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Abstract
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1. Introduction

The nonlinear integral equation (NLIE) approddt?] is a powerful tool for studying
finite-size effects in the sine-Gordon model with both perid@ie6] and Dirichlet[7,8]
boundary conditions. A NLIE has recently been propo@dor the ground state of the
sine-Gordon model on a finite interval with more general integrable boundary conditions
[10,11] including new boundary terms proportional to the first time derivative of the field
(9y9). We propose here a NLIE for some bulk excited states of this model, using which
we numerically compute the dimensions of these states as a function of scale (the product
of the length of the interval and the soliton mass) from ultraviolet (UV) to infrared (IR).
We perform checks of the UV and IR limits analytically. Other approaches to studying this
model (although without thé, ¢ boundary terms) have been considerefili-15]

Our NLIE is based on the Bethe ansatz solufib+18]of the XXZ model with general
(both diagonal and nondiagonal) boundary teftr®. A significant limitation of this so-
lution is that the boundary parameters are not all independent, as they must satisfy a linear
constraint relating the left and right boundary parameters. (Such a constraint does not arise
in the case of diagonal boundary terf29-22]) Consequently, our NLIE is applicable
only when the boundary parameters of the sine-Gordon model (including the coefficients
of the 9, ¢ boundary terms) obey a corresponding constraint.

Three different sets of boundary parameters are introduced in the course of this paper:
the UV parametersui,gooi,fci) appearing in the boundary sine-Gordon action; the IR
parametersn., ¥+, y+) appearing in the sine-Gordon boundarynatrix; and the lattice
parametersay, b+, c+) appearing in the XXZ spin-chain Hamiltonian. The relations be-
tween the continuum parametefs, , (pg) and(n+, 9+) are known12,23]. An important
challenge in our Bethe-ansatz-based approach is to have the correct relations between the
lattice and continuum boundary parameters. Such relations were propdSgdline con-
sistency of the results presented here for the UV and IR limits of excited states provides
further support for those relations.

The outline of this article is as follows. In Secti@we collect some results about the
sine-Gordon model on a finite interval which we use later to compare with the NLIE re-
sults. In particular, we clarify various aspects of he boundary terms: the periodicity
of the coefficients (2.11) and the dependence of the UV conformal dimensi@m29)
and of the boundang matrices(2.35) on these parameters. In Secti8mwe review the
construction of the counting function for the corresponding light-cone lattice nidtel
and the corresponding expression for the Casimir en@tdyl) Moreover, we derive the
lattice counting equatiof3.14) which is valid also for the homogeneoud = 0) open
XXZ spin chain. In Sectiord we present the continuum NLIE&.2) which follows from
the lattice counting function. For simplicity, we restrict our attention to source contribu-
tions from holes and special roots. We also note the rela(iri®) (4.13) between the
lattice and continuum boundary parameters, and the const(dii#) (4.15) that these
parameters must obey. In Sectibi we analyze the UV limit. We give the NLIE result for
the UV conformal dimensions of states with arbitrary numbers of holes and special roots
(4.20) and show that it can be consistent with the CFT rg@uit9)for appropriate values
of the boundary parameters. In Sectib@we analyze the IR limit. In particular, we verify
that the IR limit of the NLIE for a one-hole state is equivalent to the Yang equation for
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a particle on an interval. A noteworthy feature of this computation is that the boundary
S matrices[11] which enter the Yang equation are not diagonal. Our numerical results,
including comparisons with boundary conformal perturbation theory (BCPT), boundary
truncated conformal space approach (BTCEA),25] and the boundary Liischer formula
[26,27], are presented in Secti@n Section6 contains a brief summary and a list of some
remaining problems. IAppendix Awe present a discussion of BCPT and BTCSA.

2. Thesine-Gordon model on afiniteinterval

In this section, we collect some results about the sine-Gordon model on a finite interval
which will be needed later for making comparisons with NLIE results. In particular, we
clarify various aspects of th@,¢ boundary terms: the periodicity of the coefficierts,
the dependence of the UV conformal dimensions on these parameters, and the dependence
of the boundarny$ matrices on these parameters.

2.1. Action

Following[9], we consider the sine-Gordon quantum field theory on the finite “spatial”
intervalx € [x_, x, ], with Euclidean action

o0 X4 o0
Ag = / dy / dx A(p, d.9) + / dy [B- (¢, 0y9)|x=x_ + B4 (¢, 3y¢)|x=x, |.
—0Q X— —0oQ
(2.1)
where the bulk terms are given by
1
A(g, 9) = 5 (0u9)* = 1k COIBY), (2.2)
and the boundary terms are giventby
Bi(p, dy9) = — s COS(%(@ - ¢§)> +iKks0yg. (2.3)

As noted in[9], this action is similar to the one considered by Ghoshal and Zamolodchikov
[11], except that now there are two boundaries instead of one, and the boundary action
(2.3) contains an additional term depending on the “time” derivative of the field. In the
one-boundary case, such a term can be eliminated by adding to the bulk(@c®mterm
proportional tod, d,¢, which has no effect on the classical equations of motion. However,
in the two-boundary case, one can eliminate in this way only one of thetwmmrameters
(say,x), which results in a shift of the other ( —> x_ — k).

Thek parameters are real. The factorioh the d, ¢ terms in(2.3) (which was missed
in [9]) is introduced by the Wick rotation from Minkowski to Euclidean space. Indeed, the

1 While in [9] the coefficients ofy ¢ are expressed in terms of the paramejarsn the boundarys matrices
(2.32) here we instead denote these coefficients by new parameters
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Minkowski-space action is given byt = ffooo dt Ly, with
X4

1
L= [ dx5(@9)? = 0u0?) — k1819 ) +£-Bi9) + . (2.4)
X—
where the ellipsis-( -) represents the mass terms (proportionakggyk or n+) which we

have suppressed for brevity. Wighand«. real, the Minkowski-space action is real, as is
necessary. Rotating to Euclidean spaee—iy, d;¢ =id,p, we see that

X4
1
Ly = —i /dxé((ayw)z + (0:9)?) + ik By (xy) — ik_dyp(x_) + - }
=—Lg. (2.5)
Hence, Ay = [* (—idy)(—Lg) = iAg, with the Euclidean actiotdg = [ dyLg
given by Eqs(2.1)—(2.3) As usual g = ¢~ Ax,
An important observation is that the. parameters are periodic, with periodicjty2.
Indeed, first observe that the actigh1)—(2.3)has the periodicity

4
px,y) = @(x,y) + Fﬂ (2.6)

The contribution from thed, ¢ boundary terms te~~ in the Euclidean path integral
[ Dge=£ is evidently given by

e—i(K+A<p(X+)—K-A<0(X-))7 (2.7)
where
o0
Ap(x) = / dy dyp(x,y) =¢(x,y=00) — @(x,y = —00). (2.8)
—00

Let us compactify the axis to a circle, so that = —oo andy = oo correspond to the same
point. It follows that the sine-Gordon field on the boundary at —oo must be identified
with that aty = oo, up to the periodicity2.6). Hence,

Ap(xt) = %Tni, (2.9)
wheren . are integers. It follows that the contributi¢®.7)to e~# becomes

o B lernsmen) (2.10)
which has the periodicity

Kil—>Ki+g. (2.11)

2 Although the bulk term$2.2) have the periodicity (x, y) — @(x, y) + % the boundary term&.3) have
only the reduced periodicit{?.6).
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We recall here that it is useful to introduce the parameteaadv which are related to
the bulk coupling constargt,
8 1

= l= T (2.12)

Hence, the attractive (@ 82 < 4r) and repulsive (4 < 82 < 8r) regimes correspond to
the ranges k v < 2 andv > 2, respectively.

