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Abstract

We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet bound-
ary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited
states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary
roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies,
boundary reflection factors and boundary Lüscher corrections and compare with the excited boundary states
of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short dis-
tance limit and relate the IR scattering data with that of the UV conformal field theory.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Boundary integrable field theories in two dimensions have been investigated mainly by two
approaches. The boundary bootstrap approach determines the reflection amplitudes in a factor-
ized S-matrix framework which is valid in the large volume (IR) limit [1]. In a small volume,
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on the other hand, the underlying quantum field theories can be described as perturbed bound-
ary conformal field theories. Complete understanding is possible only after the two approaches
are linked in such a way that the states and operators in the alternative formulations are exactly
matched.

The nonlinear integral equation (NLIE) has been most effective in linking the two descriptions
for the sine-Gordon model. The NLIE for the bulk theory has been started several years ago by
various authors [2,3]. An evident advantage of this method is that it can deal with excited states
relatively easily as shown with great success in the bulk sine-Gordon model [4,5]. The NLIE is
a sort of continuum limit of the Bethe ansatz equation (BAE) of an inhomogeneous alternating
spin 1/2 XXZ chain model which regularizes the sine-Gordon model while keeping integrability.
This method has been extended to the sine-Gordon model defined on a strip with two boundaries.
The ground state NLIE for the Dirichlet boundary conditions (BCs) has been studied in [6] and
for general non-diagonal BCs in [7]. The bulk excited state NLIE for the Dirichlet BCs has been
analyzed in [8] and the hole excited state for a general non-diagonal BCs in [9]. In the present
paper we investigate how this method can be extended to the boundary excited states for Dirichlet
BCs.

The complete spectrum of boundary excited states of the Dirichlet sine-Gordon (DSG) model
on a half line with one boundary has been constructed by Dorey and Mattsson (DM) by inspect-
ing the analytic structure of the reflection matrix in a bootstrap approach [10]. They found a rich
structure of excited boundary states, the boundary bound states (BBS). These states are the scat-
tering states which can be defined only in the IR limit of the finite size setting. It is important to
relate the IR states with the UV conformal states appearing in the small volume description for
the complete understanding of the DSG model. In this paper we analyze carefully the “imaginary
roots” of the boundary XXZ BAE, first discovered by Saleur and Skorik [11]. From this we de-
rive the NLIE including the imaginary roots which describes the BBSs of the DSG in the whole
scale. Taking the IR limit of the NLIE, we can show that there is a one to one correspondence
between the purely imaginary roots and the DM BBSs.

The paper is organized as follows: In Section 2 we summarize the available results of the DSG
model. We start by analyzing the conditions for the existence of the imaginary roots of the inho-
mogeneous spin 1/2 XXZ model. The NLIE, derived from the lattice BAE, contains parameters
originating from the XXZ model which should be compared with the bootstrap solution [10]. We
analyze the large volume limit of the NLIE in Section 3 and find agreement with the BAE clas-
sification. This leads to full physical interpretation of the energy levels described by the NLIE
without any source and the one with imaginary roots only. We do it in two steps, first with the
simpler repulsive case and then the more complicated attractive one. In both cases the proposed
correspondence between the various source terms and the DM spectrum of BBSs are derived
from the soliton and breather reflection amplitudes and matching of the boundary energies. As a
final check we compare the finite size energy correction derived from the NLIE to the boundary
Lüscher correction [12]. Section 4 deals with the calculation of the conformal dimensions of
underlying boundary conformal field theory by taking the UV limit of the NLIE, which gives an-
other convincing support of our result. We conclude and give the outlook for future investigations
in Section 5.

2. Derivation of the NLIE

In this section we summarize the results available in the literature tailor-made for future ap-
plications.
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2.1. Imaginary roots of the Bethe ansatz equation

To derive the NLIE for the DSG model, we consider anti-ferromagnetic XXZ spin 1/2 model
in a chain of N sites with lattice spacing a, coupled to parallel magnetic fields h− and h+ at the
left and right boundaries, respectively. Its Hamiltonian is written as

(1)H(γ,h+, h−) = −J

N−1∑
n=1

(
σx

n σ x
n+1 + σ

y
n σ

y

n+1 + cosγ σ z
nσ z

n+1

) + h+σz
1 + h−σz

N .

Here σα
n , α = x, y, z, are Pauli matrices on the nth site and the anisotropy is 0 � γ � π . When-

ever necessary, we will use another coupling constant p defined by

p = π

γ
− 1, 0 < p < ∞.

