂KyQ2 +
YQ1 ⋆ KQ1y

1 − 1
Yα
±

⋆̂s ⋆ K1Q2
vx −YQ1 ⋆ KQ1y

2(Yα
± − 1)

⋆̂KQ2−
YQ1 ⋆ KQ1

2(Yα
+ − 1)

⋆̂KyQ2

+Aα
v|Q2−1y

α
v|Q2−1 ⋆ s

]

. (4.74)

Since yv|1 and yw|1 can be expressed in terms of YQ, we see that the solution for yQ2 has

the general form

yQ2 = YQ1 ⋆ K
Q1Q2

sl(2) + YQ1 ⋆MQ1Q2 . (4.75)
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Consider the first term YQ1 ⋆ K
Q1Q2

sl(2) . It is easy to see that its contribution to the

integrand in the energy formula (4.59)

YQ2yQ2 = YQ2 (YQ1 ⋆ K
Q1Q2

sl(2) ) , (4.76)

with YQ2 given by (4.55), matches with the “scalar part” of the integrand of the Lüscher

correction E
(2,2)
0 in (4.24). We now proceed to analyze the remaining contribution in (4.75),

and show that it gives the “matrix part” of the integrand of the Lüscher correction.

4.4.3 NLO TBA correction: the case Q1 = Q2 = 1

To warm up, let us evaluate the NLO correction for the Q1 = Q2 = 1 case; thus, we

calculate M11. In so doing, we can freely put YQ2 = 0 for Q2 > 1. The corresponding

solutions read as

yw|1 =
[2]

[2] − 2
Y1 ⋆ K1y ⋆̂

(

K1 −
1

[3]
K3

)

, (4.77)

yv|1 =
2

[2] − 2
Y1 ⋆ K1y ⋆̂

(

K1 −
1

3
K3

)

,

y+ − y− = Y1 ⋆ K1y ,

y+ + y− =
2

[2]−2
Y1 ⋆ K1y ⋆̂

((

3

2
− [3]

[2]

)

K1−
(

1

2
− 1

[2]

)

K3

)

⋆ s−Y1 ⋆ K1+2Y1 ⋆ K
11
xv ⋆ s .

It is convenient to substitute these solutions directly into (4.60), i.e.,

y1 =Y1⋆K
11
sl(2)+

∑

α=±

[

Av|1y
α
v|1 ⋆ s ⋆̂Ky1−

yα
−−yα

+

1− 1
Yα

+

⋆̂s ⋆ K11
vx+

yα
−−yα

+

2(Yα
+−1)

⋆̂K1+
yα
−+yα

+

2(Yα
+−1)

⋆̂Ky1

]

.

(4.78)

Using the explicit form of the asymptotic solutions, (4.77), one can see that the terms

involving the convolution with K3 completely cancel. Exploiting further that K1y ⋆̂K1 =

K11
xv (which can be shown using relations from section 6 in [13]), we arrive at

y1 = Y1 ⋆ K
11
sl(2) +

∑

α=±

[

[2]α
2([2]α − 2)

(

Y1 ⋆ K1y ⋆̂K1 + Y1 ⋆ K1⋆̂Ky1 − 2Y1 ⋆ K
11
xv ⋆ s⋆̂Ky1

)

+
[3]α−3

([2]α−2)2
Y1 ⋆ K

11
xv ⋆ s ⋆̂Ky1−

2

[2]α−2
Y1 ⋆ K1y ⋆̂s ⋆ K

11
vx

]

. (4.79)

This expression further simplifies to

y1 =Y1⋆K
11
sl(2)+

∑

α=±

[

[2]α
2([2]α−2)

Y1⋆(K1y ⋆̂K1+K1⋆̂Ky1)+
2

[2]α−2
Y1⋆

(

K11
xv ⋆ s⋆̂Ky1−K1y⋆̂s ⋆ K

11
vx

)

]

.

(4.80)

In the second term, using K1y ⋆̂K1 = K11
xv and K11

vx = K1⋆̂Ky1, we can write

K11
xv ⋆ s⋆̂Ky1 −K1y ⋆̂s ⋆ K

11
vx = K1y ⋆̂(K1 ⋆ s− s ⋆ K1)⋆̂Ky1 = 0 , (4.81)

– 30 –



J
H
E
P
1
2
(
2
0
1
1
)
0
5
9

as both s and K1 depend on the differences of their arguments, and therefore their convo-

lution is commutative. In the previous term in (4.80), we can obtain

K1y ⋆̂K1 +K1⋆̂Ky1 =
1

2πi
∂u1 log

(

x−1 − x+
2

x−1 − 1/x+
2

x+
1 − 1/x−2
x+

1 − x−2

u1 − u2 − 2i/g

u1 − u2 + 2i/g

)

=
1

πi
∂u1 log

(

x−1 − x+
2

x+
1 − x−2

√

x+
1

x−1

)

= − 1

πi
∂u1 log a1(u1, u2) , (4.82)

where we have used identities from section 6 in [13] and eq. (3.7) in [14], and we have

recalled the definition in (4.1) of a1. The final expression for the Q = Q′ = 1 contribution

to the energy (4.59) is therefore given by

y1 = Y1 ⋆ K
11
sl(2) + Y1 ⋆M11 , M11 =

1

2πi
∂u1 log a1(u1, u2)

∑

α

[2]α
2 − [2]α

, (4.83)

which completely reproduces the result (4.27) obtained directly from the Lüscher correction.