2.2. Ultraviolet limit

The sine-Gordon moddPR.1)—(2.3)can be regarded as a perturbee: 1 boundary
conformal field theory (CFT). In the ultraviolet limitpyk, w+ — 0, the Minkowski-space
Lagrangian is given by (s€@.4))

X4
L= [axt 2_ 2) —
M= | dx 2((3z<ﬂ) (0x9)?) — k4019 (x4) + k_0pp(x_). (2.13)

It follows from the variational principle that(x, t) obeys the massless free field equation
and Neumann boundary conditions,

(02— 02)p(x.0)=0,  dep(x.1)]s=r, =0. (2.14)

Although thed;¢ boundary terms do not affect the central charge (they are “marginal”
perturbations), they modify the expression for the conformal dimension, which we now
proceed to compute by canonical quantization.

The canonical momentudT conjugate tap is given by

oL
I

where/ is the Lagrange density whose spatial integral is the LagrarigiaB) We expand
¢ in terms of modes,

=00 — ki 8(x —xp) +k_8(x —x_), (2.15)

o(x, t)-(po—l—JTo— Z ot,,COE(JTn(x—x )/L) —imn /L (2.16)
\/_n;éo

whereL = x4 — x_. One can verify that this expression satisfies the equations of motion
(2.14) The mode expansion fd¥ is obtained by substituting?.16)into (2.15) Note that
the momentum zero modd is given by

X+
Ho:/dxﬂ(x,t)zno—K++/c_. (2.17)
X_—

The canonical equal-time commutation relations

[T(x, 1), p(x", )] = —id(x — x'),
[T, 0), I, D] =[ex. 1), 0", 1)]=0, (2.18)
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|mp|y that [y, apm]l = n8n+m,0 and

[I1o, po] = —i. (2.19)

The Hamiltonian is given by
X4
H:/dxH, H=M0¢p—L. (2.20)

Substituting the mode expansions, we obtain

15
H= 5770 + modes (2.21)

where “modes” represents the contribution of the oscillatgrsThe wave functional of
the zero mode is a plane wave,
W (po) = €' 1Moo, (2.22)
Let us now compactify the boson on a circle with radiug/hich means that the theory
is invariant under
p(x, 1) > @(x, 1)+ 27, (2.23)

or equivalentlygpo — ¢o + 2. Imposing this condition on the wave functionalgg) =
¥ (po + 27r) implies the quantization of the momentum zero mode,

r

wheren is an integer. In view 0{2.17) (2.21)and(2.24) the zero-mode contribution to
the energy is

1 /n 2
EO,n = Z(; +K+ — K) . (225)
Comparing this result with the CFT result
T T
Eop=—— —D=-A 2.26
O.n AL (ceff — 1) 7 An (2.26)
leads to the following expression for the conformal dimension
1 2
A, = —(E + Ky — /c_> . (2.27)
27 \r

For the boundary sine-Gordon model and its UV limit, the compactification radius
must be

r=—, 2.28
5 (2.28)
corresponding to the periodici{f.6). We conclude that\,, is given by
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1 /nB 2
Anzz ?+K+—K_

4 2
= m[Zﬂ(v—l)—i—E(v—l)(lq_ —K_)] . (2.29)

This result is consistent with the. periodicity (2.11) Also, this result is “dual” to the
corresponding result for a free massless boson with Dirichlet boundary cond2&a9]

2.3. Boundary S matrices

Results from the theory on the half lifiel] imply that the right and boundarty matri-
cesR(0; nt, v+, y+) are given by
RO 0,9, 7) =ro@)r1(0; n, )M ©;n, 9, y), (2.30)
whereM has matrix elements
M@©;n,9,y) = <m11 m12> , (2.31)
mp1  mz2

where

m11 = €c0sn coshy cosh(rA6) + i sinn sinh® sinh(1.6),

mo2 = cosn cosh cosh(A0) — i siny sinh® sinh(A6),

mi2=ie'? sinh(A0) cosh(r6),

mo1=ie”'” sinh(10) coshr). (2.32)
Moreover, the scalar factors have the integral representations (segl4)y.,

o0

ro(8) :exp{Zi f 99 Sin20w)7)
w
0

sinh((v — 2)w/2) sinh(3w/2)
sinh((v — D)w/2) sinh(2w)

1
0;n, )= ——— ,0)o (i1, 0), 2.33
r1(0;n,9) COSnCOSmo(n Yo (i, 0) (2.33)
where
o0

o(x,0)= exp{Z/ %} sin((im — 0w/ (21)) sin(fw/(27))
0
cosh((v — Dwx/m)
" Sinh((v — Lw/2) coshw/2) |

(2.34)

Note the presence of the facter§” in the off-diagonal matrix elemenis; 2 andmoy,
which are related to the presence of the terms in the boundary actid@.3), and which
are absentin the case of a single boundaty. In[9] an argument frorfil1] was borrowed
to determine the relation between the (real) parameters the boundans matrix and
the (real) parametexs. in the boundary action; namely (after correcting for the misgjng
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v+ = B+ /7. However, this relation seems to be incorrect, since it would imply that the
factorse!”= do not have the periodicit{2.11) We propose here instead the relafion
4

ve= gk (2.35)

which implies that the factog+ (and hence, the boundasymatrix) do have the expected
periodicity (2.11)

The relation(2.35)for the right boundary can be understood from elementary consid-
erations. Indeed, for the theory on the half-line = —o0, x4 = 0, the Minkowski-space
Lagrangian(2.13)can be written in the form

Ly =Ly(ky =0) —ky0,0(x =0). (2.36)

The amplitude for a process can be expressed using a path integral of the form
o0

/Dgoexp(i / dtLM) =e‘iK+A¢/D¢exp(i f dtLM(K+=O)>, (2.37)

—00 —0o0

where now
Ap=p(x=0,t=00) —p(x=0,t=—00), (2.38)

with appropriate initial and final configurations of the figlditr = =00. For definiteness,
we can fix the asymptotic conditiop(x = —o0) = 0. For a process involving a soliton
reflecting back into a soliton, we have

21
(p(x:O,t::Foo)=? = Ap=0. (2.39)
Hence, for such processes the amplitude is independent;@&fnd this is also true for the
reflection of an antisoliton into an antisoliton. For a soliton reflecting into an antisoliton
we have

2 4
o(x=0f=Foo) =+ = Ap=-——, (2.40)
B B
which results in a phase factor
4
exp(z’ anr) . (2.41)

For an antisoliton reflecting into a soliton the resulting phase factor is the inverse of the
above. This leads to the relati¢d.35)between the parameters in the Lagrangian and the
reflection factor for the right boundary.

