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1. Introduction

The nonlinear integral equation (NLIE) approach[1,2] is a powerful tool for studying
finite-size effects in the sine-Gordon model with both periodic[2–6] and Dirichlet[7,8]
boundary conditions. A NLIE has recently been proposed[9] for the ground state of th
sine-Gordon model on a finite interval with more general integrable boundary cond
[10,11], including new boundary terms proportional to the first time derivative of the
(∂yϕ). We propose here a NLIE for some bulk excited states of this model, using w
we numerically compute the dimensions of these states as a function of scale (the p
of the length of the interval and the soliton mass) from ultraviolet (UV) to infrared (
We perform checks of the UV and IR limits analytically. Other approaches to studyin
model (although without the∂yϕ boundary terms) have been considered in[12–15].

Our NLIE is based on the Bethe ansatz solution[16–18]of the XXZ model with genera
(both diagonal and nondiagonal) boundary terms[19]. A significant limitation of this so-
lution is that the boundary parameters are not all independent, as they must satisfy
constraint relating the left and right boundary parameters. (Such a constraint does n
in the case of diagonal boundary terms[20–22].) Consequently, our NLIE is applicab
only when the boundary parameters of the sine-Gordon model (including the coeffi
of the∂yϕ boundary terms) obey a corresponding constraint.

Three different sets of boundary parameters are introduced in the course of this
the UV parameters(µ±, ϕ±

0 , κ±) appearing in the boundary sine-Gordon action; the
parameters(η±, ϑ±, γ±) appearing in the sine-Gordon boundaryS matrix; and the lattice
parameters(a±, b±, c±) appearing in the XXZ spin-chain Hamiltonian. The relations
tween the continuum parameters(µ±, ϕ±

0 ) and(η±, ϑ±) are known[12,23]. An important
challenge in our Bethe-ansatz-based approach is to have the correct relations betw
lattice and continuum boundary parameters. Such relations were proposed in[9]. The con-
sistency of the results presented here for the UV and IR limits of excited states pr
further support for those relations.

The outline of this article is as follows. In Section2 we collect some results about th
sine-Gordon model on a finite interval which we use later to compare with the NLI
sults. In particular, we clarify various aspects of the∂yϕ boundary terms: the periodicit
of the coefficientsκ± (2.11), and the dependence of the UV conformal dimensions(2.29)
and of the boundaryS matrices(2.35) on these parameters. In Section3 we review the
construction of the counting function for the corresponding light-cone lattice mode[9],
and the corresponding expression for the Casimir energy(4.11). Moreover, we derive the
lattice counting equation(3.14), which is valid also for the homogeneous(Λ = 0) open
XXZ spin chain. In Section4 we present the continuum NLIE(4.2) which follows from
the lattice counting function. For simplicity, we restrict our attention to source cont
tions from holes and special roots. We also note the relations(4.12), (4.13)between the
lattice and continuum boundary parameters, and the constraints(4.14), (4.15) that these
parameters must obey. In Section4.1we analyze the UV limit. We give the NLIE result fo
the UV conformal dimensions of states with arbitrary numbers of holes and specia
(4.20), and show that it can be consistent with the CFT result(2.29)for appropriate value
of the boundary parameters. In Section4.2we analyze the IR limit. In particular, we verif

that the IR limit of the NLIE for a one-hole state is equivalent to the Yang equation for
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a particle on an interval. A noteworthy feature of this computation is that the boun
S matrices[11] which enter the Yang equation are not diagonal. Our numerical res
including comparisons with boundary conformal perturbation theory (BCPT), boun
truncated conformal space approach (BTCSA)[24,25]and the boundary Lüscher formu
[26,27], are presented in Section5. Section6 contains a brief summary and a list of som
remaining problems. InAppendix Awe present a discussion of BCPT and BTCSA.

2. The sine-Gordon model on a finite interval

In this section, we collect some results about the sine-Gordon model on a finite in
which will be needed later for making comparisons with NLIE results. In particular
clarify various aspects of the∂yϕ boundary terms: the periodicity of the coefficientsκ±,
the dependence of the UV conformal dimensions on these parameters, and the dep
of the boundaryS matrices on these parameters.

2.1. Action

Following [9], we consider the sine-Gordon quantum field theory on the finite “spa
intervalx ∈ [x−, x+], with Euclidean action

(2.1)

AE =
∞∫

−∞
dy

x+∫
x−

dx A(ϕ, ∂µϕ) +
∞∫

−∞
dy

[
B−(ϕ, ∂yϕ)|x=x− + B+(ϕ, ∂yϕ)|x=x+

]
,

where the bulk terms are given by

(2.2)A(ϕ, ∂µϕ) = 1

2
(∂µϕ)2 − µbulk cos(βϕ),

and the boundary terms are given by1

(2.3)B±(ϕ, ∂yϕ) = −µ± cos

(
β

2

(
ϕ − ϕ±

0

)) ± iκ±∂yϕ.

As noted in[9], this action is similar to the one considered by Ghoshal and Zamolodch
[11], except that now there are two boundaries instead of one, and the boundary
(2.3) contains an additional term depending on the “time” derivative of the field. In
one-boundary case, such a term can be eliminated by adding to the bulk action(2.2)a term
proportional to∂x∂yϕ, which has no effect on the classical equations of motion. Howe
in the two-boundary case, one can eliminate in this way only one of the twoκ± parameters
(say,κ+), which results in a shift of the other (κ− �→ κ− − κ+).

Theκ± parameters are real. The factor ofi in the∂yϕ terms in(2.3)(which was missed
in [9]) is introduced by the Wick rotation from Minkowski to Euclidean space. Indeed

1 While in [9] the coefficients of∂yϕ are expressed in terms of the parametersγ± in the boundaryS matrices

(2.32), here we instead denote these coefficients by new parametersκ±.
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Minkowski-space action is given byAM = ∫ ∞
−∞ dt LM , with

(2.4)LM =
x+∫

x−

dx
1

2

(
(∂tϕ)2 − (∂xϕ)2) − κ+∂tϕ(x+) + κ−∂tϕ(x−) + · · · ,

where the ellipsis (· · ·) represents the mass terms (proportional toµbulk or µ±) which we
have suppressed for brevity. Withϕ andκ± real, the Minkowski-space action is real, as
necessary. Rotating to Euclidean spacet = −iy, ∂tϕ = i∂yϕ, we see that

LM = −
{ x+∫

x−

dx
1

2

(
(∂yϕ)2 + (∂xϕ)2) + iκ+∂yϕ(x+) − iκ−∂yϕ(x−) + · · ·

}

(2.5)≡ −LE.

Hence,AM = ∫ ∞
−∞(−i dy)(−LE) = iAE , with the Euclidean actionAE = ∫ ∞

−∞ dy LE

given by Eqs.(2.1)–(2.3). As usual,eiAM = e−AE .
An important observation is that theκ± parameters are periodic, with periodicityβ/2.

Indeed, first observe that the action(2.1)–(2.3)has the periodicity2

(2.6)ϕ(x, y) �→ ϕ(x, y) + 4π

β
.

The contribution from the∂yϕ boundary terms toe−AE in the Euclidean path integra∫
Dϕe−AE is evidently given by

(2.7)e−i(κ+
ϕ(x+)−κ−
ϕ(x−)),

where

(2.8)
ϕ(x) ≡
∞∫

−∞
dy ∂yϕ(x, y) = ϕ(x, y = ∞) − ϕ(x, y = −∞).

Let us compactify they axis to a circle, so thaty = −∞ andy = ∞ correspond to the sam
point. It follows that the sine-Gordon field on the boundary aty = −∞ must be identified
with that aty = ∞, up to the periodicity(2.6). Hence,

(2.9)
ϕ(x±) = 4π

β
n±,

wheren± are integers. It follows that the contribution(2.7) to e−AE becomes

(2.10)e
− 4πi

β
(κ+n+−κ−n−)

,

which has the periodicity

(2.11)κ± �→ κ± + β

2
.