4.4.4 NLO TBA correction for any Q1, Q2

We now consider the general case. Let us recall the result (4.74) for yQ2

yQ2 =YQ1 ⋆
(

KQ1Q2

sl(2) +2s ⋆ KQ1−1,Q2
vx

)

+
∑

α=1,2

[

Aα
v|1

1− 1
Yα

+

yα
v|1 ⋆ s⋆̂KyQ2−

Aα
w|1

Yα
+−1

yα
w|1 ⋆ s⋆̂KyQ2

+
YQ1 ⋆ K

Q11
xv

Yα
+ − 1

⋆ s⋆̂KyQ2+
YQ1 ⋆ KQ1y

1 − 1
Yα
±

⋆̂s ⋆ K1Q2
vx −YQ1 ⋆ KQ1y

2(Yα
± − 1)

⋆̂KQ2−
YQ1 ⋆ KQ1

2(Yα
+ − 1)

⋆̂KyQ2

+Aα
v|Q2−1y

α
v|Q2−1 ⋆ s

]

, (4.84)

and analyze it term by term. Since we have already checked in section (4.4.2) the matching

of the first term with the scalar part of the Lüscher result, we start by considering the second

term of (4.84), which can be rewritten as

2YQ1 ⋆ s ⋆ K
Q1−1,Q2
vx = 2YQ1 ⋆ KQ1−1 ⋆ s⋆̂KyQ2 + 2YQ1 ⋆

Q1−2
∑

j=0

KQ2−Q1+2j+1 ⋆ s , (4.85)

where we used the property s ⋆ KQ = KQ ⋆ s, valid for any Q. Now we consider the terms

in the square brackets of (4.84), again suppressing the index α. Using the solution (4.72)

for M = 1 and taking its inverse Fourier transform, we can express the first term as

Av|1

1 − 1
Y+

yv|1 ⋆ s⋆̂KyQ2 =
3

2 − [2]

{

YQ1 ⋆ KQ1y

2 − [2]
⋆̂

(

K3

3
−K1

)

+
1

3

YQ1

Q1
⋆ [(Q1−1)KQ1+1−(Q1+1)KQ1−1]

}

⋆ s⋆̂KyQ2 , (4.86)

where the term in the second line can be rewritten, by using the identity

(Kn+1 +Kn−1 + nδn,±1δ) ⋆ s = Kn, as

− 2

2 − [2]
YQ1 ⋆ KQ1−1 ⋆ s⋆̂KyQ2 +

Q1 − 1

Q1(2 − [2])
YQ1 ⋆ KQ1 ⋆̂KyQ2 .
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The K3 contribution in the first line of (4.86) cancels, as we have already seen in the

Q1 = Q2 = 1 case, with the successive term in (4.84)

−
Aw|1

Y+ − 1
yw|1 ⋆ s⋆̂KyQ2 = − 1

(2 − [2])2
YQ1 ⋆ KQ1y ⋆̂ (K3 − [3]K1) ⋆ s⋆̂KyQ2 , (4.87)

while the terms with K1 give

[3] − 3

(2 − [2])2
YQ1 ⋆ KQ1y ⋆̂K1 ⋆ s⋆̂KyQ2 . (4.88)

Summing this contribution to the first two terms in the second line of (4.84), we obtain

2

2 − [2]
(YQ1 ⋆ KQ1y⋆̂s ⋆ K1⋆̂KyQ2 − YQ1 ⋆ KQ1y ⋆̂K1 ⋆ s⋆̂KyQ2)

+
[2]

2 − [2]
YQ1 ⋆ KQ1−1 ⋆ s⋆̂KyQ2 +

2

2 − [2]
YQ1 ⋆ KQ1y⋆̂s ⋆ KQ2−1 , (4.89)

where we used the identities K1Q
vx = K1⋆̂KyQ +KQ−1 and KQ1

xv = KQy ⋆̂K1 +KQ−1.
8 As

already noticed for the case Q1 = Q2 = 1, the first line in the expression above vanishes

because K1 ⋆ s = s ⋆ K1. The successive two terms in the second line of (4.84) give

− [2]

2π(2 − [2])
YQ1 ⋆ i∂u1 log aQ1Q2

1 (u1, u2) , (4.90)

where we used the identity (4.82) generalized for any Q1, Q2,

KQ1y⋆̂KQ2+KQ1 ⋆̂KyQ2 =
1

πi
∂u1 log





x−Q1
1 − x+Q2

2

x+Q1
1 − x−Q2

2

√

√

√

√

x+Q1
1

x−Q1
1



 = − 1

πi
∂u1 log aQ1Q2

1 (u1, u2) .

(4.91)

Let us turn to the last and most complicated term. Using the inverse Fourier transform

of (4.72) for M = Q2 − 1, we can write it as follows

Av|Q2−1yv|Q2−1 ⋆ s=
YQ1

Q1Q2
⋆

Q1−1
∑

k=0

k(k−Q1) [(Q2+1)KQ2−Q1+2k−1−(Q2−1)KQ2−Q1+2k+1] ⋆ s

+
YQ1 ⋆ KQ1y

Q2(2 − [2])
⋆̂ [(Q2 − 1)KQ2+1 − (Q2 + 1)KQ2−1] ⋆ s , (4.92)

where the second line can be expressed as

− 2

2 − [2]
YQ1 ⋆ KQ1y ⋆̂s ⋆ KQ2−1 +

Q2 − 1

Q2(2 − [2])
YQ1 ⋆ KQ1y ⋆̂KQ2 . (4.93)

Now, taking into account that in summing over α the first term in (4.92) gets a factor 2

and the other terms get similar coefficients with q → q̇, we can sum all the contributions

8The latter identity is reported in footnote 4 of [16]; the former can be derived analogously using equa-

tions (6.19) and (6.39) in [13]. The same equations, together with (6.14), can also be used to obtain (4.85).
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above to get the solution for yQ2 for generic values of Q1, Q2:

yQ2 = YQ1 ⋆

{

KQ1Q2

sl(2) + 2

Q1−2
∑

j=0

KQ2−Q1+2j+1 ⋆ s−
∂u1 log aQ1Q2

1 (u1, u2)

πi

−
∑

α=±

[

∂u1 log aQ1Q2
2 (u1, u2)

2πiQ2(2 − [2]α)
+
∂u1 log aQ2Q1

2 (u2, u1)
⋆

2πiQ1(2 − [2]α)

]

+
2

Q1Q2

Q1−1
∑

k=0

k(k −Q1) [(Q2 + 1)KQ2−Q1+2k−1 − (Q2 − 1)KQ2−Q1+2k+1] ⋆ s

}

, (4.94)

where we used the following identity

KQ1y ∗̂KQ2 =
1

2πi
∂u1 log

(

x−Q1
1 − x+Q2

2

x+Q1
1 − x−Q2

2

x+Q1
1 − 1/x+Q2

2

x−Q1
1 − 1/x−Q2

2

)