The BAEs for the boundary XXZ chain (1) have been derived by Alcaraz et al. [13] and
Sklyanin [14] using an algebraic Bethe ansatz approach. The BAEs are coupled equations for a
set of M roots which have distinct values θ1, . . . , θM with M � N/2;

[
s1(θj + Λ)s1(θj − Λ)

]N
sH+(θj )sH−(θj ) =

M∏
k=1,k �=j

s2(θj − θk)s2(θj + θk),

where we introduced a short notation

sν(x) = sinh γ
π
(x + iνπ

2 )

sinh γ
π
(x − iνπ

2 )
.

The boundary parameters H± in the BAEs are related to those in the Hamiltonian by

h± = sin
π

p + 1
cot

2π(H± + 1)

p + 1
.

In addition to real and complex roots, we are interested in the “imaginary” roots which have
vanishing real parts. These objects, first observed by Saleur and Skorik [11], depend on the
boundary parameters of both sides independently. For simplicity, we set the value of h− so that it
does not introduce any imaginary root and recall from [11] how the existence and locations of the
imaginary roots depend on the values of h+ in the limits when Λ → ∞ and N → ∞. Defining
κj by

eκj = s1(θj + Λ)s1(θj − Λ),

one can see that an imaginary root with θj = iuj in the Λ → ∞ limit satisfies

κj = 2A sinγ sin
2γ uj

π
+ O

(
e

−4γΛ
π

)
, with A =

[
cosh

2γΛ

π

]−1

.

Now we look for some “string” solution in the form of

θj = i

(
−πH+

2
+ jpπ + εj

)
,

where εj ’s are supposed to be exponentially small in the N → ∞ limit. Following [11], we
denote it as “(n,m) string” if j can take integer values from −n to m. Then, the BAEs take the
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Fig. 1. The boundary condition dependent factor of κj in the (n,m) string.

following form

eκmN ∝ εm − εm−1; eκm−1N ∝ εm−1 − εm−2

εm − εm−1
; . . . ; eκlN ∝ εl − εl−1

εl+1 − εl

; . . . ;

eκ0Nε0 ∝ ε0 − ε−1

ε1 − ε0
; eκ−1N ∝ ε−1 − ε−2

ε0 − ε−1
; . . . ; eκ−n+1N ∝ ε−n+1 − ε−n

ε−n+2 − ε−n+1
;

eκ−nN ∝ 1

ε−n+1 − ε−n

,

where we have omitted finite factors in the proportionality. Since all the εj are small we can
determine them recursively starting from both −n and m. They are consistent provided

(2)κm < 0, κm + κm−1 < 0, . . . , κm + κm−1 + · · · + κ1 < 0,

(3)κ−n > 0, κ−n + κ−n+1 > 0, . . . , κ−n + κ−n+1 + · · · + κ−1 > 0,

and

κ−n + κ−n+1 + · · · + κ−1 + κ0 + κm + κm−1 + · · · + κ1 > 0.

In solving these inequalities we are interested in the domain in H+ for a fixed p in which the
(n,m) string can exists. Since at some point we want to make connection with the BBSs we
introduce the parameter:

H+ = p(1 − 2ξ+/π).

For small/large enough ξ+ the boundary state is absent and we are going to determine the value
of ξ+ at which such a string can enter/leave the physical strip. For this we plot sin(

2γ
π

uj ) which
is the relevant part of κj together with the (n,m) string on Fig. 1.

From (2) we can see that such a state appears when the average of u1 and um is exactly

pξ0 = π

2
(1 + p).

So for the existence we need u1 + um > π(p + 1) that is

ξ+ >
π

2p
− (m − 1)

π

2
.

From (3) we can see that u−n > 0 is also needed that is

ξ+ � (2n + 1)
π

.

2
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Finally from (3) we can see that the state disappears when u−n + um > π(p + 1) since we have
too many points in the negative part of the sine function. So for the existence of the (n,m) string
we also need

ξ+ <
π

2p
+ (n + 2 − m)

π

2
.

2.2. NLIE: The continuum limit of the BAE

Based on the BAE, the NLIE equation determining the counting function Z(θ) in the contin-
uum limit N → ∞ can be written as [8]

Z(θ) = 2ML sinh θ + g
(
θ |{θk}

) + Pbdry(θ)

(4)− 2i Im
∫

dx G(θ − x − iε) log
[
1 − (−1)MSC eiZ(x+iε)

]
,

where Pbdry(θ) is the boundary contribution given by

Pbdry(θ) = 2π

θ∫
0

dx
[
F(x,H+) + F(x,H−) + G(x) + J (x)

]
,

G(θ) =
∞∫

−∞

dk

2π

sinh π
2 (p − 1)k

2 sinh π
2 pk cosh π

2 k
eikθ , for |Im θ | < π min(1,p),

J (θ) =
∞∫

−∞

dk

2π

sinh π
4 (p − 1)k cosh π

4 (p + 1)k

sinh π
2 pk cosh π

2 k
eikθ , for |Im θ | < π

2
min(1,p),

(5)F(θ,H) =
∞∫

−∞

dk

2π
sign(H)

sinh π
2 (p + 1 − |H |)k

2 sinh π
2 pk cosh π

2 k
eikθ , for |Im θ | < π

2
|H |.