2 Although the bulk terms(2.2)have the periodicityϕ(x, y) �→ ϕ(x, y) + 2π
β

, the boundary terms(2.3)have

only the reduced periodicity(2.6).
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We recall here that it is useful to introduce the parametersλ andν which are related to
the bulk coupling constantβ,

(2.12)λ = 8π

β2
− 1= 1

ν − 1
.

Hence, the attractive (0< β2 < 4π ) and repulsive (4π < β2 < 8π ) regimes correspond t
the ranges 1< ν < 2 andν > 2, respectively.

2.2. Ultraviolet limit

The sine-Gordon model(2.1)–(2.3)can be regarded as a perturbedc = 1 boundary
conformal field theory (CFT). In the ultraviolet limitµbulk,µ± → 0, the Minkowski-space
Lagrangian is given by (see(2.4))

(2.13)LM =
x+∫

x−

dx
1

2

(
(∂tϕ)2 − (∂xϕ)2) − κ+∂tϕ(x+) + κ−∂tϕ(x−).

It follows from the variational principle thatϕ(x, t) obeys the massless free field equat
and Neumann boundary conditions,

(2.14)
(
∂2
t − ∂2

x

)
ϕ(x, t) = 0, ∂xϕ(x, t)|x=x± = 0.

Although the∂tϕ boundary terms do not affect the central charge (they are “marg
perturbations), they modify the expression for the conformal dimension, which we
proceed to compute by canonical quantization.

The canonical momentumΠ conjugate toϕ is given by

(2.15)Π = δL
δ(∂tϕ)

= ∂tϕ − κ+δ(x − x+) + κ−δ(x − x−),

whereL is the Lagrange density whose spatial integral is the Lagrangian(2.13). We expand
ϕ in terms of modes,

(2.16)ϕ(x, t) = ϕ0 + π0
t

L
+ i√

π

∑
n�=0

1

n
αn cos

(
πn(x − x−)/L

)
e−iπnt/L,

whereL = x+ − x−. One can verify that this expression satisfies the equations of m
(2.14). The mode expansion forΠ is obtained by substituting(2.16)into (2.15). Note that
the momentum zero modeΠ0 is given by

(2.17)Π0 =
x+∫

x−

dx Π(x, t) = π0 − κ+ + κ−.

The canonical equal-time commutation relations[
Π(x, t), ϕ(x′, t)

] = −iδ(x − x′),[ ′ ] [ ′ ]

(2.18)Π(x, t),Π(x , t) = ϕ(x, t), ϕ(x , t) = 0,
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(2.19)[Π0, ϕ0] = −i.

The Hamiltonian is given by

(2.20)H =
x+∫

x−

dxH, H = Π∂tϕ −L.

Substituting the mode expansions, we obtain

(2.21)H = 1

2L
π2

0 + modes,

where “modes” represents the contribution of the oscillatorsαn. The wave functional o
the zero mode is a plane wave,

(2.22)Ψ (ϕ0) = eiΠ0ϕ0.

Let us now compactify the boson on a circle with radiusr , which means that the theo
is invariant under

(2.23)ϕ(x, t) �→ ϕ(x, t) + 2πr,

or equivalently,ϕ0 �→ ϕ0 + 2πr . Imposing this condition on the wave functionalΨ (ϕ0) =
Ψ (ϕ0 + 2πr) implies the quantization of the momentum zero mode,

(2.24)Π0 = n

r
,

wheren is an integer. In view of(2.17), (2.21)and(2.24), the zero-mode contribution t
the energy is

(2.25)E0,n = 1

2L

(
n

r
+ κ+ − κ−

)2

.

Comparing this result with the CFT result

(2.26)E0,n = − π

24L
(ceff − 1) = π

L

n

leads to the following expression for the conformal dimension

(2.27)
n = 1

2π

(
n

r
+ κ+ − κ−

)2

.

For the boundary sine-Gordon model and its UV limit, the compactification ra
must be

(2.28)r = 2

β
,

corresponding to the periodicity(2.6). We conclude that
n is given by
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n = 1

2π

(
nβ

2
+ κ+ − κ−

)2

(2.29)= 1

4ν(ν − 1)

[
2n(ν − 1) + 4

β
(ν − 1)(κ+ − κ−)

]2

.

This result is consistent with theκ± periodicity (2.11). Also, this result is “dual” to the
corresponding result for a free massless boson with Dirichlet boundary conditions[28,29].

2.3. Boundary S matrices

Results from the theory on the half line[11] imply that the right and boundaryS matri-
cesR(θ;η±, ϑ±, γ±) are given by

(2.30)R(θ;η,ϑ, γ ) = r0(θ)r1(θ;η,ϑ)M(θ;η,ϑ, γ ),

whereM has matrix elements

(2.31)M(θ;η,ϑ, γ ) =
(

m11 m12

m21 m22

)
,

where

m11 = cosη coshϑ cosh(λθ) + i sinη sinhϑ sinh(λθ),

m22 = cosη coshϑ cosh(λθ) − i sinη sinhϑ sinh(λθ),

m12 = ieiγ sinh(λθ)cosh(λθ),

(2.32)m21 = ie−iγ sinh(λθ)cosh(λθ).

Moreover, the scalar factors have the integral representations (see, e.g.,[14])

r0(θ) = exp

{
2i

∞∫
0

dω

ω
sin(2θω/π)

sinh((ν − 2)ω/2)sinh(3ω/2)

sinh((ν − 1)ω/2)sinh(2ω)

}
,

(2.33)r1(θ;η,ϑ) = 1

cosη coshϑ
σ(η, θ)σ (iϑ, θ),

where

σ(x, θ) = exp

{
2

∞∫
0

dω

ω
sin

(
(iπ − θ)ω/(2π)

)
sin

(
θω/(2π)

)

(2.34)× cosh((ν − 1)ωx/π)

sinh((ν − 1)ω/2)cosh(ω/2)

}
.

Note the presence of the factorse±iγ in the off-diagonal matrix elementsm12 andm21,
which are related to the presence of the∂yϕ terms in the boundary action(2.3), and which
are absent in the case of a single boundary[11]. In [9] an argument from[11] was borrowed
to determine the relation between the (real) parametersγ± in the boundaryS matrix and

the (real) parametersκ± in the boundary action; namely (after correcting for the missingi),
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γ± = βκ±/π . However, this relation seems to be incorrect, since it would imply tha
factorseiγ± do not have the periodicity(2.11). We propose here instead the relation3

(2.35)γ± = 4π

β
κ±,

which implies that the factorseiγ± (and hence, the boundaryS matrix) do have the expecte
periodicity(2.11).

The relation(2.35)for the right boundary can be understood from elementary con
erations. Indeed, for the theory on the half-linex− = −∞, x+ = 0, the Minkowski-space
Lagrangian(2.13)can be written in the form

(2.36)LM = LM(κ+ = 0) − κ+∂tϕ(x = 0).

The amplitude for a process can be expressed using a path integral of the form

(2.37)
∫

Dϕ exp

(
i

∞∫
−∞

dt LM

)
= e−iκ+
ϕ

∫
Dϕ exp

(
i

∞∫
−∞

dt LM(κ+ = 0)

)
,

where now

(2.38)
ϕ = ϕ(x = 0, t = ∞) − ϕ(x = 0, t = −∞),

with appropriate initial and final configurations of the fieldϕ at t = ∓∞. For definiteness
we can fix the asymptotic conditionϕ(x = −∞) = 0. For a process involving a solito
reflecting back into a soliton, we have

(2.39)ϕ(x = 0, t = ∓∞) = 2π

β
⇒ 
ϕ = 0.