Similarly, for the left boundary, we consider the theory on the right half-kne=
0, x4+ = co. The corresponding Lagrangian and path integral are givé@.88)and(2.37)
with x4 — —k_; and we now fixp(x = co) = 0. For a soliton reflecting into an antisoliton

3 The two relations coincide at the free fermion point.
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we have
2 4
p(x=01=Fo0)=F— = Ap=—, (2.42)
B p
which results in a phase factor
4
exp(z%x_) (2.43)

and leads to the relatigi2.35)for the left boundary.

We find further support for relatio(2.35)from a study of the UV and IR limits of the
NLIE in Sections4.1 and 4.2

The relation of the boundary-matrix parameterg., ¢ to the parameterg., w(jf in
the boundary actiofR.3)is given by[12,23]

2 .
008(8’3—0& + iz‘/‘i)) = B whbe,
T

e
2 .
cos(’B—(ni - iz‘}i)) S L (2.44)
8m He
where

_ [ 2bulk

Note that we have introduced an additional minus sign on one of the boundaries. That is,
the UV-IR relation is different on the two boundaries, the difference being in the sign of
@o. The two sets of boundary parameténs., w(jf, k+) and(n+, ¥+, y+) can be regarded

as “UV” and “IR” boundary parameters, respectively; hence, the rela{@B3$) (2.44)
(2.45)correspond to UV-IR relations.

3. Thelattice counting function

The light-cone lattic§30—32] version of the sine-Gordon model is similar to the XXZ
spin chain, the main difference being the introduction of an alternating inhomogeneity
parametet:A. The solutior[16,17]leads to the Bethe ansatz equatif®is

KO0y =1, j=1.. MD, (3.1)

Where{I;“} are integers, and the lattice counting functidi’ (1) is given byt

4 It should be clear from the context whether the symbakfers to the valug2.12) of the bulk coupling
constant or to the rapidity variable, as(B2).
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$)py L
) = > N[Cll(?L +A)+q1(x — A)] +q1(A) +r1(A)

+ qoa_—1(X) — rig2in_ (M) + g2, —1(X) — rig2ip, (A)
M(+)

— > a2t = 1) + g2+ 20 - 3.2)
k=1

The functionsg, (1) andr, (1) are odd, and are definedby
sinh(Z (A + %’))
sinh($- (A — %))
coshZ (. + 2))

g =m+iln = 2tan}(cot(nz/(2v)) tanh(w A /v)),

rm(A)=iln < 3.3
=i o) (3.3)
The real lattice boundary parameters b, c+ must satisfy the constraints

a_+ay ==x|c_ —cy| +k, b_+by =0, (3.4)

where the integet € [—(N + 1), N + 1] is even ifN is odd, and is odd iV is even. The
parameters can be restricted to the fundamental dom@in. — 1| < 2v. The number
M of Bethe roots is given by

1
M = 5N =1+h), (3.5)
wherek is the integer in the constrai(i.4).
The corresponding energy is given 321
1 M(+)
E=_g Z[al(xj +A) +ai1(h; — D], (3.6)
j=1
wheres is the lattice spacing, and

1 d 1 sin(n/v)

Eﬁ%(k) = - (3.7)

an (%) = v cosh2r 1 /v) — cognm/v)’

For given values of the bulk and boundary parameters, the counting furiétiog. )
does not give all 2 energy levels. The remaining levels can be obtained from a corre-
sponding counting functioh(~) (1) with the boundary parameters negated,

(ax,by) — (—ax, —by), (3.8)

5 The branch cut of Ig is chosen along the positive real axis; hencé-th =ix.
6 There is a misprint in the formula (2.29) j@] for the boundary energy of the (homogeneous) open XXZ
chain: the first term in the second line should be
sin((v — [2a1. — 1)w/2)
sinh(vaw/2)
where sgin) is the function defined i(i3.11)

sgn2a+ — 1)
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and with the number of Bethe roots equald™ = 3(N — 1 — k) [18]. We shall refer
to this other counting function as the “negated” counting function. Although below we
generally explicitly discuss only™ (1), corresponding results hold also fior (1).

Since the counting functio(B8.2) is odd and has the periodicity— A + iv, we can
restrict the Bethe roots; to the following region of the complex plane[8]

{me)\>o, —%<Smk<%}u{9’tek=0, 0<s~mx<g}. 3.9)

The origin ¢ = 0) is excluded since the corresponding Bethe state would vanish.

The summation over all the roots in the counting function involves the fungtion),
whose fundamental analyticity strip {SSmA| < min(1,v — 1). Hence, it is useful to
classify the Bethe roots; in the region(3.9) as either real, “close” (& |SmA;| <
min(1, v — 1)), or “wide” (min(1,v — 1) < |ImA;| < 3). Real solutions o™ (%) =
integer which are not Bethe roots are called “holes”. If an “object” (either a root or a
hole) has rapidity. ; for which the counting function is decreasin{ﬁ@(ﬂ (Aj) <0), then
the object is called “special”. We denote Byr, M, My, Ny and Ng the number of
real roots, close roots, wide roots, holes, and special objects, respectively. Note also that
R (1) is continuous on the realaxis. For further discussion about general properties of
the counting function and the classification of roots and holes, seel4e8j.,

We now proceed to derive a so-called lattice counting equation, which rélates?y,

Ny andN; (but which is independent difz and N) for any Bethe state. To this end, we
first compute the asymptotic limit of the counting function, and take its integer part,

1
[ (00)] = M+ L (s +5-) —k + Qv = 2) My

N F_E(@H _k)J’ (3.10)
2 v

where| | denotes integer part, and = sgnia+ — %), where the sign function sgm) is
defined as

i n#0,
sgn(n) = { Inl (3.11)
0: n=0.
In obtaining the result3.10) we have used the facts
gn(00) =sgnn)mw — n for 0 < |n| < 2v,
V
ro(o0) = — % (3.12)
Vv

as well as the relatio(8.5)to eliminateN, and the second constraint(i.4). On the other
hand, one can argue that (see, €4]),

| A (c0)| = Nu + Mg — 2N5. (3.13)

Using the evident relatiom ) = My + M + My to eliminateM g on the RHS 0{3.13)
and then combining wit3.10), we finally obtain the lattice counting equation,
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1
Ny —2Ns = Mc + 2Mwy stegv — 2) + 1+ E(S++S_)_k

1 1
+ {— ——(ay+a-— k)J, (3.14)
2 v
where the step function stép is defined as
_ [l n>=0,
stefn) = { N (3.15)

The lattice counting equatic(3.14)is valid also for the homogeneoyd = 0) open XXZ
spin chain.