≡ 1

2πi
∂u1 log aQ1Q2

2 (u1, u2) ,

(4.95)
its hermitian conjugate (recall that x(u)∗ = 1/x(u∗) in the mirror kinematics)9

KQ1
∗̂KyQ2

=
1

2πi
∂u1

log

(

x−Q1

1 −x+Q2

2

x+Q1

1 −x−Q2

2

x−Q1

1 x−Q2

2 − 1

x+Q1

1 x+Q2

2 − 1

x+Q1

1

x−Q1

1

x−Q2

2

x+Q2

2

)

=
1

2πi
∂u1

log aQ2Q1

2 (u2, u1)
∗ ,

(4.96)

and aQ1Q2
2 (u1, u2) a

Q2Q1
2 (u2, u1)

∗ =
[

aQ1Q2
1 (u1, u2)

]−2
. Moreover, we can write the sum of

the two convolutions involving the universal kernel s(u) in (4.94) as

1

Q1Q2

Q1−1
∑

k=0

k(k −Q1) [(Q2 + 1)KQ2−Q1+2k−1 − (Q2 − 1)KQ2−Q1+2k+1] ⋆ s

+

Q1−2
∑

j=0

KQ2−Q1+2j+1 ⋆ s =
1

2πiQ1Q2
∂u1KQ1Q2 , (4.97)

where we used the definition (4.31) of KQ1Q2 . Remarkably, despite the long computation,

the final expression for yQ2 is quite simple and reads

yQ2 = YQ1 ⋆
1

2πi
∂u1

{

log SQ1Q2

sl(2) +
2

Q1Q2
KQ1Q2 − 2 log aQ1Q2

1 (u1, u2)

−
∑

α=±

1

(2 − [2]α)

[

1

Q2
log aQ1Q2

2 (u1, u2) +
1

Q1
log aQ2Q1

2 (u2, u1)
⋆

]

}

. (4.98)

9Actually, identities (4.82), (4.91), and (4.96) are valid up to vanishing derivatives ∂u1
log

r

x
−
2

x
+
2

,

∂u1
log

r

x
−Q2
2

x
+Q2
2

and ∂u1
log

x
+Q2
2

x
−Q2
2

, respectively.
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Substituting this result, together with the result (4.55) for YQ1, into the formula (4.59) for

the energy correction, we obtain

E
(2,2)
0 =

∞
∑

Q1,Q2=1

Q1Q2

∫ ∞

−∞

dp̃1

2π
e−Lǫ̃Q1

(p̃1)

∫ ∞

−∞

dp̃2

2π
e−Lǫ̃Q2

(p̃2)

× i∂p̃1

{

(2 − [2]q̇)
2
[

[3]q

(

−Q1Q2 log aQ1Q2
1 + KQ1Q2

)

−[2]q

(

−4Q1Q2 log aQ1Q2
1 −Q1 log aQ1Q2

2 −Q2 log aQ2Q1∗
2 + 4KQ1Q2

)

+ [1]q

(

−5Q1Q2 log aQ1Q2
1 −2Q1 log aQ1Q2

2 −2Q2 log aQ2Q1∗
2 +5KQ1Q2

)]

+(q ↔ q̇)

+Q1Q2(2 − [2]q)
2(2 − [2]q̇)

2 log SQ1Q2

sl(2) (p̃1, p̃2)

}

. (4.99)

Finally, through the following identifications

aQ1Q2
1 = (U0U1U2)

−1 , aQ1Q2
2 = U0U

2
2U3 , aQ2Q1∗

2 = U0U
2
1U

−1
3 , (4.100)

we find full agreement with the result (4.32) from the Lüscher computation.

5 Weak-coupling expansion

In this section we calculate the weak-coupling expansion of the ground-state energy of the

twisted AdS/CFT model. In order to perform the weak-coupling expansion, we use the

parameterization

x±(p̃) =
(p̃− iQ)

2g

(
√

1 +
4g2

Q2 + p̃2
∓ 1

)

, (5.1)

which follows from (4.10) and (4.18). At leading order in g , and so at weak coupling, we

have

x− =
p̃− iQ

g
+O(g) , x+ =

g

p̃+ iQ
+O(g3) . (5.2)

5.1 LO contribution, single wrapping

The LO correction can be calculated from (4.56) by using the expansion of the exponential

term appearing in YQ:

e−Lǫ̃Q(p̃) =
∞
∑

j=0

cj
g2(L+j)

(p̃2 +Q2)L+j
. (5.3)

In particular c0 = 1, while the higher-order terms can be easily generated with Mathe-

matica. Using the fact that 1
n!f

(n)(z) =
∮

dw
2πi

f(w)
(w−z)n+1 , we perform the integral in (4.56)

by residues
∫ ∞

−∞

dp̃

2π

1

(p̃2 +Q2)k
=

(

2k − 2

k − 1

)

(2Q)1−2k . (5.4)
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The summation over Q gives rise to a series of ζ-functions:

E
(1)
0 (L) = −(2 − [2]q)(2 − [2]q̇)

∞
∑

j=0

cj2
1−2(L+j)

(

2(L+ j) − 2

L+ j − 1

)

ζ2(L+j)−3g
2(L+j) . (5.5)

This result is exact up to g4L where the NLO Lüscher correction starts to play a role.

We evaluate the leading g4L-order contribution of the NLO Lüscher correction in the next

subsection.

5.2 NLO contribution, double wrapping

The simplest term of the NLO correction comes from (4.58) and contains Y2
Q. Its contri-

bution at order g4L can be calculated using eq. (5.4) to be

E
(2,1)
0 (L) = (2 − [2]q)

2(2 − [2]q̇)
22−4L

(

4L− 2

2L− 1

)

ζ4L−5g
4L . (5.6)

The most complicated term is E
(2,2)
0 (L). We have to evaluate (4.59) based on the

solution given in (4.98). The twist dependence comes in two distinct ways as:

E
(2,2)
0 (L) = (2 − [2]q)

2(2 − [2]q̇)
2

[

A(L) +B(L)

(

1

[2]q − 2
+

1

[2]q̇ − 2

)]

g4L . (5.7)

We first calculate B(L) for any value of L. The weak-coupling expansion of the functions

aQ1Q2
2 and aQ2Q1∗

2 are given by

∂p̃1 log aQ1Q2
2 (p̃1, p̃2) = O(g2) , ∂p̃1 log aQ2Q1

2 (p̃2, p̃1)
∗ =

2iQ1

p̃2
1 +Q2

1

+O(g2) . (5.8)

We substitute these results into (4.98) and then into (4.59), we perform the integrals as

in (5.4), and sum up the independent terms to obtain:

B(L) = −21−4L

(

2L− 2

L− 1

)(

2L

L

)

ζ2L−1ζ2L−3 . (5.9)

This gives the complete answer for the given (2− [2]q)(2− [2]q̇)(4− [2]q − [2]q̇) dependence

of the double-wrapping correction at leading nonvanishing order for any L.