Hence, for such processes the amplitude is independent ofκ+; and this is also true for th
reflection of an antisoliton into an antisoliton. For a soliton reflecting into an antiso
we have

(2.40)ϕ(x = 0, t = ∓∞) = ±2π

β
⇒ 
ϕ = −4π

β
,

which results in a phase factor

(2.41)exp

(
i
4π

β
κ+

)
.

For an antisoliton reflecting into a soliton the resulting phase factor is the inverse
above. This leads to the relation(2.35)between the parameters in the Lagrangian and
reflection factor for the right boundary.

Similarly, for the left boundary, we consider the theory on the right half-linex− =
0, x+ = ∞. The corresponding Lagrangian and path integral are given by(2.36)and(2.37)
with κ+ �→ −κ−; and we now fixϕ(x = ∞) = 0. For a soliton reflecting into an antisolito
3 The two relations coincide at the free fermion point.
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(2.42)ϕ(x = 0, t = ∓∞) = ∓2π

β
⇒ 
ϕ = 4π

β
,

which results in a phase factor

(2.43)exp

(
i
4π

β
κ−

)
,

and leads to the relation(2.35)for the left boundary.
We find further support for relation(2.35)from a study of the UV and IR limits of th

NLIE in Sections4.1 and 4.2.
The relation of the boundaryS-matrix parametersη±, ϑ± to the parametersµ±, ϕ±

0 in
the boundary action(2.3) is given by[12,23]

cos

(
β2

8π
(η± + iϑ±)

)
= µ±

µc

e∓ i
2βϕ±

0 ,

(2.44)cos

(
β2

8π
(η± − iϑ±)

)
= µ±

µc

e± i
2βϕ±

0 ,

where

(2.45)µc =
√

2µbulk

sin(β2/8)
.

Note that we have introduced an additional minus sign on one of the boundaries. T
the UV–IR relation is different on the two boundaries, the difference being in the si
ϕ0. The two sets of boundary parameters(µ±, ϕ±

0 , κ±) and(η±, ϑ±, γ±) can be regarde
as “UV” and “IR” boundary parameters, respectively; hence, the relations(2.35), (2.44),
(2.45)correspond to UV–IR relations.

3. The lattice counting function

The light-cone lattice[30–32]version of the sine-Gordon model is similar to the XX
spin chain, the main difference being the introduction of an alternating inhomoge
parameter±Λ. The solution[16,17] leads to the Bethe ansatz equations[9]

(3.1)h(+)(λj ) = I
(+)
j , j = 1, . . . ,M(+),

where{I (+)
j } are integers, and the lattice counting functionh(+)(λ) is given by4

4 It should be clear from the context whether the symbolλ refers to the value(2.12) of the bulk coupling

constant or to the rapidity variable, as in(3.2).
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h(+)(λ) = 1

2π

{
N

[
q1(λ + Λ) + q1(λ − Λ)

] + q1(λ) + r1(λ)

+ q2a−−1(λ) − r1+2ib−(λ) + q2a+−1(λ) − r1+2ib+(λ)

(3.2)−
M(+)∑
k=1

[
q2(λ − λk) + q2(λ + λk)

]}
.

The functionsqn(λ) andrn(λ) are odd, and are defined by5

qn(λ) = π + i ln
sinh(π

ν
(λ + in

2 ))

sinh(π
ν
(λ − in

2 ))
= 2 tan−1(cot

(
nπ/(2ν)

)
tanh(πλ/ν)

)
,

(3.3)rn(λ) = i ln
cosh(π

ν
(λ + in

2 ))

cosh(π
ν
(λ − in

2 ))
.

The real lattice boundary parametersa±, b±, c± must satisfy the constraints

(3.4)a− + a+ = ±|c− − c+| + k, b− + b+ = 0,

where the integerk ∈ [−(N + 1),N + 1] is even ifN is odd, and is odd ifN is even. The
parametersa± can be restricted to the fundamental domain|2a± − 1| < 2ν. The number
M(+) of Bethe roots is given by

(3.5)M(+) = 1

2
(N − 1+ k),

wherek is the integer in the constraint(3.4).
The corresponding energy is given by[7,32]6

(3.6)E = −1

δ

M(+)∑
j=1

[
a1(λj + Λ) + a1(λj − Λ)

]
,

whereδ is the lattice spacing, and

(3.7)an(λ) = 1

2π

d

dλ
qn(λ) = 1

ν

sin(nπ/ν)

cosh(2πλ/ν) − cos(nπ/ν)
.

For given values of the bulk and boundary parameters, the counting functionh(+)(λ)

does not give all 2N energy levels. The remaining levels can be obtained from a c
sponding counting functionh(−)(λ) with the boundary parameters negated,

(3.8)(a±, b±) �→ (−a±,−b±),

5 The branch cut of lnz is chosen along the positive real axis; hence, ln(−1) = iπ .
6 There is a misprint in the formula (2.29) in[9] for the boundary energy of the (homogeneous) open X

chain: the first term in the second line should be

sgn(2a± − 1)
sinh((ν − |2a± − 1|)ω/2)

sinh(νω/2)
,

where sgn(n) is the function defined in(3.11).
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and with the number of Bethe roots equal toM(−) = 1
2(N − 1 − k) [18]. We shall refer

to this other counting function as the “negated” counting function. Although below
generally explicitly discuss onlyh(+)(λ), corresponding results hold also forh(−)(λ).

Since the counting function(3.2) is odd and has the periodicityλ �→ λ + iν, we can
restrict the Bethe rootsλj to the following region of the complexλ plane[8]

(3.9)

{
�eλ > 0, −ν

2
< �mλ � ν

2

}
∪

{
�eλ = 0, 0< �mλ <

ν

2

}
.

The origin (λ = 0) is excluded since the corresponding Bethe state would vanish.
The summation over all the roots in the counting function involves the functionq2(λ),

whose fundamental analyticity strip is| �mλ| < min(1, ν − 1). Hence, it is useful to
classify the Bethe rootsλj in the region(3.9) as either real, “close” (0< | �mλj | <

min(1, ν − 1)), or “wide” (min(1, ν − 1) < | �mλj | < ν
2). Real solutions ofh(+)(λ) =

integer which are not Bethe roots are called “holes”. If an “object” (either a root
hole) has rapidityλj for which the counting function is decreasing (d

dλ
h(+)(λj ) < 0), then

the object is called “special”. We denote byMR , MC , MW , NH andNS the number of
real roots, close roots, wide roots, holes, and special objects, respectively. Note a
h(+)(λ) is continuous on the realλ axis. For further discussion about general propertie
the counting function and the classification of roots and holes, see, e.g.,[4,8].

We now proceed to derive a so-called lattice counting equation, which relatesMC , MW ,
NH andNS (but which is independent ofMR andN ) for any Bethe state. To this end, w
first compute the asymptotic limit of the counting function, and take its integer part,

⌊
h(+)(∞)

⌋ = M(+) + 1+ 1

2
(s+ + s−) − k + sgn(ν − 2)MW

(3.10)+
⌊

1

2
− 1

ν
(a+ + a− − k)

⌋
,

where� � denotes integer part, ands± = sgn(a± − 1
2), where the sign function sgn(n) is

defined as

(3.11)sgn(n) =
{ n

|n| : n �= 0,

0: n = 0.

In obtaining the result(3.10), we have used the facts

qn(∞) = sgn(n)π − nπ

ν
for 0< |n| < 2ν,

(3.12)rn(∞) = −nπ

ν
,

as well as the relation(3.5)to eliminateN , and the second constraint in(3.4). On the other
hand, one can argue that (see, e.g.,[4])

(3.13)
⌊
h(+)(∞)

⌋ = NH + MR − 2NS.