As a simple example of the utility of this result, consider (af9ih) the case that is
even withk = 1, and look for purely real solutions with no holes or special r@gdfg =
My = Ny = Ng = 0). The lattice counting equation implies

1 1 1
O==(G4++s)+|=——-(ar+a--1) |, (3.16)
2 2 v

which is a condition on the boundary parametersthat is necessary for such solutions

to exist. Numerical checks suggest that this might also be a sufficient condition for the
existence of such solutions.

4. Nonlinear integral equation

The lattice NLIE can be derived from the lattice counting funct{@r?) by standard
manipulationg2—-8]. The continuum limit consists of taking the number of spihs> oo,
the lattice spacing — 0, and the inhomogeneity parametér— oo, in such a way that
the lengthL = x — x_ and the soliton mass (whose relation t@upyik iS given by(A.12))
are given by

2
L = NS, m==-e 74, (4.1)
B

respectively. Changing to the rescaled rapidity variable 7 A, and settingf ™ (9) =
27ih)(6), one arrives at the continuum NLIE fgi™) (9)

FH (@) = 2imLsinhg + ipgjfy(e) +ig(0)

o
n % / d0'SMG(O — 0" —ie)In(1— e/ 7 @O, 4.2)
—0o0
whereG () is given by
o0
G(0) = 1 / dwe "1 G(w), (4.3)
2
—00

and the Fourier transfori@ () is given by
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. sinh((v — 2w/2)
~ 2sinh(v — Dw/2) coshw/2)

Furthermore,Péar&,(e) is the odd function satisfying’éjr)y’(e) = 2R™)(9), whereR™ (9)
is given (as in(4.3)) in terms of its Fourier transform

G(w) (4.4)

1§(+)(a)) _ sinh((v — 2)w/4) coshvw/4) sinh((v — 2w/2)
sinh((v — Dw/2)coshw/2) = 2sinh((v — 1)w/2) cosHw/2)
sy sinb((v — |2a4 — 1)w/2) sinh((1+4 2ib,)w/2)
2sinh((v — Dw/2) coshw/2)  2sinh((v — 1)w/2) coshHw/2)
+(+ < ), (4.5)

where(+ <« —) is a shorthand for two additional terms which are the same as those on the
second line of4.5), but witha, sy andb, replaced by:_, s_ andb_, respectively.

Moreover,g(0) is the source term. For simplicity, we henceforth restrict our attention to
source contributions from holes and special roots; other bulk sources (close or wide roots)
can presumably be treated in the same manner §8h The source term is therefore
given by

Nu

@ =3 [x(6-6/")+x(+6/")]

Ns
= [x(O—06F +ie)+x(0— 07 —ie)+ x(0+67 +ic)
j=1

+x(0+67 —ie)], (4.6)

where x (9) is the odd function satisfying’(9) = 2G (), the latter function being given
by (4.3). Finally, ejf’ andejs are the positions of the holes and special roots, respectively,

whose corresponding distinct, positive integers we Iabeil}b;andlf,
fO ) =2mitf’,  fO(6F) =2mil}. 4.7)
For the continuum model, the valde= 0 is excluded because the corresponding rapidity
6; =0 is not physical.
The energy is given by
E = epuikL + €boundaryt Ecasimin (4.8)
whereepuik andepoundaryare given by9]

1
€pulk = Zmz cot(vrr/2) (4.9)

and

m

cog((v — 2s /2
6bourldar)/:—5[—00t(vn/4)—1+ « +a+)7/2)

sin(vrr/2)

coshmby)

sinwj2) T T _)}’ (4.10)
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and Ecasimir (order /L) is given by

Ny Ng
ECasimir=m Z cosh9]H —m Z[cosf(@f +ie€)+ cosi‘(@f —ie)]
= =
o0
— | d05msinhe +ie)In(1— ¢ 7 E+i0), (4.11)
—0o0

The following relations between the continuum HR.( ¢+) and lattice {, b+) bound-
ary parameters were obtained @}’
m(s+v — 2a4) why
= P9i= :
2v—1) v—1
These relations were obtained by comparing the contind;23]and lattice expressions
for the boundary energy. A relation betwegnandc. was also conjectured 9]

yo= (4.13)
v—1
for which we shall find further support from analysis of the UV and IR limits in Sectiohs
and 4.2elow. Note that these relations together with the constré8mM3among the lattice
boundary parameters imply corresponding constraints among the continuum IR boundary

parameters,

N+ =%F (4.12)

T 1
N =N+ =Fly— —v4l + ——=| 56+ +s)v—k|,
v—1(2
o-+04 =0 (4.14)

The UV and IR limits also imply that, in the continuum limit, the integemust be re-
stricted to odd values,

k = odd (4.15)

The UV-IR relationg2.35) (2.44) (2.45)imply corresponding constraints among the UV
parameters appearing in the boundary sine-Gordon action. We emphasize that our NLIE
describes the sine-Gordon model only for values of boundary parameters which satisfy
these constraints.

Itis interesting to consider the continuum version of the lattice counting equ@&tibs)
For the case of periodic boundary conditions, Destri and de Vega have gdjutidt
the continuum result coincides with the lattice result without the integer part term. It is
therefore plausible that for the case at hand the continuum counting equation is given by

1
Ni —2Ns = Mc + 2My Stefly —2) + 1+ 5 (54 +s-) — k. (4.16)

7 We have already implicitly noted the relation between the continuum and latik@arameters if2.12)
Indeed, in[9], v is defined as = 7/u, whereu € (0, ) is the bulk anisotropy parameter of the XXZ spin
chain. Here we do not explicitly introduce the lattice anisotropy parameten effort to reduce the number of
parameters appearing in the paper.
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We shall find some support for this conjecture when we consider the UV limit Below.
4.1. Ultraviolet limit

We now consider the UV limitz L — 0. In this limit, only large values gb| contribute
to the Casimir energ¥Indeed, the driving term of the NLIE implies that one must consider
the scaling limit

1 -
0=In—+0, (4.17)
mL

whered is finite asmL — 0. Hence, one must distinguish whether the positions of the
sources remain finite or scale in the same mannerMQgT(Nﬁ;’) be the number of holes
whose positiong # © (7 *°) remain finite (scale), with corresponding integné]{’:so (IJHOO,
respectively); and similarly for the special roots. Hence,

1 ~ 1 -
Hoo __ Hoo Soo __ S oo
with éjHOO andéjsoo finite asmL — 0, and
Ng=NY+N¥,  Ng=NJ+N&. (4.19)

Proceeding to compute the Casimir energy fr@n?) and(4.11)as in[4—7], imposing the

constraintg3.4), and recalling thak casimir= _% with cef = 1 — 24A,,, we obtain
1

T dw-1)

Ap

1
{v[i(s+ +5_ )+ Ny —NF —2N2+ 2N§°]
NOO

2 H
—(k—1+2N2,-4N§>):F|c_—c+|} +y 1

j=1
N 1

—2) 7= S(NF —2N&) (N — 2N + 1). (4.20)
j=1 2

The result(4.20)for the conformal dimension is consistent with the CFT re§uf29)
if we identify

4

c+ = E(U — Dy, (4.21)
and set

1

54 +s0) + N — N — 2N+ 2NP =k — 1+ 2N — 4NQ = 2n, (4.22)

8 We recall[4] that special objects cannot appear in the IR limit. They can appeafLas- 0, in such a way
that Np eff = Ny — 2Ng remains constant.