We now proceed to calculate A(L). It acquires contributions from the first line of (4.98),

which we denote by Asl(2), AK and A1, respectively,

A(L) = Asl(2)(L) +AK(L) +A1(L) , (5.10)

where

Asl(2)(L) =
∑

Q1,Q2

Q2
1Q

2
2

∫

dp̃1

2π
e−LǫQ1

(p̃1)

∫

dp̃2

2π
e−LǫQ2

(p̃2) i∂p̃1 log SQ1Q2

sl(2) (p̃1, p̃2) , (5.11)

AK(L) = 2
∑

Q1,Q2

Q1Q2

∫

dp̃1

2π
e−LǫQ1

(p̃1)

∫

dp̃2

2π
e−LǫQ2

(p̃2) i∂p̃1KQ1Q2(p̃1, p̃2) , (5.12)

A1(L) = −2
∑

Q1,Q2

Q2
1Q

2
2

∫

dp̃1

2π
e−LǫQ1

(p̃1)

∫

dp̃2

2π
e−LǫQ2

(p̃2) i∂p̃1 log aQ1Q2
1 (p̃1, p̃2) . (5.13)
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In order to compute A1, we expand aQ1Q2
1 to leading order in g:

∂p̃1 log aQ1Q2
1 (p̃1, p̃2) = − iQ1

p̃2
1 +Q2

1

+O(g2) . (5.14)

Substituting the result back into (5.13) gives

A1(L) = −21−4L

(

2L− 2

L− 1

)(

2L

L

)

ζ2L−2ζ2L−3 . (5.15)

Observe that the transcendentality of A(L) and B(L) are different. It seems the deforma-

tion 2 − [2] carries transcendentality 1. A similar effect was observed already in [38, 54].

To calculate Asl(2), we have to expand the logarithm of the dressing factor

log SQ1Q2

sl(2) (p̃1, p̃2) in the mirror-mirror kinematics. According to [13], it has the structure

log SQ1Q2

sl(2) (p̃1, p̃2) = − logSQ1Q2

su(2) (p̃1, p̃2) − 2 log ΣQ1Q2(p̃1, p̃2). Hence, we can write

1

2πi
∂p̃1 logSQ1Q2

sl(2) (p̃1, p̃2) = −KQ1Q2 −
1

πi
∂p̃1 log ΣQ1Q2(p̃1, p̃2) . (5.16)

Explicitly performing the weak-coupling expansion of (6.14) in [51], we obtain (see (B.4))

i∂p̃1 log ΣQ1Q2(p̃1, p̃2) = −1

2

[

ψ

(

1− i

2
(p̃1 + iQ1)

)

−ψ
(

1+
1

2
(i(p̃1− p̃2)+Q1 +Q2)

)

+ c.c

]

,

(5.17)

where ψ(x) = ∂x(log Γ(x)) is the polygamma function. The su(2) scalar factor results in

KQ1Q2

su(2) =KQ1Q2 =− 1

4π

[

ψ

(

1

2
(i(p̃2−p̃1)−Q1 +Q2)

)

+ψ

(

1+
1

2
(i(p̃2−p̃1)−Q1+Q2)

)

(5.18)

−ψ
(

1

2
(i(p̃2−p̃1)+Q1+Q2)

)

−ψ
(

1+
1

2
(i(p̃2−p̃1)+Q1+Q2)

)

+c.c

]

.

Finally,

i∂p̃1KQ1Q2 = −1

8

[

4(Q1 − 1)Q2 + ((Q1 −Q2)
2 + (p̃1 − p̃2)

2) × (5.19)

×
(

ψ

(

1+
1

2
(i(p̃2−p̃1)−Q1+Q2)

)

−ψ
(

1

2
(i(p̃2−p̃1)+Q1+Q2)

))

+c.c.

]

.

Denoting the contributions to Asl(2) by AΣ and Asu(2), we have that

Asl(2)(L) = AΣ(L) +Asu(2)(L) , (5.20)

where

AΣ(L) = −2
∑

Q1,Q2

Q2
1Q

2
2

∫

dp̃1

2π
e−LǫQ1

(p̃1)

∫

dp̃2

2π
e−LǫQ2

(p̃2) i∂p̃1 log ΣQ1Q2(p̃1, p̃2), (5.21)

Asu(2)(L) =
∑

Q1,Q2

Q2
1Q

2
2

∫

dp̃1

2π
e−LǫQ1

(p̃1)

∫

dp̃2

2π
e−LǫQ2

(p̃2)2πKQ1Q2(p̃1, p̃2). (5.22)
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Using methods explained in appendix B, we evaluated the integrals by residues. To
demonstrate the structure of the result, we write out explicitly AΣ (see (B.10) and (B.13)):

AΣ(L) = −22−2L

(

2L− 2

L− 1

)

ζ2L−3

∑

Q1

L−1
∑

j=0

(

L+ j − 1

j

)

2−2L+1

(L−1−j)!(−Q1)
2−L−jψ(L−j−1)(Q1 + 1)

−
∑

Q1,Q2

L−1
∑

j1,j2=0

(

L+ j1 − 1

j1

)

2−2L+2

(L− 1 − j1)!
(−Q1)

2−L−j1

×
(

L+ j2 − 1

j2

)

2−2L+1

(L− 1 − j2)!
(−Q2)

2−L−j2ψ(2L−j1−j2−2)(Q1 +Q2 + 1) . (5.23)

These terms can be expressed in terms of multiple zeta values (MZV) by rewriting10

ψ(n)(Q+ 1) = (−1)n+1n!(ζ(n+ 1) −
Q
∑

j=1

j−n−1) , (5.24)

and performing the sums explicitly. We will, however, not pursue this calculation further

here as we did not find an explicit answer for generic L. The integrals can be evaluated

similarly for Asu(2) and AK with a similar structural final result, although some care must

be taken to the Q1 −Q2 dependent term for Q1 = Q2. In the next subsection, we present

explicit results for the smallest nontrivial length: L = 3.