Using the evident relationM(+) = MR +MC +MW to eliminateMR on the RHS of(3.13),

and then combining with(3.10), we finally obtain the lattice counting equation,
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NH − 2NS = MC + 2MW step(ν − 2) + 1+ 1

2
(s+ + s−) − k

(3.14)+
⌊

1

2
− 1

ν
(a+ + a− − k)

⌋
,

where the step function step(n) is defined as

(3.15)step(n) =
{

1: n � 0,

0: n < 0.

The lattice counting equation(3.14)is valid also for the homogeneous(Λ = 0) open XXZ
spin chain.

As a simple example of the utility of this result, consider (as in[9]) the case thatN is
even withk = 1, and look for purely real solutions with no holes or special roots(MC =
MW = NH = NS = 0). The lattice counting equation implies

(3.16)0= 1

2
(s+ + s−) +

⌊
1

2
− 1

ν
(a+ + a− − 1)

⌋
,

which is a condition on the boundary parametersa± that is necessary for such solutio
to exist. Numerical checks suggest that this might also be a sufficient condition fo
existence of such solutions.

4. Nonlinear integral equation

The lattice NLIE can be derived from the lattice counting function(3.2) by standard
manipulations[2–8]. The continuum limit consists of taking the number of spinsN → ∞,
the lattice spacingδ → 0, and the inhomogeneity parameterΛ → ∞, in such a way tha
the lengthL = x+ −x− and the soliton massm (whose relation toµbulk is given by(A.12))
are given by

(4.1)L = Nδ, m = 2

δ
e−πΛ,

respectively. Changing to the rescaled rapidity variableθ = πλ, and settingf (+)(θ) =
2πih(+)(θ), one arrives at the continuum NLIE forf (+)(θ)

f (+)(θ) = 2imLsinhθ + iP
(+)
bdry(θ) + ig(θ)

(4.2)+ 2i

π

∞∫
−∞

dθ ′ �mG(θ − θ ′ − iε) ln
(
1− ef (+)(θ ′+iε)

)
,

whereG(θ) is given by

(4.3)G(θ) = 1

2π

∞∫
−∞

dω e−iωθ/π Ĝ(ω),
and the Fourier transform̂G(ω) is given by



C. Ahn et al. / Nuclear Physics B 714 [FS] (2005) 307–335 319

n the

n to
roots)

re

n
vely,

dity
(4.4)Ĝ(ω) = sinh((ν − 2)ω/2)

2 sinh((ν − 1)ω/2)cosh(ω/2)
.

Furthermore,P (+)
bdry(θ) is the odd function satisfyingP (+)′

bdry(θ) = 2R(+)(θ), whereR(+)(θ)

is given (as in(4.3)) in terms of its Fourier transform

R̂(+)(ω) = sinh((ν − 2)ω/4)cosh(νω/4)

sinh((ν − 1)ω/2)cosh(ω/2)
+ sinh((ν − 2)ω/2)

2 sinh((ν − 1)ω/2)cosh(ω/2)

+ s+ sinh((ν − |2a+ − 1|)ω/2)

2 sinh((ν − 1)ω/2)cosh(ω/2)
+ sinh((1+ 2ib+)ω/2)

2 sinh((ν − 1)ω/2)cosh(ω/2)

(4.5)+ (+ ↔ −),

where(+ ↔ −) is a shorthand for two additional terms which are the same as those o
second line of(4.5), but witha+, s+ andb+ replaced bya−, s− andb−, respectively.

Moreover,g(θ) is the source term. For simplicity, we henceforth restrict our attentio
source contributions from holes and special roots; other bulk sources (close or wide
can presumably be treated in the same manner as in[4,8]. The source term is therefo
given by

g(θ) =
NH∑
j=1

[
χ

(
θ − θH

j

) + χ
(
θ + θH

j

)]

−
NS∑
j=1

[
χ

(
θ − θS

j + iε
) + χ

(
θ − θS

j − iε
) + χ

(
θ + θS

j + iε
)

(4.6)+ χ
(
θ + θS

j − iε
)]

,

whereχ(θ) is the odd function satisfyingχ ′(θ) = 2G(θ), the latter function being give
by (4.3). Finally, θH

j andθS
j are the positions of the holes and special roots, respecti

whose corresponding distinct, positive integers we label byIH
j andIS

j ,

(4.7)f (+)
(
θH
j

) = 2πiIH
j , f (+)

(
θS
j

) = 2πiIS
j .

For the continuum model, the valueIj = 0 is excluded because the corresponding rapi
θj = 0 is not physical.

The energy is given by

(4.8)E = εbulkL + εboundary+ ECasimir,

whereεbulk andεboundaryare given by[9]

(4.9)εbulk = 1

4
m2 cot(νπ/2)

and

εboundary= −m

2

[
−cot(νπ/4) − 1+ cos((ν − 2s+a+)π/2)

sin(νπ/2)

(4.10)+ cosh(πb+) + (+ ↔ −)

]
,

sin(νπ/2)
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andECasimir (order 1/L) is given by

ECasimir= m

NH∑
j=1

coshθH
j − m

NS∑
j=1

[
cosh

(
θS
j + iε

) + cosh
(
θS
j − iε

)]

(4.11)− m

2π

∞∫
−∞

dθ �m sinh(θ + iε) ln
(
1− ef (+)(θ+iε)

)
.

The following relations between the continuum IR (η±, ϑ±) and lattice (a±, b±) bound-
ary parameters were obtained in[9]7

(4.12)η± = ∓π(s±ν − 2a±)

2(ν − 1)
, ϑ± = πb±

ν − 1
.

These relations were obtained by comparing the continuum[12,23]and lattice expression
for the boundary energy. A relation betweenγ± andc± was also conjectured in[9]

(4.13)γ± = πc±
ν − 1

,

for which we shall find further support from analysis of the UV and IR limits in Sections4.1
and 4.2below. Note that these relations together with the constraints(3.4)among the lattice
boundary parameters imply corresponding constraints among the continuum IR bo
parameters,

η− − η+ = ∓|γ− − γ+| + π

ν − 1

[
1

2
(s+ + s−)ν − k

]
,

(4.14)ϑ− + ϑ+ = 0.

The UV and IR limits also imply that, in the continuum limit, the integerk must be re-
stricted to odd values,

(4.15)k = odd.

The UV–IR relations(2.35), (2.44), (2.45)imply corresponding constraints among the U
parameters appearing in the boundary sine-Gordon action. We emphasize that ou
describes the sine-Gordon model only for values of boundary parameters which
these constraints.

It is interesting to consider the continuum version of the lattice counting equation(3.14).
For the case of periodic boundary conditions, Destri and de Vega have argued[4] that
the continuum result coincides with the lattice result without the integer part term
therefore plausible that for the case at hand the continuum counting equation is give

(4.16)NH − 2NS = MC + 2MW step(ν − 2) + 1+ 1

2
(s+ + s−) − k.

7 We have already implicitly noted the relation between the continuum and latticebulk parameters in(2.12).
Indeed, in[9], ν is defined asν ≡ π/µ, whereµ ∈ (0,π) is the bulk anisotropy parameter of the XXZ sp
chain. Here we do not explicitly introduce the lattice anisotropy parameterµ in an effort to reduce the number o

parameters appearing in the paper.
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We shall find some support for this conjecture when we consider the UV limit below.8

4.1. Ultraviolet limit

We now consider the UV limitmL → 0. In this limit, only large values of|θ | contribute
to the Casimir energy.9 Indeed, the driving term of the NLIE implies that one must cons
the scaling limit

(4.17)θ = ln
1

mL
+ θ̃ ,

where θ̃ is finite asmL → 0. Hence, one must distinguish whether the positions of
sources remain finite or scale in the same manner. LetN0

H (N∞
H ) be the number of hole

whose positionsθH 0
j (θH ∞

j ) remain finite (scale), with corresponding integersIH 0
j (IH ∞

j ,
respectively); and similarly for the special roots. Hence,

(4.18)θH ∞
j = ln

1

mL
+ θ̃H ∞

j , θS ∞
j = ln

1

mL
+ θ̃ S ∞

j ,

with θ̃H ∞
j andθ̃ S ∞

j finite asmL → 0, and

(4.19)NH = N0
H + N∞

H , NS = N0
S + N∞

S .