We have introduced a mass scale M which will be identified with that of a soliton and the finite
size L by

L = Na, M = 2

a
e−Λ.

The “source” term is given by

g
(
θ |{θk}

) =
∑

k

ck

[
χ(k)(θ − θk) + χ(k)(θ + θk)

]
,

where

χ(θ) = 2π

θ∫
0

dx G(x)

and {θk} is the set of position of the various objects (holes, close and wide roots, specials) char-
acterizing a certain state. They satisfy the quantization rule

Z(θj ) = 2πIj , Ij ∈ Z + ρ
, ρ = MSC mod 2.
2
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The coefficients ck are given by

ck =
{+1 for holes,

−1 for all other objects,

and for any function f (ϑ) we define

f(k)(θ) =
{

fII(θ) for wide roots,
f (θ + iε) + f (θ − iε) for specials,
f (θ) for all other objects,

where the second determination of f (θ) is defined by

fII(θ) =
{

f (θ) + f (θ − iπ sign Im θ) if p > 1,

f (θ) − f (θ − iπp sign Im θ) if p < 1,
for |Im θ | > π min(1,p).

For the vacuum state containing real roots only, Eq. (4) coincides with the one found some
years ago in [6]. Once the equation is solved for Z(θ + iε) one can use this result to compute the
Z(θ) function at any value in the analyticity strip |Im θ | < π min(1,p), provided the function
Pbdry(θ) is well defined there. To extend the function outside this analyticity strip one has to
resort to the following modification of the NLIE

Z(θ) = 2ML sinhII θ + gII
(
θ |{θk}

) + Pbdry II(θ)

− 2i Im
∫

dx GII(θ − x − iε) log
[
1 − (−1)MSC eiZ(x+iε)

]
.

The continuum limit of the counting equation which restrict the allowed root configuration is
given by

(6)NH − 2NS = 1

2

(
sign(H+) + sign(H+)

) − 1 + MC + 2MW step(p − 1) + m.

(The integer m appearing here is related to possible winding of the sine-Gordon field, see next
section.)

Once Z(θ) is known, it can be used to compute the energy. It is composed of bulk and bound-
ary terms whose expression can be found in [6] and a Casimir energy scaling function given
by

E = M
∑

k

ck cosh(k) θk − M

∫
dx

4π
sinhxQ(x);

(7)Q(x) = 2 Im log
[
1 − (−1)MSC eiZ(x+iε)

]
.

2.3. Relation to boundary sine-Gordon model

The continuum limit of the inhomogeneous XXZ spin 1/2 chain describes the sine-Gordon
model. If we introduce diagonal (σz only) boundary condition on the spin chain, the continuum
limit should describe the DSG model, whose action can be written as

ADSG = 1

2

∞∫
−∞

dt

L∫
0

dx

[
(∂μφ)2 + 2m2

0

β2
cosβφ

]
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with the Dirichlet boundary conditions

φ(0, t) ≡ φ− + 2π

β
m−; φ(L, t) = φ+ + 2π

β
m+, m± ∈ Z.

Notice that the bulk and boundary parameters of the DSG and spin chain models are related
by [6]

(8)p−1 = 8π

β2
− 1; H± = p

(
1 ∓ 8

β
φ±

)
.

This model has several important applications ranging from condensed matter physics to
string theory. An important feature of the DSG model is the conservation of the topological
charge

Q ≡ β

2π

[ L∫
0

dx
∂

∂x
φ(x, t) − φ+ + φ−

]
= m+ − m− ∈ Z.

The model enjoys the discrete symmetry of the field φ → φ + 2π
β

m and simultaneously φ± →
φ± + 2π

β
m (m ∈ Z). The charge conjugation symmetry φ → −φ sending solitons into anti-

solitons is also guaranteed, provided φ± → −φ± simultaneously.
The well-known bulk particle spectrum of sine-Gordon model is composed of solitons and

anti-solitons with topological charge 1 and −1 respectively, and their bound states known as
breathers in the attractive regime 0 < β �

√
4π and of course they are also part of the DSG

spectrum. Another important part of the spectrum of the DSG model in the half line theory—i.e.
in the presence of one boundary only—is the complicated spectrum of the BBSs described in
[10]. In addition to the bulk S-matrices [15] and boundary reflection matrices for the soliton or
anti-solitons [1], the complete excited boundary reflection matrices in the presence of the BBSs
have been found in [10].