5.3 Specific calculations for L = 3

The LO wrapping correction (5.5) for L = 2 is divergent, as we have for j = 0 the term

ζ2L−3 = ζ1. Similar observations were made in [38, 55]. We therefore focus now on the

first nontrivial case, namely L = 3. The LO correction for this case goes as follows:

E
(1)
0 (3) = −(2− [2]q)(2− [2]q̇)

(

3

16
ζ3g

6 − 15

16
ζ5g

8 +
945

256
ζ7g

10 − 3465

256
ζ9g

12 + . . .

)

. (5.25)

The simple double-wrapping contribution (5.6) at leading order is

E
(2,1)
0 (3) = (2 − [2]q)

2(2 − [2]q̇)
2 63

1024
ζ7g

12 . (5.26)

In calculating the term E
(2,2)
0 (3), we recall from (5.7) that

E
(2,2)
0 (3) = (2 − [2]q)

2(2 − [2]q̇)
2

[

A(3) +B(3)

(

1

[2]q − 2
+

1

[2]q̇ − 2

)]

g12 . (5.27)

From (5.9), we have

B(3) = − 15

256
ζ3ζ5 . (5.28)

We calculated the contributions to A(3) one by one. The simplest is

A1(3) = − 15

256
ζ3ζ4 , (5.29)

as follows from (5.15). In the more complicated terms, we calculated the integrals by

residues as explained in appendix B. Then, in summing up the expressions, we employed

the following strategies:

10For n = 0, one has to replace ζ(1) with γE .
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• We performed the sums analytically by replacing the polygamma functions with

harmonic sums using (5.24), and then rearranging all the sums into MZVs. These

MZVs could then be expressed in terms of elementary ones, which contained only

products of simple zetas with transcendentality less than or equal to 7.

• Alternatively, for terms involving polygamma functions depending on Q1 + Q2, we

replaced the polygamma functions with their integral representations

ψ(n)(z) =

∫ ∞

0

(

δn,0
e−t

t
− (−1)n

tne−tz

1 − e−t

)

dt , (5.30)

and performed the summations
∑∞

Q1,Q2=1 explicitly. The remaining integral over t

could be evaluated numerically with very high precision (100 digits), and the result

could be expressed in terms of products of zeta functions (and the Euler constant

γE) with the help of the online MZV calculator, EZ-Face.11

• Finally, for polygamma functions depending on Q1 − Q2, we evaluated the sums

numerically as
∑∞

Q1,Q2=1 = 2
∑∞

Q1

∑Q1−1
Q2=1 +

∑∞
(Q1=Q2)=1, and again expressed the

result in terms of zeta functions using EZ-Face.

We found the following results:

AΣ(3) =
81

1024
ζ3ζ4 +

21

512
ζ2ζ5 −

441

2048
ζ7 ,

Asu(2)(3) = − 9

512
ζ3ζ4 +

315

4096
ζ7 ,

AK(3) = − 9

256
ζ2
3 − 3

1024
ζ3ζ4 −

21

512
ζ2ζ5 +

63

512
ζ7 . (5.31)

By summing up, we obtain the total A contribution

A(3) = AΣ(3) +Asu(2)(3) +AK(3) +A1(3) = − 9

256
ζ2
3 − 63

4096
ζ7 . (5.32)

Thus, the total anomalous dimension is

E0(3) = E
(1)
0 (3) + E

(2,1)
0 (3) + E

(2,2)
0 (3) + . . .

= −(2 − [2]q)(2 − [2]q̇)

(

3

16
ζ3g

6 − 15

16
ζ5g

8 +
945

256
ζ7g

10 − 3465

256
ζ9g

12 + . . .

)

−(2 − [2]q)(2 − [2]q̇) ([2]q + [2]q̇ − 4))
15

256
ζ3ζ5g

12 + . . .

+(2 − [2]q)
2(2 − [2]q̇)

2

(

− 9

256
ζ2
3 +

189

4096
ζ7

)

g12 + . . . , (5.33)

where we recall that 2 − [2]q = 4 sin(γ+

2 )2 and 2 − [2]q̇ = 4 sin(γ−
2 )2 in terms of the defor-

mation parameters γ± = (γ3 ± γ2)
3
2 , as in our case L = 3.

The result (5.33) is indeed the total anomalous dimension, since the vacuum energy

does not receive any contributions from the asymptotic Bethe ansatz. Remarkably, even

though at intermediate stages of the computation there appear terms involving even zeta

functions and Euler’s constant γE , all such terms finally cancel.

11EZ-Face is documented in [56].
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6 Conclusion

We have computed the NLO finite-volume correction to the vacuum energy in twisted

AdS/CFT by two apparently independent approaches: Lüscher (4.32) and TBA (4.99).

The fact that both approaches yield identical results provides a strong consistency check on

the AdS/CFT S-matrices and TBA equations that have been developed in the literature,

as well as on the final result. This result is expressed in terms of a double infinite sum

of contributions from the infinitely-many types of massive mirror bound states. Our

computations check the complete (both horizontal and vertical parts of the) Y -system,

and go beyond the five-loop calculations presented in [17, 57, 58], which checked at the

single wrapping order only the vertical part.

Our result is valid for any value of the coupling constant. However, by making

a weak-coupling expansion, we have obtained a prediction (5.33) for the anomalous

dimension of the operator TrZ3 in the twisted gauge theory up to six loops. It should

be possible to check this prediction directly in perturbation theory by taking into account

both single-wrapping and double-wrapping diagrams. To our knowledge, this is the first

complete computation of double wrapping in the literature. It may be interesting to

investigate also the strong-coupling limit.

The key results needed for the NLO Lüscher computation were the determinants

of the (untwisted) AdS/CFT S-matrices in all the su(2)L ⊗ su(2)R sectors, presented

in tables 1 and 2. The simplicity of these results suggests that they may have some

group-theoretical formulation. In particular, it should be possible to find a general proof,

presumably based on su(2|2) Yangian symmetry.