Proceeding to compute the Casimir energy from(4.2)and(4.11)as in[4–7], imposing the
constraints(3.4), and recalling thatECasimir= − ceffπ

24L with ceff = 1− 24
n, we obtain


n = 1

4ν(ν − 1)

{
ν

[
1

2
(s+ + s−) + N0

H − N∞
H − 2N0

S + 2N∞
S

]

− (
k − 1+ 2N0

H − 4N0
S

) ∓ |c− − c+|
}2

+
N∞

H∑
j=1

IH ∞
j

(4.20)− 2

N∞
S∑

j=1

IS ∞
j − 1

2

(
N∞

H − 2N∞
S

)(
N∞

H − 2N∞
S + 1

)
.

The result(4.20)for the conformal dimension is consistent with the CFT result(2.29)
if we identify

(4.21)c± = 4

β
(ν − 1)κ±,

and set

(4.22)
1

2
(s+ + s−) + N0

H − N∞
H − 2N0

S + 2N∞
S = k − 1+ 2N0

H − 4N0
S = 2n,

8 We recall[4] that special objects cannot appear in the IR limit. They can appear asmL → 0, in such a way
thatNH,eff = NH − 2NS remains constant.

9 Since the counting function is odd, we consider explicitly onlyθ → ∞, and we double the result in order

also account for theθ → −∞ contribution.
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wheren is an integer. The relation(4.21) together with(2.35) implies the relation(4.13)
between the boundary parametersγ± andc±.10 Note that the result(4.20)for the conformal
dimension contains not only the contribution(2.29)corresponding to the highest weigh
but also additional integer-valued terms corresponding to their descendants.

It follows from (4.19)and(4.22)that

(4.23)NH − 2NS = 1+ 1

2
(s+ + s−) − k,

which is in agreement with the conjectured continuum counting equation(4.16) for the
special caseMC = MW = 0 that we are considering. Moreover,(4.22) implies the result
(4.15)thatk must be an odd integer.

Here are three examples:

Example 1. A Bethe state consisting of only real roots and no holes or special roots (NH =
NS = 0) with k = 1 has, according to(4.23), a “good” UV limit only if the boundary
parameters satisfys+ + s− = 0; and its UV dimension, according to(4.22), is given by
(2.29)with n = 0.

Example 2. A Bethe state consisting of only real roots and 1 hole and no special
(NH = 1, NS = 0) with k = 1 has a “good” UV limit only if s+ + s− = 2. Its UV di-
mension is given by(2.29)with eithern = 1 or n = 0, depending on whether in the U
limit the hole’s rapidity remains finite (N0

H = 1,N∞
H = 0) or infinite (N0

H = 0,N∞
H = 1),

respectively.

Example 3. For k = −1, it is possible to have a Bethe state with a “good” UV limit co
sisting of only real roots and 2 holes and no special roots (NH = 2,NS = 0), provided
s+ + s− = 0. Its UV dimension is given by(2.29)with n values equal to either 1,0, or−1
depending on whether in the UV limit the hole rapidities are either both finite, one
and one infinite, or both infinite, respectively.

4.2. Infrared limit

We verify in this section that the IR limit of the NLIE for a one-hole state is equiva
to the Yang equation for a particle on an interval. Indeed, in the IR limitmL → ∞, the
integral terms in the NLIE(4.2) and in the energy formula(4.11)are of orderO(e−mL)

and can therefore be neglected. For a single hole with rapidityθH , the NLIE becomes

(4.24)f (+)(θ) = 2imLsinhθ + iP
(+)
bdry(θ) + iχ(θ − θH ) + iχ(θ + θH ).

Noting thatef (+)(θH ) = 1 on account of Eq.(4.7), we obtain the following relation forθH

(4.25)e2imLsinhθH e
i(P

(+)
bdry(θH )+χ(2θH )) = 1.

10 We remark that(4.21)and the periodicity(2.11)imply the periodicityc± → c± + 2(ν − 1); i.e., the period-

icity c± → c± + 2ν of the lattice model[9] becomes “renormalized” in the continuum.
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A similar relation can be derived from the negated counting function,

(4.26)e2imLsinhθH e
i(P

(−)
bdry(θH )+χ(2θH )) = 1,

whereP
(−)
bdry(θ) differs from P

(+)
bdry(θ) by the negation of the boundary parameters(3.8).

These relations should be equivalent to the Yang equation for a particle on an inte
lengthL,

(4.27)e2imLsinhθH R(θH ;η+, ϑ+, γ+)R(θH ;η−, ϑ−, γ−)
∣∣θH , (±)

〉 = ∣∣θH , (±)
〉
,

where the boundaryS matricesR(θ;η±, ϑ±, γ±) are given by(2.30), and|θH , (±)〉 denote
the two possible one-particle states.11

In other words, dropping the subscriptH of the hole rapidity, the expression

e
i(P

(±)
bdry(θ)+χ(2θ)) should be equal to the two eigenvalues of the Yang matrixY(θ), which is

defined by

(4.28)Y(θ) = R(θ;η+, ϑ+, γ+)R(θ;η−, ϑ−, γ−).

Indeed, for a state with real roots and one hole, Eq.(4.16)implies thatk = 1
2(s+ + s−).

Sincek must be odd, it follows that the only two possibilities arek = s± = 1 or k = s± =
−1. For definiteness, we consider the former case,k = s± = 1, and therefore,12 < a± <
1
2 + ν. From the definitions ofP (±)

bdry(θ) andχ(θ), it follows that

(4.29)P
(±)
bdry(θ) + χ(2θ) = 2

∞∫
0

dω

ω

[
sin(ωθ/π)R̂(±)(ω) + sin(2ωθ/π)Ĝ(ω)

]
.

With the help of the expression(4.5)for R̂(+)(ω) (and a similar expression with the boun
ary parameters negated(3.8) for R̂(−)(ω)) and the identity[34]

sinh((ν − 2)ω/4)cosh(νω/4)

sinh((ν − 1)ω/2)cosh(ω/2)
+ sinh((ν − 2)ω/2)

2 sinh((ν − 1)ω/2)cosh(ω/2)

(4.30)= 2 sinh((ν − 2)ω/4)sinh(3ω/4)

sinh((ν − 1)ω/4)sinhω
− Ĝ(ω/2),

we obtain

e
i(P

(±)
bdry(θ)+χ(2θ)) = exp2i

∞∫
0

dω

ω
sin(2ωθ/π)

{
2 sinh((ν − 2)ω/2)sinh(3ω/2)

sinh((ν − 1)ω/2)sinh(2ω)

+ sinh((1± (ν − 2a+))ω)

2 sinh((ν − 1)ω)coshω
+ sinh((1± 2ib+)ω)

2 sinh((ν − 1)ω)coshω

(4.31)+ (+ ↔ −)

}
.