The DM result on the BBSs of the half line theory can be summarized as follows. First, define
two sets of variables

νn = ξp − (2n + 1)πp

2
= ν0 − npπ; n � 0,

wm = π − ξp − (2m − 1)πp

2
= π − ν−m,

where the bootstrap parameters p and ξ are related to those of the Lagrangian as

(9)
p + 1

p
= 8π

β2
; ξ± = 4π

β
φ±.

Whenever a condition

(10)
π

2
> νn1 > wm2 > νn2 > · · · > wmk

> νnk
> · · · > 0

is satisfied, a BBS can exist. If the last variable is of ν type, then the BBS is denoted as

|1;n1,m1, . . . , nk−1,mk−1, nk〉
and if it is of w type, then the state is denoted as

|0;n1,m1, . . . , nk−1,mk−1, nk,mk〉.
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The energy of such a state relative to the ground state is given by

E|0/1;n1,m1,...,nk−1,mk−1,...〉 =
∑
j

M cosνnj
+

∑
j

M coswmj
.

The boundary reflection matrix on excited boundaries can also be derived. We denote by
P +

|0〉(ξ, θ) the boundary reflection matrix element of a soliton on the ground state boundary. The
boundary parameter dependent part reads as [11]

(11)−i
d

dθ
log

P +
|0〉(θ, ξ)

R0(θ)
=

∞∫
−∞

dk eikθ
sinh(π

2 (1 + 2ξp
π

)k)

2 sinh π
2 pk cosh π

2 k
.

The reflection factor of solitons on the |1;0〉 excited boundary is given by

(12)P +
|1;0〉(θ, ξ) = P +

|0〉(θ, ξ)a(θ − iν0)a(θ + iν0) ≡ P +
|1〉(θ, ξ),

where a(θ) = eiχ(θ) describes the soliton–soliton S-matrix element. The reflection factor on the
general boundary is given by

P +
|0/1;n1,m1,...,nk−1,mk−1,...〉

= P +
|0/1〉

∏
k

a(θ − iνnk
)a(θ + iνnk

)

a(θ − iν0)a(θ + iν0)

∏
k

a(θ − iwmk
)a(θ + iwmk

)

a(θ − iw0)a(θ + iw0)
.

Using the identity

(13)
a(θ − iwmk

)a(θ + iwmk
)a(θ − i(π − wmk

))a(θ + i(π − wmk
))

a(θ − iν0)a(θ + iν0)a(θ − iw0)a(θ + iw0)
= 1

which comes from the unitarity and crossing symmetry of the bulk S-matrix, the general reflec-
tion factor is equivalent to

P +
|0/1;n1,m1,...,nk−1,mk−1,...〉 = P +

|0/1〉
∏
k

a(θ − iνnk
)a(θ + iνnk

)

a(θ − i(π − wmk
))a(θ + i(π − wmk

))
.

On physical grounds one expects that the DSG model on the strip with two boundaries should
have in general pairs of the DM type BBS in the spectrum when L → ∞. In this paper we
consider a somewhat simpler situation where the boundary parameters on one boundary do not
allow any DM bound state. In this case, one expects that only one set of the DM BBSs are present
in L → ∞ limit. In the following we show how the solutions of the NLIE with purely imaginary
roots meet this expectation.

3. Large volume behavior of the NLIE

In this section we provide the interpretation of the boundary strings of the NLIE in the large
volume limit by mapping them to the boundary bound states classified by DM. First we show that
the asymptotic analysis for the existence of a boundary string in NLIE is equivalent to the BAE
analysis, then we focus on their interpretation. For pedagogical reasons we present the results for
the repulsive regime first, where we have at most one BBS and then turn to the more complicated
problem of the attractive regime. Finally we confirm our findings by calculating the boundary
Lüscher corrections for the ground-states.
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3.1. Large volume analysis of the boundary excited state NLIE

The aim of this subsection is to replace the ε analysis for the (n,m) strings in the BAE by
a source term analysis in the infrared (IR) limit of the NLIE (4). In this analysis the counting
function Z(θ) is replaced by its asymptotic (large volume) form:

(14)Z(θ) = 2ML sinh θ + Pbdry(θ) −
∑

k

(
χ(θ − θk) + χ(θ + θk)

)
,

and the quantization condition is obtained from

(15)eiZ(θj ) = 1, j = 1, . . . .

Using the relations (8) and (9) the boundary parameters H± are related to the DM ξ± parameters
as

(16)H± = p

(
1 ∓ 2ξ±

π

)
.

Some care is required for Eqs. (14), (15) since one may have to use χwide(θ) instead of χ(θ)

depending on the location of the roots and also the second determination form of all the quan-
tities. The expectation is that from this asymptotic analysis one can obtain the same string like
objects as from the ε analysis in the BAE. This would confirm the relevance of the results of the
ε analysis, as here we work with the (large volume limit of the) exact ground state(s) as opposed
to the pseudo-vacuum in the ε analysis.