9 Since the counting function is odd, we consider explicitly ahly oo, and we double the result in order to
also account for thé — —oo contribution.
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wheren is an integer. The relatio#.21)together with(2.35)implies the relation(4.13)
between the boundary parametgrsandc.. .12 Note that the resu(t.20)for the conformal
dimension contains not only the contributi¢h?29)corresponding to the highest weights,
but also additional integer-valued terms corresponding to their descendants.

It follows from (4.19)and(4.22)that

1
Np —2Ns =1+ 5 (s +35-) —k. (4.23)

which is in agreement with the conjectured continuum counting equédid®) for the
special cas&/c = My = 0 that we are considering. Moreové4,.22) implies the result
(4.15)thatk must be an odd integer.

Here are three examples:

Example 1. A Bethe state consisting of only real roots and no holes or special ri¥gts{
Ng = 0) with £ = 1 has, according t¢4.23) a “good” UV limit only if the boundary
parameters satisfy; + s— = 0; and its UV dimension, according {d.22) is given by
(2.29)with n = 0.

Example 2. A Bethe state consisting of only real roots and 1 hole and no special roots
(Ng =1, Ng = 0) with k = 1 has a “good” UV limit only ifsy + s— = 2. Its UV di-
mension is given by2.29)with eithern = 1 orn = 0, depending on whether in the UV
limit the hole’s rapidity remains finiteN, = 1, N3° = 0) or infinite (V% = 0, N3P = 1),
respectively.

Example 3. Fork = —1, it is possible to have a Bethe state with a “good” UV limit con-
sisting of only real roots and 2 holes and no special rodtg & 2, Ny = 0), provided

s+ +s— =0. Its UV dimension is given b{2.29)with n values equal to either, 0, or—1
depending on whether in the UV limit the hole rapidities are either both finite, one finite
and one infinite, or both infinite, respectively.

4.2. Infrared limit

We verify in this section that the IR limit of the NLIE for a one-hole state is equivalent
to the Yang equation for a particle on an interval. Indeed, in the IR ladit— oo, the
integral terms in the NLIE4.2) and in the energy formulg4.11) are of orderO (e L)
and can therefore be neglected. For a single hole with ragigifyhe NLIE becomes

F (@) = 2imLsinhg + ipgggy(e) +ix(0—0n)+ix(6+6m). (4.24)
Noting thate/ @) = 1 on account of Eq(4.7), we obtain the following relation fofy

p2imLsinhey i (PSR Om)+x(@0m) _ 1 (4.25)

10 We remark tha4.21)and the periodicity2.11)imply the periodicityc+ — c+ + 2(v — 1); i.e., the period-
icity c+ — ¢+ + 2v of the lattice mode]9] becomes “renormalized” in the continuum.
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A similar relation can be derived from the negated counting function,

2L sin0r i Poan @) +x(201)) _ 9 (4.26)

where P\ (6) differs from P.+) (6) by the negation of the boundary paramet@).
These relations should be equivalent to the Yang equation for a particle on an interval of
lengthL,

2MLSNOH RO imy, O, y-) ROmsn—, O—, v-)|0n, () = |0m, (), (4.27)

where the boundar§ matricesR(6;n+, 9+, y+) are given by2.30) and|6y, (+)) denote
the two possible one-particle stafés.

In other words, dropping the subscrigf of the hole rapidity, the expressions
o Pocny@)+x(29))

defined by

should be equal to the two eigenvalues of the Yang mat(&), which is

Y(@)=RO:ny. 04, y)RO:n_, 0, y-). (4.28)

Indeed, for a state with real roots and one hole,(BdL.6)implies thatk = %(s+ +5-).
Sincek must be odd, it follows that the only two possibilities &re-s. =1 ork =s1 =
—1. For definiteness, we consider the former case,s;+ = 1, and therefore% <at <

% +v. From the definitions oPéjEr)y(Q) andy (0), it follows that

Pign(0) + x(20) =2 f %‘”[sin(we /1) R® () + sinwb /1) G (w)]. (4.29)
0

With the help of the expressiqd.5)for R (w) (and a similar expression with the bound-
ary parameters negatédl8)for R~ (w)) and the identity34]
sinh((v — 2)w/4) coshvw/4) sinh((v — 2w/2)
sinh((v — Dw/2)coshw/2) = 2sinl((v — 1)w/2) coshw/2)
2sinh((v — 2)w/4) sinh(3w/4)
- sinh((v — D)w/4) sinhw

—G(w/2), (4.30)

we obtain

P 0y x 2y [do_ 2sinh(v — 2)w,/2) sinh(3w/2)
¢ _esz/ ® S'”(zwg/”){ Sinh((v — Dw/2) sinh(20)
0

sinh((1+ (v — 2a4))w) sinh((1 + 2ib.)w)
2sinh((v — D)w) coshw + 2sinh((v — D)w) coshw

+(+ o —)}. (4.31)

11 |n the case of Dirichlet boundary condition8y, (+)) and|6g, (—)) would correspond to one-soliton and
one-antisoliton states, respectively. For this case, a similar approach for computing boSindatysices was
considered if33].
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Finally, using the relation§.12)between the lattice and continuum IR boundary parame-
ters, we obtain

i(PE @0)+x(20)) _ Ood_a) . 2sin((v — 2)w/2) sinh(3w/2)
e = esz/ o SN2/ ”){ SINN((v — Dw/2) sinh(2m)
0

sin((LF (v —D2ny/m)w)  sinl((L+ (v —1)2n_/7)w)
2sinh((v — 1)w) coshw 2sinh((v — 1)w) coshw
sin(1+ (v — 1)2i9, /m)w)
2sinh((v — 1)w) coshw
sinh((1+ (v — 1)2i9_ /) w)
2sinh((v — 1)w) coshw }
We now turn to the computation of the eigenvalues of the Yang m@r28) Recalling
(2.30) we see that the eigenvalugs” of Y (9) are given by