11 In the case of Dirichlet boundary conditions,|θH , (+)〉 and|θH , (−)〉 would correspond to one-soliton an
one-antisoliton states, respectively. For this case, a similar approach for computing boundaryS matrices was

considered in[33].
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Finally, using the relations(4.12)between the lattice and continuum IR boundary para
ters, we obtain

e
i(P

(±)
bdry(θ)+χ(2θ)) = exp2i

∞∫
0

dω

ω
sin(2ωθ/π)

{
2 sinh((ν − 2)ω/2)sinh(3ω/2)

sinh((ν − 1)ω/2)sinh(2ω)

+ sinh((1∓ (ν − 1)2η+/π)ω)

2 sinh((ν − 1)ω)coshω
+ sinh((1± (ν − 1)2η−/π)ω)

2 sinh((ν − 1)ω)coshω

+ sinh((1± (ν − 1)2iϑ+/π)ω)

2 sinh((ν − 1)ω)coshω

(4.32)+ sinh((1± (ν − 1)2iϑ−/π)ω)

2 sinh((ν − 1)ω)coshω

}
.

We now turn to the computation of the eigenvalues of the Yang matrix(4.28). Recalling
(2.30), we see that the eigenvaluesy(±) of Y(θ) are given by

(4.33)y(±) = r0(θ)2r1(θ;η+, ϑ+)r1(θ;η−, ϑ−)Λ(±),

whereΛ(±) denote the eigenvalues ofM(θ;η+, ϑ+, γ+)M(θ;η−, ϑ−, γ−). Although the
expressions forΛ(±) are generally very complicated, a remarkable simplification oc
if the boundary parameters satisfy the constraints(4.14), (4.15). Indeed, in that case, th
eigenvalues are factorizable into a product of trigonometric functions,

(4.34)Λ(±) = cos(−η+ ∓ iλθ)cos(η− ∓ iλθ)cos(iϑ+ ∓ iλθ)cos(iϑ− ∓ iλθ).

Recalling the expressions(2.33)for r0(θ) andr1(θ;η,ϑ), using the identity

1

cosx
cos(x ∓ iλθ)σ (x, θ)

(4.35)= exp

{
2i

∞∫
0

dω

ω
sin(2θω/π)

sinh((1± (ν − 1)2x/π)ω)

2 sinh((ν − 1)ω)coshω

}
,

and comparing with(4.32), we obtain the desired result

(4.36)e
i(P

(±)
bdry(θ)+χ(2θ)) = r0(θ)2r1(θ;η+, ϑ+)r1(θ;η−, ϑ−)Λ(±) = y(±).

That is, we have verified that the IR limit of the NLIE for a one-hole state is equiva
to the Yang equation for a particle on an interval. We stress that the boundaryS matrices
entering the Yang equation are not diagonal.

We remark that, for the case ofNH holes, the Casimir energy in the IR limit become

(4.37)ECasimir→ mNH .

Indeed, as already noted, the integral term in the energy formula(4.11)can be neglected
thus, only the first term of that formula survives. Moreover, the hole rapidities go asθH

j ∼

1

mL
(sincemLsinhθH

j ∼ 1) for L → ∞, which leads to the result(4.37).
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5. Numerical results

The NLIE (4.2)can be solved numerically by iteration, and the corresponding Ca
energy can then be evaluated with(4.11). It is not evident how to best present such num
ical results for the full range ofL ∈ (0,∞). The difficulty is that, in the UV limit (L → 0),
ECasimir= −πceff

24L diverges andceff is finite; while in the IR limit (L → ∞), the reverse is
true:ECasimir is finite (4.37)andceff diverges (if the number of holes is not zero). That
neitherECasimir nor ceff remain finite over the full range ofL. Following[35], we consider
the dimensionless quantity (“normalized energy”)

(5.1)E = LECasimir

π + mL
= − πceff

24(π + mL)
,

whose UV and IR limits are both finite:

(5.2)E → 
n − 1

24
for L → 0,

(5.3)E → NH for L → ∞.

We have plottedE as a function of lnl, wherel ≡ mL is the dimensionless scale par
meter, for various states.12

5.1. Ground state

NLIE results for the ground state (0 holes), whose UV limit is discussed inExample 1
at the end of Section4.1, are presented inFig. 1. As expected, the value of−ceff/24 in the
IR limit is 0; and in the UV limit agrees well with the analytical result for
0 given by
(2.29), (4.20).

We define three regions ofl = mL in which we further test, with different methods, t
ground state energy level obtained by numerically solving the NLIE:

• The UV region is the small volume region,l < 10−1; here we compare it with bound
ary conformal perturbation theory (BCPT).

• In the intermediate region,l ∼ 1, we test it against truncated conformal space appro
(TCSA) [24,25].

• In the IR region, where the volume is large,l > 10, we compute its Lüscher-type[26,
27] correction.

In all regions we obtain a perfect confirmation of the correctness of our NLIE.

5.1.1. UV region
Combining the formulae fromAppendix A which describe the BCPT and NLI

schemes, we obtain the small volume expansion of the NLIE ground state energy

12 For the case of 0 holes, we plot−ceff/24 vs. lnl, which also has the limiting values(5.2), (5.3) with n =

NH = 0.
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Fig. 1.−ceff/24 vs. logl for ground state (0 holes), with parameter valuesν = 1.93,a+ = 1.8, a− = −0.9, and
b+ = −b− = 0.41444. SeeExample 1in Sections4.1 and 5.1.

ENLIE(L) = −εbulkL − εboundary

+ π

L

(
E|0〉 − 1

24
+ c0

2

(
π

L

)2(
−1)

+ c0
4

(
π

L

)4(
−1)

(5.4)+ c0
6

(
π

L

)6(
−1)

+ · · ·
)

.

Note thatE|0〉 is the conformal dimension of the ground state, which is given by(2.29)

with n = 0; that is,E|0〉 = κ2

2π
. Also, as in SectionA.3, here
 = β2

8π
= ν−1

ν
. The bulk and

boundary energies are given by Eqs.(4.9) and (4.10), respectively. Computing numerical
the ground-state energy for small volumes, the coefficientsc0

2m
2(
−1) can be extracted

Table 1shows a comparison between the numerically measured coefficients13 and the ex-
act values calculated from BCPT(A.11), (A.12) for various values of the bulk couplin
constantν and for the same values of boundary parameters used to generateFig. 1. The
agreement is convincing and is of the order of our numerical precision.

5.1.2. Intermediate region
In this region, the energy levels are not dominated only by the first few terms i

UV expansion; instead, all the higher-order terms contribute the same way. That is,
perturbative check is necessary. This is provided by a TCSA calculation, which—
a variational method—sums up the perturbative series, in which all the coefficien
calculated approximately in a finite-dimensional, truncated Hilbert space. The difficu
in the comparison. TCSA works if the dimension of the perturbing operator is small

13 Specifically, we computedm−1ENLIE for 100 values ofl, from l = 10−5 to l = 10−3, which we fitted to
the curve(5.4) to obtain estimates forc0
j
mj(
−1).
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Table 1
Comparison of NLIE and BCPT results forc0

2m2(
−1), for various values of bulk coupling constantν and for
boundary parameter valuesa+ = 1.8, a− = −0.9, andb+ = −b− = 0.41444

ν NLIE c0
2m2(
−1) BCPTc0

2m2(
−1)

1.70 −5.3215286975 −5.3215288274
1.80 −7.4632436186 −7.4632435914
1.93 −19.5148929102 −19.5148929079
2.20 5.6819407377 5.6819407318
2.40 2.4879276564 2.4879276494
2.60 1.4601870563 1.4601870411

Table 2
Comparison of NLIE and TCSA results for the ground-state energy, forν = 1.2 and for boundary paramete
valuesa+ = 1.2, a− = −0.2, andb+ = b− = 0

Volume l = 0.7 l = 0.9 l = 1.1 l = 1.3

m−1ETCSA with Ecut = 10 −0.32803 −0.31248 −0.31030 −0.31498
m−1ETCSA with Ecut = 12 −0.32834 −0.31284 −0.31072 −0.31544
m−1ETCSA with Ecut = 14 −0.32857 −0.31311 −0.31103 −0.31579
m−1ETCSA with Ecut = 16 −0.32875 −0.31332 −0.31127 −0.31606
m−1(ENLIE + εbulkL + εbdry) −0.33067 −0.31559 −0.31386 −0.31895

is whenν is close to one. In this domain, however, the NLIE is not convergent. So on
to find a proper range, where the NLIE is convergent and the TCSA is reliable enou
Table 2we present results forν = 1.2 and for boundary parameter valuesa+ = 1.2, a− =
−0.2 andb+ = b− = 0. The dimensionless NLIE ground state energy data are transfo
into the TCSA scheme by(A.6) and are compared to the dimensionless TCSA data
different truncation levels and dimensionless volumes,l = mL.