In this analysis we keep H− in the domain where we expect no bound state on this boundary
(0 < H− < 2p) while we let H+ to move from a similar domain into −1 < H+ < 0 where
bound states are expected. Consider first the zero string case when in Eq. (14) there are just two
source terms with ±θ0 and assume H+ is positive 0 < H+ (i.e. ξ+ < π/2). Using the well-known
identity

(17)eiPbdry(θ) = −P +
|0〉(θ, ξ+)P +

|0〉(θ, ξ−)

a(2θ)
,

where P +
|0〉(θ, ξ) is the Ghoshal–Zamolodchikov ground state soliton reflection amplitude (11)

and a(θ) denotes the bulk soliton–soliton scattering the only equation in Eq. (15) becomes:

ei2ML sinh θ0
P +

|0〉(θ0, ξ+)P +
|0〉(θ0, ξ−)

a(2θ0)a(2θ0)
= 1.

An imaginary root corresponding to a BBS would show up in the form of a solution θ0 = iv0 + ε

with v0 in the physical domain (0 < v0 < π
2 ) and ε → 0 for L → ∞. This can happen only if

iv0 is a pole of one of the P +’s. However, they have no poles in the physical strip when both
ξ± < π

2 . (Note that the a’s in the denominator cancel also the boundary independent poles of the
two P +’s.) Thus for both H± positive this asymptotic analysis gives no hint of a bound state.
This is also consistent with the counting equation (6) that for H± > 0 and NH = 0 allows only a
solution with Mc = 0.

Now let H+ become negative, but still consider the zero string case since the counting equa-
tion now allows Mc = 1. The crucial observation is that the exponential of iPbdry(θ) contains in
this case the excited state soliton reflection amplitude P +

|1;0〉(θ, ξ+):

eiPbdry(θ)
∣∣−1<H+<0 = −P +

|1;0〉(θ, ξ+)P +
|0〉(θ, ξ−)

.

a(2θ)
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In DM [10] P +
|1;0〉(θ, ξ+) is expressed in two equivalent ways:

P +
|1;0〉(θ, ξ+) = P +

|0〉(θ, ξ+)a(θ − ν0)a(θ + ν0),

P +
|1;0〉(θ, ξ+) = P −

|0〉(θ, ξ+) = P +
|0〉

(
θ, ξ+ − π

p
− π

)
.

The first form is natural from the bootstrap point of view and makes it easy to see that
P +

|1;0〉(θ, ξ+) has poles at iν0 and at iν−N for N = 1,2, . . ., while the second form (where the

over-line describes the transformation ξ+ → π(1 + p−1) − ξ+) is useful to verify the integral
representation. To support the claim we write here F(θ,H+) for H+ > 0:

F(θ,H+) =
∞∫

−∞

dk

2π
eikθ

sinh(kp(ξ+ + π
2p

))

2 sinh pπ
2 k cosh π

2 k
,

and for H+ < 0:

F(θ,H+) =
∞∫

−∞

dk

2π
eikθ

sinh(kp(ξ+ − π − π
2p

))

2 sinh pπ
2 k cosh π

2 k
,

showing that they are indeed connected by the transformation in the second DM form. Note that
this implies that in this domain of H± the integral equation describes the excited state |1;0〉.

Using this observation in Eq. (15) leads to the quantization condition

(18)ei2ML sinh θ0
P +

|1;0〉(θ0, ξ+)P +
|0〉(θ0, ξ−)

a(2θ0)a(2θ0)
= 1.

Since P +
|1;0〉(θ, ξ+) has poles in the physical strip this equation admits a bound state solution

θ0 = i(ν0 + ε) with ε ∼ Re−2ML sinν0

(where iR is the residue of the pole at iν0) satisfying the requirements described earlier. Eq. (18)
is correct if θ0 is in the first determination; but this condition is met in a domain where ξ+ just
exceeds π/2 (H+ is just below 0) both in the p > 1 (repulsive) and in the p < 1 (attractive) do-
mains. Even for these ξ+’s the poles of P +

|1;0〉(θ, ξ+) at iν−N are in the second determination thus
cannot be used to find solutions to Eq. (18) since the form of the equation changes there. Further-
more in the repulsive regime also the counting equation would require to introduce something
else (possibly moving objects) to compensate the presence of the wide roots.

If ξ+ exceeds 3π/2 then also iν0 gets into second determination (ν0 > pπ ) and we have to
reconsider the asymptotic analysis and the solution we found even for the zero string case. (Since
ξ+ � ξmax = π

2 (1 + p−1), ξ+ = 3π/2 is in this allowed range only if p < 1/2 in the attractive
domain.) In the quantization condition, Eq. (15), now Z(θ0)II appears, where

Z(θ0)II = 2ML
(
sinh θ0 − sinh(θ0 − ipπ)

) + Pbdry(θ0) − Pbdry(θ0 − ipπ) − source

with

source = (
χ(2θ0) + χ(2θ0 − 2ipπ) − 2χ(2θ0 − ipπ)

)
.