(4.32)

v = ro(0)?r1(8: ny. D )ra(6: -, 9-) A, (4.33)

where A®) denote the eigenvalues o (0; ny, 94, )M (©; n_,9_, y_). Although the
expressions fort® are generally very complicated, a remarkable simplification occurs
if the boundary parameters satisfy the constrajat$4) (4.15) Indeed, in that case, the
eigenvalues are factorizable into a product of trigonometric functions,

A®) = cog—ny Fir0) cosn_ Fir0)coivy Firh)coLiv_ Fird). (4.34)
Recalling the expressiorfg.33)for ro(6) andr1(0; n, ¥), using the identity

1
——co9x FiAb)o(x,0)

cosx
o
Cfdo . sinh((1+ (v — D)2x/7)w)
=exp{2i | — sin(20 . 4.35
p{ ! / w (2e/m) 2sinh((v — 1)w) coshw ( )
0
and comparing witt§4.32) we obtain the desired result
NED)
e o X E — o (0)2r1 (0 m4, 9-)r2 (03—, 9-) 4D =y, (4.36)

That is, we have verified that the IR limit of the NLIE for a one-hole state is equivalent
to the Yang equation for a particle on an interval. We stress that the bousidaajrices
entering the Yang equation are not diagonal.

We remark that, for the case &fy holes, the Casimir energy in the IR limit becomes

Ecasimir— mNg. (4.37)

Indeed, as already noted, the integral term in the energy for(duld)can be neglected;
thus, only the first term of that formula survives. Moreover, the hole rapidities gﬁas

ﬁ (sincemL sinh@f’ ~ 1) for L — oo, which leads to the resuit.37)
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5. Numerical results

The NLIE (4.2) can be solved numerically by iteration, and the corresponding Casimir
energy can then be evaluated with11) It is not evident how to best present such numer-
ical results for the full range dof € (0, co). The difficulty is that, in the UV limit £ — 0),
Ecasimir= —% diverges andef is finite; while in the IR limit L — o0), the reverse is
true: Ecasimiris finite (4.37)andcest diverges (if the number of holes is not zero). That is,
neitherEcasimir NOr ceff remain finite over the full range df. Following [35], we consider
the dimensionless quantity (“normalized energy”)

_ L Ecasimir —_ T Ceff 7 (5.1)
T +mL 24(r +mL)
whose UV and IR limits are both finite:
1
E— An—ﬂ for L — 0, (5.2)
E—> Ny forL — oo. (5.3)

We have plotted as a function of I, wherel = m L is the dimensionless scale para-
meter, for various states.

5.1. Ground state

NLIE results for the ground state (0 holes), whose UV limit is discussé&tkample 1
at the end of Sectiod.1, are presented iRig. 1. As expected, the value efcett/24 in the
IR limit is 0; and in the UV limit agrees well with the analytical result fag given by
(2.29) (4.20)

We define three regions 6= m L in which we further test, with different methods, the
ground state energy level obtained by numerically solving the NLIE:

e The UV region is the small volume regioh< 10~1; here we compare it with bound-
ary conformal perturbation theory (BCPT).

o Intheintermediate regioh,~ 1, we test it against truncated conformal space approach
(TCSA)[24,25]

o In the IR region, where the volume is larde; 10, we compute its LUscher-tyj26,
27] correction.

In all regions we obtain a perfect confirmation of the correctness of our NLIE.
5.1.1. UVregion

Combining the formulae fromAppendix A which describe the BCPT and NLIE
schemes, we obtain the small volume expansion of the NLIE ground state energy

12 For the case of 0 holes, we pletceft/24 vs. I, which also has the limiting valugs.2), (5.3) with n =
Ny =0.
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Fig. 1. —ceff/24 vs. log for ground state (0 holes), with parameter values 1.93,a4+ = 1.8,a_— = —0.9, and
by = —b_ =0.41444. Se&xample 1in Sectionst.1 and 5.1

ENLiE(L) = —€pulkL — €boundary

+7T . 1 L - 2(A71)+ of 7 4(A-1)
T _ 1o O
L\"10 7 a2\ aw

6(A—1)
+c8<%> + - ) (5.4)

Note thatEq is the conformal dimension of the ground state, which is giver{2b29)

with n = 0; that is,E|q = gn—z Also, as in Sectio\.3, hereA = g—; = “%1 The bulk and
boundary energies are given by EGE9) and (4.1Q)respectively. Computing numerically
the ground-state energy for small volumes, the coefficiegvisz(A*l) can be extracted.
Table 1shows a comparison between the numerically measured coefficianis the ex-
act values calculated from BCHA.11), (A.12) for various values of the bulk coupling
constantv and for the same values of boundary parameters used to geRagate The
agreement is convincing and is of the order of our numerical precision.

5.1.2. Intermediate region

In this region, the energy levels are not dominated only by the first few terms in the
UV expansion; instead, all the higher-order terms contribute the same way. That is, a non-
perturbative check is necessary. This is provided by a TCSA calculation, which—being
a variational method—sums up the perturbative series, in which all the coefficients are
calculated approximately in a finite-dimensional, truncated Hilbert space. The difficulty is
in the comparison. TCSA works if the dimension of the perturbing operator is small, that

13 specifically, we computed: ~1 Eny g for 100 values of, from / = 1075 to / = 10~3, which we fitted to
the curve(5.4)to obtain estimates fm?mf(A—l).
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Table 1
Comparison of NLIE and BCPT results fogmz(A‘l), for various values of bulk coupling constantind for
boundary parameter values = 1.8,a— = —0.9, andb = —b_ = 0.41444

v NLIE ¢9m?(A—1) BCPTQm2(A~D
1.70 —5.3215286975 —5.3215288274
1.80 —7.4632436186 —7.4632435914
1.93 —19,5148929102 —19,5148929079
2.20 56819407377 $819407318
2.40 24879276564 2879276494
2.60 14601870563 1601870411
Table 2

Comparison of NLIE and TCSA results for the ground-state energyy ferl.2 and for boundary parameter
valuesay =1.2,a_ =—-0.2,andb4+ =b_ =0

Volume =07 =09 =11 =13

m~LEtcgawith Eqyt= 10 —0.32803 —0.31248 —0.31030 —0.31498
m~Etcgawith Equt= 12 —0.32834 —0.31284 —0.31072 —0.31544
m~Etcgawith Equt= 14 —0.32857 —0.31311 —0.31103 —0.31579
m~LEtcgawith Equt=16 —0.32875 —0.31332 -0.31127 —0.31606
m~L(ENLIE + ebulkL + €bdry) —0.33067 —0.31559 —0.31386 —0.31895

is whenv is close to one. In this domain, however, the NLIE is not convergent. So one has
to find a proper range, where the NLIE is convergent and the TCSA is reliable enough. In
Table 2we present results far= 1.2 and for boundary parameter values=1.2,a_ =
—0.2 andb, = b_ = 0. The dimensionless NLIE ground state energy data are transformed
into the TCSA scheme bgA.6) and are compared to the dimensionless TCSA data for
different truncation levels and dimensionless voluniesm L.