We can see that as we increaseEcut the TCSA energies approach the NLIE energy fr
above as a consequence of the variational nature of the TCSA. The truncated Hilber
with Ecut = 16 contains 6133 states.

5.1.3. IR region
Here we check the exponentially small correction to the ground state energy for

but finite volumes. This is dominated by the first breather, with massm1 = 2msin( π
2λ

), and
is given by[27] as

(5.5)

ENLIE(L) = m1
1+ cos π

2λ
− sin π

2λ

1− cos π
2λ

+ sin π
2λ

tan
η+
2λ

tanh
ϑ+
2λ

tan
η−
2λ

tanh
ϑ−
2λ

e−m1L + · · · .

In Fig. 2 this correction is checked as a function ofν = 1 + 1/λ and of the boundary
parameters. On the figure the logarithm of the dimensionless ground state energy is
against the dimensionless volume. The upper two lines in descending order are the L
corrections(5.5)for ν = 1.25,b+ = −b− = 0.1; and witha+ = 1.2,a− = −0.2 for the first
line, anda+ = 1.1, a− = −0.3 for the second line. The lower two lines have parame

ν = 1.5, a+ = 1.2, a− = −0.2; and withb+ = −b− = 1 for the first line, whileb+ =
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Fig. 2. log(m−1E) vs. l for the ground state, with various values of the bulk and boundary parameters
Section5.1.3.

−b− = 0.1 for the second line. The various boxes are the data of the numerical solut
the NLIE. The agreement is really excellent.

5.2. Excited states

NLIE results for states with 1 and 2 holes, whose UV limits are discussed inExamples 2
and 3at the end of Section4.1, are presented inFigs. 3 and 4, respectively. Note that th
values ofE in the IR limit are 1 and 2, respectively, in agreement with(5.3). Moreover,
the values ofE in the UV limit agree well with(5.2)and with the analytical results for
n

given by(2.29), (4.20).
In particular, for the 1-hole states (Fig. 3), we consider integer valuesIH = 1,2,3,4;

we find that the corresponding hole rapiditiesθH become infinite in the UV limit, and thus
all of these states haven = 0. The values ofE in the UV limit are spaced by 1 on accou
of the additional integer contribution to
n in (4.20): as IH = IH ∞ increases by 1, s
does
n. Similarly, for the 2-hole states (Fig. 4), we consider integer values(IH

1 , IH
2 ) =

(1,2), (1,3), (1,4), (2,3); we find that both hole rapidities become infinite in the UV lim
and thus, the states haven = −1. AsIH

1 +IH
2 increases by 1, so does the limiting UV val

of 
n. Hence, the lowest line is(IH
1 , IH

2 ) = (1,2), the second-lowest line is(1,3), and the
next two (almost degenerate) are(2,3) and(1,4).

6. Conclusion

Starting from the Bethe ansatz solution[16–18]of the XXZ model with general bound
ary terms, we have derived a nonlinear integral equation for some bulk excited sta

the sine-Gordon model on a finite interval with general integrable boundary interactions
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Fig. 3. E vs. logl for 1-hole states with integer valuesIH = 1,2,3,4, and with parameter valuesν = 1.93,
a+ = 1.8, a− = 1.9, andb+ = −b− = 0.41444. SeeExample 2in Sections4.1 and 5.2.

Fig. 4.E vs. logl for 2-hole states with integer values(IH
1 , IH

2 ) = (1,2), (1,3), (1,4), (2,3), and with paramete
valuesν = 2.13,a+ = 1.8, a− = −0.9, andb+ = −b− = 0.50357. SeeExample 3in Sections4.1 and 5.2.

[10,11], including boundary terms proportional to∂yϕ. We have used this NLIE to com
pute numerically the dimensions of these states as a function of scale, and have c
the UV and IR limits analytically. We have also verified that the ground-state NLIE ag
well with boundary conformal perturbation theory (BCPT), boundary truncated confo
space approach (BTCSA) and the boundary Lüscher formula. An advantage of the
approaches is that they are not restricted to values of the boundary parameters that o
constraints(3.4), (4.14). The consistency of the results provides support for the prop

relations between the lattice and continuum boundary parameters.
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The result(2.29)for the conformal dimensions of a free massless boson with Neum
boundary conditions and∂yϕ boundary terms, which is “dual” to the corresponding re
for a massless boson with Dirichlet boundary conditions[28,29], may have applications i
other contexts, such as string theory.

There are many issues that remain to be addressed. Among these are the prop
ment of complex (bulk) and imaginary (boundary) sources in the NLIE. While the fo
problem is in principle understood[4,8], the latter problem is still not well understoo
even in the simpler Dirichlet case[8,36]. Moreover, it would be interesting to extend t
comparison of NLIE with BCPT and BTCSA also to excited states.
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Appendix A. Boundary conformal perturbation theory and boundary truncated
conformal space approach

Boundary conformal perturbation theory (BCPT) and boundary truncated confo
space approach (BTCSA)[25,37]can be applied if the theory is a relevant perturbation
a boundary conformal field theory:

L = LBCFT + Lpert= LBCFT − µbulk

x+∫
x−

Φ(x, t) dx − µ−Ψ−(t) − µ+Ψ+(t),

where LBCFT is the Lagrangian of the UV limiting boundary conformal field theo
Φ(x, t) is a relevant bulk primary field of weights(h, h̄) andΨ± are relevant boundar
fields living on the left/right boundaries of the strip with weights
±. For simplicity we
will suppose thath = h̄ = 
− = 
+ =: 
 and putx− = 0, x+ = L.14

A.1. Hamiltonian approach

We are interested in the spectrum of the Hamiltonian:

H(L) = HBCFT(L) + µbulk

L∫
0

Φ(x, t) dx + µ−Ψ−(t) + µ+Ψ+(t).

14 We emphasize that SectionsA.1 and A.2are more general than the main body of the text, as they are

for any perturbed boundary conformal field theory.
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The volume dependence can be obtained by mapping the system to the upper ha
(UHP) viaz = ei π

L
(x+t), wheret = −iy is the Euclidean time. The transformation rules

the primary fields are given by:

(A.1)Φ(x, t) =
(

π2

L2
zz̄

)


Φ(z, z̄); Ψ±(t) =
(

∓π

L
z

)


Ψ (z).

Changing the integration variable toθ = π
L
x and taking the Hamiltonian att = 0, we have:

H(L) = π

L

(
L0 − c

24

)
+ µbulk

(
π

L

)2
−1 π∫
0

Φ
(
eiθ , e−iθ

)
dθ

+ µ−
(

π

L

)


Ψ−(1) + µ+
(

π

L

)


Ψ+(−1),

whereL0 is the spectrum of the boundary conformal field theory with central chargc.
The spectrum ofH(L) can be calculated at least in two different ways: using perturba
(BCPT) and variational methods (BTCSA).

In the variational method we use, as input, the eigenvectors,|n〉, of the unperturbed
(boundary conformal) Hamiltonian. For practical reasons we consider the eigenv
having energy less then a given value,Ecut, and perform the calculation numerically. (Tec
nically this means diagonalizing the truncated Hamiltonian.)