As a consequence Eq. (15) now takes the form:
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ei2ML
(
sinh θ0−sinh(θ0−ipπ)

) P +
|1;0〉(θ0, ξ+)P +

|0〉(θ0, ξ−)

a(2θ0)a(2θ0)

(19)× (a(2θ0 − ipπ))2

P +
|1;0〉(θ0 − ipπ, ξ+)P +

|0〉(θ0 − ipπ, ξ−)
= 1.

Note that the P +
|1;0〉 in the denominator cancels all but the iν0 pole of P +

|1;0〉 in the numerator, thus
Eq. (19) admits only a bound state solution of the form

θ0 = i(ν0 + ε) with ε ∼ Re−2ML
(
sinν0−sin(ν0−pπ)

)
.

Thus the asymptotic analysis gives a possibility for a zero string bound state solution if H+ < 0
independently whether iν0 is in the first or in the second determination. However, since the
source terms are different in the two cases (χ → χwide for iν0 in the second determination), the
interpretation of the bound states is different: while in the first case it corresponds to the ground
state, in the second it corresponds to the state |1;1〉 as described in Section 3.2.

Let us now turn to longer strings that may appear only in the attractive regime, where wide
roots can be added freely to the NLIE since their number cancels from the counting equation (6).
To describe how these string like structures appear form Eq. (15) note that most of the imaginary
roots of the string are in the second determination thus Eq. (15) takes the form

Z(θ) = 2ML sinh θ + Pbdry(θ) −
−m∑
j=n

(
χ−

II (θ − θj ) + χ+
II (θ + θj )

)
.

The location of the roots are θj = iνj + iεj (L), where we suppose that εj (L) → 0 as L → ∞.
If Im(θn) < pπ then the term corresponding to j = n in the sum is replaced with χ(θ − θn) +
χ(θ + θn). The other terms are defined as f ±

II (θ) = f (θ) − f (θ ∓ iπp). We also suppose that
Im(θ−m) < π since we need a BBS state with non-vanishing energy.

The position of the roots is determined by the quantization condition eiZ+
II (θk) = 1 for wide

roots and eiZ(θn) = 1 for the close root if there is one. The condition can be written as

(20)e2iML sinh+
II (θk)

e
iP+

bdry II(θk)

a(2θk)

a(2θk − iπp)2

a(2θk − 2iπp)

∏
j �=k

1

a+
II (θk + θj )

+
II a

−
II (θk − θj )

+
II

= 1.

Since e−2ML sinνk → 0 in the limit L → ∞ we have to analyze the singularity structure of the

function appearing in Eq. (20). The analysis of the zero string case showed that e
iP

+
bdry II(θk )

a(2θk)
has a

pole at θ = iν0. Furthermore

a−
II (θ)+II = a2(θ)

a(θ + iπp)a(θ − iπp)

has a pole at θ = iπp and a zero at θ = −iπp. Focusing on the divergent terms in Eq. (20) one
obtains the equations:

e(λn+1−λn)L ∝ εn − εn−1; e(λn−λn−1)L ∝ εn−1 − εn−2

εn − εn−1
; . . . ;

e(λk−λk−1)L ∝ εk−1 − εk−2

εk − εk−1
; . . . ; e(λ2−λ1)L ∝ ε1 − ε0

ε2 − ε1
; e(λ1−λ0)L ∝ ε0

ε0 − ε−1

ε1 − ε0
;

e(λ0−λ−1)L ∝ ε−1 − ε−2 ; . . . ; e(λ−m+1−λ−m)L ∝ 1
,

ε0 − ε−1 (ε−m+1 − ε−m)
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Fig. 2. Schematic figure of the boundary condition dependent part of the energies of the various ground-states.

where λk = 2M sinνk and whenever θn is a close root then in the first equation we have to put
λn+1 = 0.

Since all the ε’s have to go to zero as L → ∞ these equations lead to the following require-
ments:

λn+1 < λn; λn+1 < λn−1; . . . ; λn+1 < λ1;
λ−m > λn+1;
λ−m < λ−m+1; λ−m < λ−m+2; . . . ; λ−m < λ0.

The strongest condition from the first line is λn+1 < λ1 which means ν1 − π
2 < π

2 − νn+1.
The second requirement can be translated to ν−m − π

2 < π
2 − νn+1 which is equivalent to

νn+1 < π − ν−m = wm. Finally the strongest condition from the last line is λ−m < λ0 which
is equivalent to wm < ν0. These last two conditions are completely equivalent to the ones
Saleur–Skorik obtained for the (n,m) strings from the BAE on the one hand, while they are
also consistent with the DM bounds (10) on the other.