We can see that as we incred&g: the TCSA energies approach the NLIE energy from
above as a consequence of the variational nature of the TCSA. The truncated Hilbert space
with E¢yt = 16 contains 6133 states.

5.1.3. IRregion

Here we check the exponentially small correction to the ground state energy for large
but finite volumes. This is dominated by the first breather, with mass 2m sin(;), and
is given by[27] as

1+ COSLt —sin
2 ZA tant tanh— tan— tanh e7ml 4

1 cos2A +sinZ o 2\ 2
(5.5)

In Fig. 2this correction is checked as a functiomof 1 + 1/A and of the boundary
parameters. On the figure the logarithm of the dimensionless ground state energy is plotted
against the dimensionless volume. The upper two lines in descending order are the Liischer
correctiong5.5)forv =1.25,by = —b_ =0.1; and withay = 1.2,a_ = —0.2 for the first
line, anday = 1.1, a_ = —0.3 for the second line. The lower two lines have parameters
v=15ay =12,a_ = —0.2; and withb, = —b_ = 1 for the first line, whileb, =

ENvLE(L) =
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Fig. 2. logm—1E) vs. I for the ground state, with various values of the bulk and boundary parameters. See
Section5.1.3

—b_ = 0.1 for the second line. The various boxes are the data of the numerical solution of
the NLIE. The agreement is really excellent.

5.2. Excited states

NLIE results for states with 1 and 2 holes, whose UV limits are discusdeddmples 2
and 3at the end of Sectiod.1, are presented iRigs. 3 and 4respectively. Note that the
values of€ in the IR limit are 1 and 2, respectively, in agreement witB). Moreover,
the values of in the UV limit agree well with(5.2) and with the analytical results fax,,
given by(2.29) (4.20)

In particular, for the 1-hole stateFi@. 3), we consider integer valudd! = 1, 2, 3, 4;
we find that the corresponding hole rapiditééé become infinite in the UV limit, and thus,
all of these states have= 0. The values of in the UV limit are spaced by 1 on account
of the additional integer contribution ta,, in (4.20) as/? = 17> increases by 1, so
doesA,,. Similarly, for the 2-hole states-{g. 4), we consider integer value{szf’, IZH) =
(1,2),(1,3), (1,4, (2, 3); we find that both hole rapidities become infinite in the UV limit,
and thus, the states have= —1. AsI{? + IJ! increases by 1, so does the limiting UV value
of A,. Hence, the lowest line I(SIlH If) = (1, 2), the second-lowest line 4, 3), and the
next two (almost degenerate) g& 3) and(1, 4).

6. Conclusion
Starting from the Bethe ansatz solutiidi—18]of the XXZ model with general bound-

ary terms, we have derived a nonlinear integral equation for some bulk excited states of
the sine-Gordon model on a finite interval with general integrable boundary interactions
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Fig. 3. £ vs. logl for 1-hole states with integer valudd! = 1, 2,3, 4, and with parameter valuas= 1.93,
ay =1.8,a_ =1.9,andby = —b_ = 0.41444. Se&xample 2n Sectionst.1 and 5.2
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Fig. 4.€ vs. logl for 2-hole states with integer valuél{’, l{’) =(1,2),(1,3), (L 4, (2, 3), and with parameter
valuesy = 2.13,a4 =1.8,a_ = —0.9, andby+ = —b_ = 0.50357. Se&xample 3n Sectionst.1 and 5.2

[10,11], including boundary terms proportional #9e. We have used this NLIE to com-

pute numerically the dimensions of these states as a function of scale, and have checked
the UV and IR limits analytically. We have also verified that the ground-state NLIE agrees
well with boundary conformal perturbation theory (BCPT), boundary truncated conformal
space approach (BTCSA) and the boundary Liischer formula. An advantage of the latter
approaches is that they are not restricted to values of the boundary parameters that obey the
constraintg3.4), (4.14) The consistency of the results provides support for the proposed
relations between the lattice and continuum boundary parameters.



330 C. Anet al. / Nuclear Physics B 714 [FS] (2005) 307-335

The resuli(2.29)for the conformal dimensions of a free massless boson with Neumann
boundary conditions anél,¢ boundary terms, which is “dual” to the corresponding result
for a massless boson with Dirichlet boundary conditif2829] may have applications in
other contexts, such as string theory.

There are many issues that remain to be addressed. Among these are the proper treat-
ment of complex (bulk) and imaginary (boundary) sources in the NLIE. While the former
problem is in principle understodd,8], the latter problem is still not well understood
even in the simpler Dirichlet cag8,36]. Moreover, it would be interesting to extend the
comparison of NLIE with BCPT and BTCSA also to excited states.
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Appendix A. Boundary conformal perturbation theory and boundary truncated
conformal space approach

Boundary conformal perturbation theory (BCPT) and boundary truncated conformal
space approach (BTCSA)5,37]can be applied if the theory is a relevant perturbation of
a boundary conformal field theory:

xt

L = LgcFr + Lpert= LBcFT — Mbulk/ D(x,0)dx — pu_W_(1) — uy ¥4 (1),

X—

where Lpcrr is the Lagrangian of the UV limiting boundary conformal field theory,
@ (x,1) is a relevant bulk primary field of weighig, #) and ¥4 are relevant boundary
fields living on the left/right boundaries of the strip with weiglits.. For simplicity we
will suppose that =h =A_ = A, =: A and putx_ =0, x; = L.1*

A.1. Hamiltonian approach

We are interested in the spectrum of the Hamiltonian:
L
H(L) = Hgcrr(L) + Mbulkf D(x,)dx + pu_W_(t) + pu+ i ().
0

14 we emphasize that SectioAsl and A.2are more general than the main body of the text, as they are valid
for any perturbed boundary conformal field theory.
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The volume de_eendence can be obtained by mapping the system to the upper half plane
(UHP) viaz = ¢/ T+ wherer = —iy is the Euclidean time. The transformation rules of
the primary fields are given by:

22 \A z \A
¢(x,t)=(ﬁzi> D(z,2); lI/i(t)z(:Fzz> ¥ (z2). (A1)

Changing the integration variablefio= 7x and taking the Hamiltonian at= 0, we have:

T c T 2a-1 7 . .
H(L)= Z(LO — ﬂ) + Mbulk(z) f¢(619, eﬂg)de
0

x\2 T\2
-HL(Z) ‘1’(1)+M+<Z> Ui (=1,

where Lg is the spectrum of the boundary conformal field theory with central charge,
The spectrum o (L) can be calculated at least in two different ways: using perturbative
(BCPT) and variational methods (BTCSA).