It would be interesting to extend our analysis of finite-size corrections in twisted

AdS/CFT, which has so far been restricted to the ground state, to excited states be-

yond the LO result of [38]. It would also be interesting to understand the origin of the

divergence of the LO and NLO results for L = 2, which was already noticed in similar

contexts in [38, 55]. Finally, one can now begin to contemplate triple and higher wrapping.
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A Determinants of S-matrices in the su(2)L ⊗ su(2)R sectors

We describe here how we obtained the results in tables 1 and 2 for detS(Q1,Q2)(sL, sR), the

determinants of the AdS/CFT S-matrices in the su(2)L ⊗ su(2)R sectors, which enter into
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the NLO Lüscher computation. Our straightforward approach was to explicitly compute

these determinants for small values of Q1 and Q2 (up to 8), and then infer the general

pattern.

For the cases (Q1, Q2) = (1, 1), (1, 2), (2, 2), we used the explicit S-matrices from [52]

to directly compute the eigenvalues. For the cases (Q1, Q2) = (1, Q), we used results

from [59]: from eq. (56) there, it follows that (up to the overall factors),

detS(1,Q)

(

Q− 1

2
, 1

)

= a9
9 ,

detS(1,Q)

(

Q

2
,
1

2

)

=
1

Q
det

(

a5
5 a

6
5

a5
6 a

6
6

)

,

detS(1,Q)

(

Q− 2

2
,
1

2

)

= Qdet

(

a7
7 a

8
7

a7
8 a

8
8

)

,

detS(1,Q)

(

Q+ 1

2
, 0

)

= a1
1 = 1 ,

detS(1,Q)

(

Q− 1

2
, 0

)

=
Q+ 1

Q− 1
det







a2
2 a

3
2 a

4
2

a2
3 a

3
3 a

4
3

a2
4 a

3
4 a

4
4






,

detS(1,Q)

(

Q− 3

2
, 0

)

=
Q− 1

2
a10

10 . (A.1)

One can verify using the explicit values of aj
i that12

a9
9 =

1

Q
det

(

a5
5 a

6
5

a5
6 a

6
6

)

= U0U1U2 ,

Qdet

(

a7
7 a

8
7

a7
8 a

8
8

)

=
Q+ 1

Q− 1
det







a2
2 a

3
2 a

4
2

a2
3 a

3
3 a

4
3

a2
4 a

3
4 a

4
4






= U2

0U1U
3
2U3 ,

Q− 1

2
a10

10 = U0U
2
2U3 , (A.2)

where the notation is defined in (4.29). It is then easy to see that the expressions in table 2

are consistent with the results (A.1), (A.2).

For general values of (Q1, Q2), we made use of the formalism developed in [49]. As an

example, let us consider the case (Q1, Q2) = (2, 3). Since the state of a single Q-particle

(the 4Q-dimensional totally symmetric representation of su(2|2)) has the su(2)L ⊗ su(2)R
decomposition

V
Q
2 × V 0 + V

Q−1
2 × V

1
2 + V

Q−2
2 × V 0 , (A.3)

the decomposition of the corresponding 2-particle states can be obtained from the tensor

product
(

V 1 × V 0 + V
1
2 × V

1
2 + V 0 × V 0

)

⊗
(

V
3
2 × V 0 + V 1 × V

1
2 + V

1
2 × V 0

)

, (A.4)

12We note a couple of typos in appendix B of [59]: a2
3 should not have the factor x+z+ in the denominator;

and a3
3 is missing an overall minus sign.
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where in this appendix we denote by × the tensor product of the su(2)L and su(2)R
representations. For concreteness, let us focus on the computation of detS(2,3)(1, 1

2). The

tensor product in (A.4) can be decomposed, by the Clebsch-Gordan theorem, into a sum

of irreducible representations of su(2)L ⊗ su(2)R. In this decomposition, there appear

four representations with (sL, sR) = (1, 1
2), which are the relevant ones for computing this

determinant. These four representations come from the following channels:

1 :
(

V 1 × V 0
)

⊗
(

V 1 × V
1
2

)

2 :
(

V
1
2 × V

1
2

)

⊗
(

V
1
2 × V 0

)

3 :
(

V 0 × V 0
)

⊗
(

V 1 × V
1
2

)

4 :
(

V
1
2 × V

1
2

)

⊗
(

V
3
2 × V 0

)

. (A.5)

The corresponding highest-weight states |ψ(Q1,Q2)
I (sL, sR)〉 with sL = mL = 1 and

sR = mR = 1
2 are given (up to an overall normalization factor) by

|ψ(2,3)
1

(

1,
1

2

)

〉 ∝ |0, 1〉II2 − |1, 0〉II2 ,

|ψ(2,3)
2

(

1,
1

2

)

〉 ∝ |0, 1〉II3 ,

|ψ(2,3)
3

(

1,
1

2

)

〉 ∝ |1, 0〉II4 ,

|ψ(2,3)
4

(

1,
1

2

)

〉 ∝ |0, 1〉II1 − |1, 0〉II1 , (A.6)

respectively, where the states |k, l〉IIi are defined in [49]. It is convenient to introduce a

basis |ei〉 of these so-called type-II states with N ≡ k + l = 1:

|e1〉 = |0, 1〉II1 ,
|e2〉 = |0, 1〉II2 ,
|e3〉 = |0, 1〉II3 ,
|e4〉 = |1, 0〉II1 ,
|e5〉 = |1, 0〉II2 ,
|e6〉 = |1, 0〉II4 . (A.7)

Although these states are orthogonal, they are not normalized.13 Indeed, defining

ni ≡ 〈ei|ei〉 , (A.8)

it readily follows from the definitions of the states [49] that here ni = (2, 2, 1, 6, 2, 2). An

orthonormal basis |ẽi〉 is therefore given by

|ẽi〉 ≡
1√
ni

|ei〉 , 〈ẽi|ẽj〉 = δij . (A.9)

13We are grateful to M. de Leeuw for pointing this out to us.
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The S-matrix acts as

S|ei〉 =
∑

j

|ej〉Uji . (A.10)

Numerical values for the coefficients Uji can be computed using formulas in [49], for given

numerical values of momenta p1, p2, coupling constant g, and representations Q1, Q2.
14

Hence, we can obtain the corresponding coefficients Ũji in the normalized basis

Ũji ≡ 〈ẽj |S|ẽi〉

=

√

nj

ni
Uji =

∑

k,l

MjkUklM
−1
li , (A.11)

where we have introduced the diagonal matrix Mij ≡ √
niδij . A useful check is that the

matrix Ũji (unlike Uji) is unitary.