3.2. Bound-state NLIE in the repulsive regime

In this subsection the interpretation of the BBS in the repulsive regime is elaborated. The
validity range of the pure NLIE—Eq. (4) without source terms—as it is derived from the BAE
using Fourier transformation, is −2p − 2 < H± < 2p + 2. We give its interpretation in this full
range. The symmetry H± → H± +2p+2 of the BAE survives at the NLIE level (can be checked
also by explicit comparison), thus the [0,2p + 2] domain is equivalent to the [−2p − 2,0] do-
main. One possibility to compare with the DM spectrum is to put a particle between the two
boundaries and analyze its reflection factors by comparing the large volume limit of the NLIE
with the Bethe–Yang quantization condition. We recall this analysis from [8] here.

In the repulsive regime in the half line theory we have at most one BBS and its energy can be
plotted as function of the boundary parameter ξ as shown on Fig. 2.

Fig. 2 is schematic and shows only the ξ dependent part of the boundary energies of the
ground-state, E|0〉(ξ) = −M cospξ

2 cos πp
2

[6], and the BBS, E|1;0〉 = E|0〉 + cosν0. The discrete sym-

metries ξ → −ξ and ξ → 2ξ0 − ξ induce maps between the states |0〉 → |0〉∗ and |0〉 → |1;0〉
but in the same time the soliton has to be exchanged with the anti-soliton. The two theories ξ

and −ξ are not equivalent so we distinguish their states by star. The transformation ξ → ξ + 2ξ0
maps |1;0〉∗ → |0〉 and |0〉∗ → |1;0〉 without changing the species. These transformations corre-
spond to the φ → −φ, φ → 2π − φ and φ → φ + 2π transformations of the Lagrangian and, by
β β
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Fig. 3. The pure NLIE describes the state marked with +.

means of them, the parameter range of the theory can be restricted to φ ∈ [0, π
β
] or equivalently

to ξ ∈ [0, ξ0].
The boundary condition dependent part of the reflection factor of the soliton on the ground-

state boundary can be written as (11) which is valid in the domain 0 < ξ < π
2 . The bound at

π
2 signals the pole of the reflection factor which corresponds to the boundary state |1;0〉. The
integral representation is valid also for −π

2 (1 + 2p−1) < ξ < 0 but here it corresponds to the
state |0〉∗. The validity range of the integral representation is marked with the arrow on the
figure.

Now putting one hole into the pure NLIE for 2p > H± > 0, and comparing the large volume
limit of the quantization condition to the Bethe–Yang equation

eiZ(θ1) = 1 ←→ e2iML sinh θ1eiP|0〉(ξ+,θ1)eiP|0〉(ξ−,θ1) = 1

one arrives at the identifications of the parameters (16). Let us fix H− in the domain [2p,0] such
that this boundary does not allow any bound-state and scan the whole −2p − 2 < H+ < 2p + 2
range on the other boundary. The previous findings show that the integral equation in the domain
H+ ∈ [0,p] describes the ground state |0〉. They also show that in the range H+ ∈ [p,2p + 2]
it describes the |0〉∗ state instead. This is interesting since for H+ ∈ [2p,2p + 1] there exists a
BBS in the spectrum but the pure NLIE corresponds to the ground-state. The same NLIE in the
H+ ∈ [2p + 1,2p + 2] domain describes the BBS, and using the symmetry H → H + 2p + 2
we can conclude that it corresponds also to the excited boundary state |1;0〉 in the H+ ∈ [−1,0]
range. For H+ ∈ [−2 − p,−1] it describes the |1;0〉 ground-state. This can also be confirmed
by comparing the reflection factor of the soliton on the state |1;0〉 to the result coming from the
NLIE for H+ < 0.

In summarizing using the reflection factors of the solitonic states we conclude that the pure
NLIE describes the state marked with + for H+ > 0 and the one marked with − for H+ < 0 in
Fig. 3.

The boundary energies cannot be calculated either from the NLIE or from the bootstrap since
in both approaches the ground-state energy is normalized to 0 and energy differences can be
determined only.

Let us introduce a boundary imaginary root in the NLIE (4). The BAE and the asymptotic
analysis of the NLIE predict the position of the root to be

θ = iu ≈ i
π

2

(
n(2p + 2) − H+

)
, n ∈ Z,

which we plot on Fig. 4.
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Fig. 4. The straight lines show the location of the imaginary root as a function of H .

Fig. 5. The NLIE with the imaginary root added describes the state marked with the dotted line.