Standard perturbation theory gives rise to the following perturbative series for th
ergy level labeled with its unperturbed UV limiting vector|n〉,

(A.2)En(L) = π

L

(
E|n〉 − c

24
+

∞∑
k=1

cn
k (µbulk,µ±,
)

(
π

L

)k(
−1)
)

,

whereE|n〉 denotes the conformal energy on the UHP. For the ground state the firs
terms have the form

E0(L) = π

L

(
E|0〉 − c

24
+ c0

1(µ±,
)

(
π

L

)(
−1)

(A.3)+ c0
2(µbulk,µ±,
)

(
π

L

)2(
−1)

+ · · ·
)

,

where

(A.4)c0
1(µ±,
) = 〈0|(µ−Ψ−(1) + µ+Ψ+(−1)

)|0〉
and

c0
2(µbulk,µ±,
) = µbulk

π∫
0

〈0|Φ(
eiθ , e−iθ

)|0〉dθ

(A.5)+
∑

µiµj

∑ 〈0|Ψ (i1)|n〉〈n|Ψ (j1)|0〉
E|0〉 − E|n〉

.

i,j={±} n∈H
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The large volume behavior of the ground state energy is

E0(L) = εbulkL + ε−
boundary+ ε+

boundary+ O
(
e−mL

)
asL → ∞.

The ground state energy in the NLIE description, however, is normalized differen
ENLIE

0 (L) = O(e−mL) whenL → ∞. The correspondence between the two schemes

(A.6)E0(L) = ENLIE
0 (L) + εbulkL + ε−

boundary+ ε+
boundary.

A.2. Lagrangian approach

The evaluation of the second order term in the Hamiltonian perturbation theory(A.5)
is cumbersome, since we have to sum up the various matrix elements. We can av
calculation by doing Lagrangian perturbation theory instead. We compactify the st
the time-like direction on a circle of radiusR and consider the largeR limit of the cylinder
partition function:

Z(L,R) = Tr
(
e−RH(L)

) = e−RE0(L) + · · · for R → ∞.

Using the functional integral representation for the partition function with the action,S =∫
L(t) dt = SBCFT + Spert,

Z(L,R) =
∫

d[Φ,Ψ±]e−S =
∫

d[Φ,Ψ±]e−SBCFTe−Spert

= ZBCFT

∫
d[Φ,Ψ±]e−SBCFTe−Spert

ZBCFT
= ZBCFT

〈
e−Spert

〉

= ZBCFT

〈 ∞∑
n=0

(−Spert)
n

n!

〉
.

We can obtain the first few perturbative corrections to the ground state energy as

− 1

R
lim

R→∞ log
(
Z(L,R)

)

= E0(L) = EBCFT
0 (L) +

∑
i=±

µi〈0|Ψi(0)|0〉 + µbulk

L∫
0

〈0|Φ(x,0)|0〉dx

− 1

2

∑
i,j={±}

µiµj

∞∫
−∞

〈0|Ψi(0)Ψj (t)|0〉dt + · · · ,

where the correlators are the connected BCFT correlators. By transforming the v

expressions onto the upper half plane we obtain:
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E0(L) = EBCFT
0 (L) +

∑
i

µi

(
π

L

)


〈0|Ψi(0)|0〉

+
(

π

L

)2
−1
[
µbulk

π∫
0

〈0|Φ(
eiθ , e−iθ

)|0〉dθ

(A.7)− 1

2

∑
i,j

µiµj

∞∫
0

duu
−1〈0|Ψi(i1)Ψj (ju)|0〉
]

− · · · ,

wherez = u+ iv = reiθ . Comparing the result with equations(A.3)–(A.5)we can establish
the correspondence with the Hamiltonian perturbation theory. Clearly the second
term in(A.5) is summed up. One can compare this term directly by inserting the reso
of the identity 1= ∑

n |n〉〈n| and using the conformal transformation property of the fie
In any BCFT, using thesl2 invariance of the vacuum,|0〉, the bulk one point function

on the UHP can be put to the form

(A.8)〈0|Φ(
eiθ , e−iθ

)|0〉 = cbulk

sin(θ)2

,

while the boundary two point function can be brought to the form

(A.9)〈0|Ψi(i1)Ψj (ju)|0〉 = cij

|1− (i1) · (ju)|2

,

where the radial ordering is taken into account. The relevant integrals can be writ
terms of the beta functionB(x, y), both for the bulk and fori = j and fori �= j as

1∫
0

duux−1(1− u)y−1 =
∞∫

0

duux−1(1+ u)−x−y = B(x, y) = �(x)�(y)

�(x + y)
.

The first integral converges only fory > 0 thus 0< 
 < 1
2 is needed. Collecting all term

thec0
2 coefficient is

c0
2(µbulk,µ±,
)

= µbulkcbulk
�(1

2 − 
)�(1
2)

�(1− 
)

(A.10)− (
µ2+c++ + µ2−c−−

)�(
)�(1− 2
)

�(1− 
)
− µ−µ+c+−

�2(
)

�(2
)
,

where only the coefficientscbulk, cij are model dependent.

A.3. Boundary sine-Gordon theory

In the sine-Gordon theory the UV limiting BCFT is described by(2.13), the bulk per-
turbation is given by

1( )
iβϕ(z,z̄)
Φ(x, t) =

2
Vβ(x, t) + V−β(x, t) , Vβ(z, z̄) = n(z, z̄):e :,
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while the boundary by

Ψ±(t) = 1

2

(
e−i

βϕ
±
0

2 Uβ
2
(t) + ei

βϕ
±
0

2 U− β
2
(t)

)
, Uβ

2
(u) = :ei

β
2 ϕ(u,u):,

and
 = β2

8π
, see[37] for the details. Since the bulk,Vβ(z, z̄), and boundary,Uβ

2
(u), vertex

operators change the eigenvalue ofπ0 by β and β
2 , respectively, only evenc coefficients

are nonzero in the expansion(A.2). Moreover, the vacuum expectation value ofΦ is also
zero(A.8), thus the leading perturbative contribution comes from the boundary two
function part of(A.7). In the boundary sine-Gordon theory with nonzeroκ := κ+ − κ−
thevacuum is not sl2-invariant and thus(A.9) has to be modified. In general for a theo
with a non-sl2-invariant vacuum one has to compute the four point functions, instea
the two point function, and extract the relevant matrix element from them. Alternat
in our case, one can also use the mode expansion of the field(2.16) together with the
commutation relations(2.18)to obtain:

〈0|U± β
2
(i1)U∓ β

2
(ju)|0〉 = |u|∓ 4κ


β

|1− (i1) · (ju)|2

.

This modifies(A.10) and gives the leading corrections:

c0
2(µ±,
,κ)

= −1

2

[(
µ2+ + µ2−

)�(1− 2
)

2

(
�(
 + 4κ


β
)

�(1+ 4κ

β

− 
)
+ �(
 − 4κ


β
)

�(1− 4κ

β

− 
)

)

(A.11)+ µ−µ+ cos
β

2

(
ϕ+

0 − ϕ−
0

)�(
 + 4κ

β

)�(
 − 4κ

β

)

�(2
)

]
.

Although the derivation of this formula assumes that 0< 
 < 1/2, the final result is an
alytic in 
 (with possible poles). Therefore it has an analytic continuation for
 > 1/2,
which, since the NLIE is also analytic in
, must coincide with the NLIE result. This
confirmed by experience with the NLIE for bulk sine-Gordon and bulk supersymm
sine-Gordon models. Using the UV–IR relation(2.44), (2.45)and the mass-gap formu
(cf. [38])

(A.12)µbulk = m2−2
 2�(
)

π�(1− 
)

(√
π�( 1

2(1−
)
)

2�( 

2(1−
)

)

)2−2


,

wherem is the soliton mass,c0
2(µ±,
,κ) can be rewritten in terms of the IR paramete
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