We use (A.6) to express the highest-weight states |ψ(Q1,Q2)
I (sL, sR)〉 in terms of the

normalized basis

|ψ(Q1,Q2)
I (sL, sR)〉 =

∑

i

|ẽi〉ciI , ciI ≡ 〈ẽi|ψ(Q1,Q2)
I (sL, sR)〉 , (A.12)

where the states themselves are normalized,

〈ψ(Q1,Q2)
I (sL, sR)|ψ(Q1,Q2)

J (sL, sR)〉 = δIJ . (A.13)

We can finally construct the S-matrix in the (sL, sR) sector,

S
(Q1,Q2)
IJ (sL, sR) ≡ 〈ψ(Q1,Q2)

I (sL, sR)|S |ψ(Q1,Q2)
J (sL, sR)〉 =

∑

i,j

c∗iI ŨijcjJ . (A.14)

Another useful check is that the matrix S
(Q1,Q2)
IJ (sL, sR) is also unitary. Computing nu-

merically the determinant of this matrix15

detS(Q1,Q2)(sL, sR) ≡ det
(

S
(Q1,Q2)
IJ (sL, sR)

)

, (A.15)

we find for the case in question (namely, (Q1, Q2) = (2, 3) and (sL, sR) = (1, 1
2)) that the re-

sult coincides with (U0U1U2)
4 S2

3 , in agreement with table 1. Other cases (Q1, Q2) and other

sectors (sL, sR) can be treated in a similar way. Note that sectors with sR = 1, 1
2 , 0 are con-

structed with states of type I, II, III, respectively. After some effort to accumulate results for

sufficiently many cases, the general pattern summarized in tables 1 and 2 became evident.

Before closing this section, it may be worthwhile to frame the problem that we have

addressed here in a more general context. Consider an S-matrix (solution of the Yang-

Baxter equation) that is invariant under a group G, which here is su(2)L ⊗ su(2)R. As is

14We note that version 1 in the arXiv of [49] contains a number of typos, most of which are corrected in

the journal. However, some typos remain in the latter. In particular, in (5.14): Q̄ij = bidj − bjdi. Also,

in A−1 in (5.17): in the (2,2) element of the big matrix, c−1 should be instead c+
1 ; and in the (2,1) matrix

element, the sign in front of [M +(l1− l2)/2] should be plus instead of minus. Finally, in (A.8), the formulas

for b1, . . . , b4 should have sign plus instead of minus; and the formulas for d2 and d3 should not have i in

the denominator. We are grateful to G. Arutyunov and M. de Leeuw for correspondence on these points.
15We use the convention that the determinant of a number (i.e., a 1 × 1 matrix) is the number itself.
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well known (see e.g. [60, 61]), the S-matrix is a matrix Sab defined in the tensor product

of two vector spaces Va ⊗ Vb in which representations Πa and Πb of G act,16

[Πa(g) ⊗ Πb(g) , Sab] = 0 , g ∈ G . (A.16)

The representation space decomposes into a sum of irreducible representations of G pa-

rameterized by highest weights Λk, which here are (sL, sR),

Va ⊗ Vb =
∑

k

V (Λk) . (A.17)

Since the S-matrix is G-invariant (A.16), it has the corresponding spectral resolution

Sab =
∑

k

ρkPΛk
, (A.18)

where PΛk
is a projector onto the irreducible subspace V (Λk).

In the seminal work [60] on the construction of rational S-matrices, it was essential to

assume that the Clebsch-Gordan series (A.17) is multiplicity free (i.e., a given irreducible

representation appears at most once), in which case ρk in (A.18) is a scalar. For AdS/CFT,

the decomposition (A.17) is unfortunately not multiplicity free: the Clebsch-Gordan

series contains multiple irreducible representations, as we have seen in the example (A.5).

Hence, ρk becomes an r × r matrix, where r is the multiplicity of the corresponding

irreducible representation with highest weight Λk. In the AdS/CFT case, ρk is the matrix

that we have defined in (A.14). The problem of explicitly determining this matrix can be

quite complicated even for rational S-matrices, see e.g. [61]. In the present work, we have

restricted to the problem of computing its determinant.

B Details of the weak-coupling expansion

B.1 Weak coupling expansion of the dressing phase

The dressing phase in the mirror-mirror kinematics is given by [51]

− i log ΣQ1Q2(y1, y2) = Φ(y+
1 , y

+
2 ) − Φ(y+

1 , y
−
2 ) − Φ(y−1 , y

+
2 ) + Φ(y−1 , y

−
2 )

+
1

2

[

−Ψ(y+
1 , y

+
2 ) + Ψ(y+

1 , y
−
2 ) − Ψ(y−1 , y

+
2 ) + Ψ(y−1 , y

−
2 )
]

−1

2

[

−Ψ(y+
2 , y

+
1 ) + Ψ(y+

2 , y
−
1 ) − Ψ(y−2 , y

+
1 ) + Ψ(y−2 , y

−
1 )
]

(B.1)

+
1

i
log





iQ1Γ(Q2− i
2g(y

+
1 + 1

y+
1

−y+
2 − 1

y+
2

))

iQ2Γ(Q1+ i
2g(y

+
1 + 1

y+
1

−y+
2 − 1

y+
2

))





1− 1
y+
1 y−

2

1− 1
y−
1 y+

2





√

y+
1 y

−
2

y−1 y
+
2



 ,

where

Ψ(x1, x2) = i

∮

C1

dw2

2πi

1

w2 − x2
log

Γ(1 + ig2 (x1 + x−1
1 − w2 − w−1

2 ))

Γ(1 − ig2 (x1 + x−1
1 − w2 − w−1

2 ))
, (B.2)