In the variational method we use, as input, the eigenvecteysof the unperturbed
(boundary conformal) Hamiltonian. For practical reasons we consider the eigenvectors
having energy less then a given vallig,t, and perform the calculation numerically. (Tech-
nically this means diagonalizing the truncated Hamiltonian.)

Standard perturbation theory gives rise to the following perturbative series for the en-
ergy level labeled with its unperturbed UV limiting vectay,

T k(A—1)
E, (L)—_(En - 24+ch(,ubu|k, Mi,A)( ) ), (A.2)

where E),y denotes the conformal energy on the UHP. For the ground state the first few
terms have the form

T (A-1)
Eo(L) = <E|o> 24+Cl(ui,A)< )

)\ 28-D)
+ Cg(,U«bulk, Mty A) <Z> +-- '), (A.3)
where
s, A) = (0|(n-¥_(1) + py ¥4 (—1))|0) (A.4)
and
bk, Mi,A)=/Abu|k/ 0@ (e, e7%)|0) a0
0
Ol v(jD|0
Z MM/Z (W(@ED |n){n|¥(j )I) (A5)

ij={%) neH Ejo) — Ep)



332 C. Anet al. / Nuclear Physics B 714 [FS] (2005) 307-335

The large volume behavior of the ground state energy is

Eo(L) = epuikL + Gt?oundary"' Et-;)undary"' O(e_ML) asL — oo.

The ground state energy in the NLIE description, however, is normalized differently as
ENME(L) = O(e7™L) whenL — oo. The correspondence between the two schemes is

Eo(L) = EB\“—IE(L) + €pulkL + et?oundary"' Et-;)undary (A.6)
A.2. Lagrangian approach

The evaluation of the second order term in the Hamiltonian perturbation tfa&dsy
is cumbersome, since we have to sum up the various matrix elements. We can avoid this
calculation by doing Lagrangian perturbation theory instead. We compactify the strip in
the time-like direction on a circle of radiug and consider the large limit of the cylinder
partition function:

Z(L,R) =Tr(e RHE)) = o= REL) 4 ... for R — oo.
Using the functional integral representation for the partition function with the acfien,
J L(t)dt = SBcFT + Spert

Z(L,R) =/d[¢>,tpi]e*S:/d[qb,wi]e*SBCFTe*Spen

fd[@, lpi]e—SBCFTe—Spert
ZBCFT

') _s n
= ZBCFT<Z %>.

n=0

—Spert>

= ZBCFT = Zgcrle

We can obtain the first few perturbative corrections to the ground state energy as

1 .
~% }Jl_@oolog(Z(L, R))

L
= Eo(L) = EGT(L) + ) 11 (0| (0)|0) + ebuik / 0|® (x, 0)[0) dx
i=+ 0

Z / (01w (0)¥; (1)[0) dt + -

—00

l\)ll—‘

where the correlators are the connected BCFT correlators. By transforming the various
expressions onto the upper half plane we obtain:
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A
T
Eo(L) = EEFT(L) + Z i <Z> (01%;(0)|0)
2\ 281 T ' '
+ (z) |:,U«bu|k / (Ol@ (e, e7?) |0y db
0

o
— %Zw,-/duuA—1<0|wi(i1>wj<ju>|0>} — (A7)
i,] 0

wherez = u+iv = re'’ . Comparing the result with equatiof?.3)—(A.5)we can establish
the correspondence with the Hamiltonian perturbation theory. Clearly the second order
term in(A.5) is summed up. One can compare this term directly by inserting the resolution
of the identity 1=} |n)(n| and using the conformal transformation property of the fields.

In any BCFT, using thel, invariance of the vacuumQ), the bulk one point function
on the UHP can be put to the form

Chbulk

W) 0 —if 0) = A8
(1@ (e',e7)I0) Sn@)?: (A.8)
while the boundary two point function can be brought to the form
Cij
O (DY (ju)l0) = : (A.9)

11— GD) - Gu)|?A’
where the radial ordering is taken into account. The relevant integrals can be written in
terms of the beta functioB(x, y), both for the bulk and foi = j and fori # j as

1 00
_ — - —x— INEIINGY)
x—1 y—1 x—1 x—y

O/duu 1—u) _O/duu 1+u) =B(x,y) = Gty

The first integral converges only fgr> 0 thus O< A < % is needed. Collecting all terms,
thec) coefficient is

itbulks f+, A)

I - AT (3)
= MbquCbqu—F(l N
I(A(1—2A) I'2(A)
—F(l— ) —M—M+C+—m,
where only the coefficients,yk, ¢;; are model dependent.

— (Gt +pnPe) (A.10)
A.3. Boundary sine-Gordon theory

In the sine-Gordon theory the UV limiting BCFT is described(Byl3) the bulk per-
turbation is given by

1 ) _
@, =S(Vpr, D+ Vop(x,0), Vp(z, D) =n(z, e,
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while the boundary by
1 BoZ N ,
W (1) = E(e—lT" Uy )+ e’TOUfg(t)), Uy )= i 5o,

andA = %, se€[37] for the details. Since the bulkg(z, z), and boundaryl/ s (1), vertex
2

operators change the eigenvaluergfby 8 and % respectively, only even coefficients

are nonzero in the expansi@¢A.2). Moreover, the vacuum expectation valuedofs also
zero(A.8), thus the leading perturbative contribution comes from the boundary two point
function part of(A.7). In the boundary sine-Gordon theory with nonzere= x; — x_

the vacuum is not dlo-invariant and thug(A.9) has to be modified. In general for a theory
with a nons/z-invariant vacuum one has to compute the four point functions, instead of
the two point function, and extract the relevant matrix element from them. Alternatively,
in our case, one can also use the mode expansion of the(#gl@) together with the
commutation relation§.18)to obtain:

A A
u| 77

11— GD) - (u)2A
This modifieg(A.10) and gives the leading corrections:

(O, (DU (j1|0) =

Cg(ﬂi,A,K)
2 + - 2 l"(l—i—A"(TA_A) [‘(1_4KTA_A)

B _
+ p—pcos=(eg — @g) B £ (A.11)

2 r'(2A)
Although the derivation of this formula assumes that @& < 1/2, the final result is an-
alytic in A (with possible poles). Therefore it has an analytic continuatiomfor 1/2,
which, since the NLIE is also analytic i, must coincide with the NLIE result. This is
confirmed by experience with the NLIE for bulk sine-Gordon and bulk supersymmetric
sine-Gordon models. Using the UV-IR relatih44) (2.45) and the mass-gap formula
(cf. [38])

L(A+%8T(A - 4K—A)]

Mbulk = M (A.12)

oo 20(A) («/El“(z(l—fm)f—2A
M=)\ 2@ (z25) ’

wherem is the soliton mass;g(,ui, A, k) can be rewritten in terms of the IR parameters.
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