16The representations Πa and Πb need not be irreducible representations of G. Indeed, in the AdS/CFT

case, they are sums of irreducible representations, as in (A.3).
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and for Φ(x1, x2) we just note that it starts in any kinematics at least with g2. We

calculate the O(1) expansion of the phase (B.2). Using the property Ψ(x1, x2) = Ψ(x1, 0)−
Ψ(x1, x

−1
2 ), being valid if |x2| 6= 1, and that for |x2| > 1 it starts at g2, it is easy to see that

we need to calculate Ψ(x1, x2) ≡ Ψ(x1, 0) for |x2| < 1, i.e. for x+
2 . Since we are interested

in the derivative of the expanded functions with respect to the first argument ∂1, we need

to expand −1
2(Ψ(y+

1 , 0) + Ψ(y−1 , 0)) only. Rescaling the integration variable w2 by g and

evaluating the leading residue for small g, we obtain

Ψ(y+
1 , 0) = i log

Γ(1 + i
2(p̃1 + iQ1))

Γ(1 − i
2(p̃1 + iQ1))

+ . . . , Ψ(y−1 , 0) = i log
Γ(1 + i

2(p̃1 − iQ1))

Γ(1 − i
2(p̃1 − iQ1))

+ . . .

(B.3)

The logarithmic derivative of the whole dressing phase is then

− 1

πi
∂p̃1 log ΣQ1Q2(p̃1, p̃2) =

1

2π

[

−ψ
(

1− i

2
(p̃1+iQ1)

)

+ψ

(

1+
1

2
(i(p̃1−p̃2)+Q1+Q2)

)

+c.c

]

,

(B.4)

where c.c. denotes complex conjugate, and we used that ψ(− i
2 (p̃− iQ))+c.c = ψ(1− i

2(p̃+

iQ)) + c.c for integer Q.

B.2 Performing the integrals by residues

We demonstrate here how we performed the integrals by evaluating AΣ (5.21). In view

of the result (B.4), we start by evaluating the term with ψ(1 − i
2 (p̃1 + iQ1)) + c.c..

Its contribution factorizes for the indices 1, 2 into a product of two factors. The more

complicated factor is

∑

Q1

Q2
1

∫ ∞

−∞

dp̃1

2π

1
(

p̃2
1 +Q2

1

)L

[

ψ

(

1 − i

2
(p̃1 + iQ1)

)

+ ψ

(

1 +
i

2
(p̃1 − iQ1)

)]

. (B.5)

Let us analyze the pole structure of the integrand. Additionally to the two “kinematical”

poles at p̃ = ±iQ, the polygamma function has poles for ψ(−n) if n ≥ 0. These poles are

located on the lower half plane (LHP) for the first and on the upper half plane (UHP) for

second polygamma function:

1

2
(Q1 + 2 ∓ ip̃1) = −n −→ p̃1 = ∓i(2(n+ 1) +Q1) . (B.6)

We now use the trick in [62] of exploiting the reality of the integrand to rewrite the

integral as

2ℜe
∑

Q1

Q2
1

∫ ∞

−∞

dp̃1

2π

1

(p̃2
1 +Q2

1)
L

[

ψ

(

1 − i

2
(p̃1 + iQ1)

)]

, (B.7)

and close the contour on the UHP. In so doing, we have to pick up the residue at p̃1 = iQ1

only:

2i
∑

Q1

Q2
1

∂L−1
p̃1

(L− 1)!

ψ(1 − i
2 (p̃1 + iQ1))

(p̃1 + iQ1)L
|p̃1=iQ1

= −
∑

Q1

L−1
∑

j=0

(

L+ j − 1

j

)

2−2L+2

(L− 1 − j)!
(−Q1)

2−L−jψ(L−j−1)(Q1 + 1) . (B.8)
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We now note that the Q2-dependent terms give

∞
∑

Q2=1

Q2
2

∫ ∞

−∞

dp̃2

2π

1

(p̃2
2 +Q2

2)
L

=

∞
∑

Q2=1

(

2L− 2

L− 1

)

Q3−2L
2 21−2L = 21−2L

(

2L− 2

L− 1

)

ζ2L−3 .

(B.9)

Hence, the factorizing contribution to AΣ, which we denote by A
(1)
Σ , is given by

A
(1)
Σ =−21−2L

(

2L− 2

L− 1

)

ζ2L−3

∑

Q1

L−1
∑

j=0

(

L+j−1

j

)

2−2L+2

(L−1−j)!(−Q1)
2−L−jψ(L−j−1)(Q1 + 1) .

(B.10)

Let us concentrate now on the nonfactorizing contributions, which we denote by A
(2)
Σ .

Using again the reality trick, we can write

A
(2)
Σ =−2

∑

Q1,Q2

Q2
1Q

2
2

∫

dp̃1

2π

∫

dp̃2

2π

1

(p̃2
2 +Q2

2)
L(p̃2

1 +Q2
1)

L
ψ

(

1+
1

2
(Q1+Q2−i(p̃2−p̃1))

)

,

(B.11)

and close the p̃2 integration contour on the UHP. By picking up the only residue at p̃2 = iQ2,

the result is

−2i
∑

Q2

Q2
2

∂L−1
p̃2

(L− 1)!

ψ(1 + 1
2 (Q1 +Q2 − i(p̃2 − p̃1)))

(p̃2 + iQ2)L
|p̃2=iQ2

=
∑

Q2

L−1
∑

j=0

(

L+j−1

j

)

2−2L+2

(L−1−j)! (−Q2)
2−L−jψ(L−j−1)

(

Q2+1+
1

2
(Q1+ip̃1)

)

. (B.12)

The next integral we close on the lower half plane and pick up the residue at −iQ1:

A
(2)
Σ = −

∑

Q1,Q2

L−1
∑

j1,j2=0

(

L+ j1 − 1

j1

)

2−2L+2

(L− 1 − j1)!
(−Q1)

2−L−j1

×
(

L+ j2 − 1

j2

)

2−2L+1

(L− 1 − j2)!
(−Q2)

2−L−j2ψ(2L−j1−j2−2)(Q1 +Q2 + 1) . (B.13)

Adding the two terms AΣ = A
(1)
Σ +A

(2)
Σ gives the result we presented in (5.23).
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