On Fig. 4 the first determination is below iπ marked with a dashed line while the self-
conjugate line indicated by a dotted line is at i π

2 (1 + p). Exactly when H+ = 2p the n = 1
imaginary root appears at iπ . Adding it to the NLIE via the source term −χ(θ − iu)−χ(θ + iu)

modifies the reflection factor and increases the energy by −M cosu. Clearly this is positive for
H+ < 2p + 1 zero for H+ = 2p + 1, negative between 2p + 1 < H+ < 2p + 2 and leaves the
imaginary axis at H = 2p + 2. So from comparing the energy differences between the pure
NLIE and the NLIE with the imaginary root added we suspect that the later one describes the
state denoted by the dotted line on Fig. 5.

This can be confirmed also by putting one additional hole and analyzing the reflection factors,
which we show below.

Since all these states can be described in the p > H+ > −1 or equivalently in the 0 < ξ+p <
π
2 (1 + p) domain we focus on this from now on and summarize the previous findings. The pure
NLIE describes the ground-state |0〉 for the range p > H+ > 0, while for the range 0 > H+ > −1
it describes the state |1;0〉. If we, in this range, add an imaginary root located at iu0 (where
u0 = ν0 = pξ − πp

2 ) we change the energy by −M cosν0 and the logarithm of the reflection
factor by −χ(u − iν0) − χ(u + iν0). The energy of this state is then

E = E|1;0〉 − M cosν0

while the reflection factor is

P +(θ) = P +
|1;0〉(θ)

1

a(θ − iν0)a(θ + iν0)
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from these two expressions we can read off (12) that the state with the imaginary roots at ±iν0
added is the ground state |0〉.

We can argue another independent way that the state with the root added in the H+ ∈ [0,−1]
range describes the ground-state. We can perform an analytic continuation of the pure NLIE from
the H+ > 0 domain. This method is standard and was used frequently to obtain the excited states
in the TBA equations [16–18]. By changing the sign of H+ two singularities of log(1 − eiZ) are
crossing the contours and by encircling them and picking up the residue terms the NLIE with
one root pair added can be obtained from the pure NLIE.

3.3. Bound-state NLIE in the attractive regime

In this subsection we map the large volume limit of the boundary strings to the BBSs of
DM in the attractive regime. Since all states can be described in the p > H+ > −1 domain we
concentrate only on this range. First we figure out the correspondence from the boundary energies
and then confirm our findings by comparing the solitonic reflection factors, too.

From the bootstrap point of view the properties of the first excited boundary state |1;0〉, such
as energy and reflection factor, are the same as in the repulsive regime and the interpretation of
the pure NLIE is completely analogous: for H+ > 0 it describes the ground-state |0〉, while for
−1 < H+ < 0 it corresponds to the BBS |1;0〉. In the attractive regime, however, where breathers
are also in the spectrum we can confirm this assignment independently by analyzing the large
volume behavior of the first breather.

In doing so we insert a self-conjugate root into the large volume limit of the pure NLIE (4)

Z(θ) = 2ML sinh θ + Pbdry(θ) − (
χII(θ − α) + χII(θ + α)

); α = θ0 + i
π

2
(p + 1),

and compare the eiZ(α)II = 1 quantization condition to the first breather’s Bethe–Yang equation

(21)ei2m1L sinh θ0R
(1)
H+(θ0)R

(1)
H−(θ0) = 1.

Here m1 = 2M sin πp
2 is the mass of the first breather and

R
(1)
H (θ) = (2 + p)θ (1)θ

(3 + p)θ

[
(p − |H | − 1)θ

(p − |H | + 1)θ

]sign(H)

, (x)θ = sinh( θ
2 + i πx

4 )

sinh( θ
2 − i πx

4 )

denotes its reflection factor [19]. Using the integral representation of the combination

(x)θ+i π
2
(x)−θ+i π

2
= exp

[ ∞∫
−∞

dt

t
e

itθ
π

sinh t (1 − x
2 )

cosh(t/2)

]

together with the identity (1 + p)i π
2 ∓θ = (1 − p)i π

2 ±θ one can indeed map the quantization
condition (15) to the Bethe–Yang equation (21). Furthermore, from the first breather’s reflection
amplitude emerging from this comparison one can see that the pure NLIE describes the ground-
state |0〉 for H+ > 0, while for H+ < 0 it gives the BBS |1;0〉.

Once we know the interpretation of the pure NLIE we turn to the analysis of the (n,m) string
allowed by both the BAE and the asymptotic analysis of the NLIE. We include the following
source term in the NLIE
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Fig. 6. The two fundamental strips used to describe imaginary roots.

source = −
m∑

j=−n+1

(
χII(θ − iuj ) + χII(θ + iuj )

)

−
{

χII(θ − iu−n) + χII(θ + iu−n) if u−n > πp,

χ(θ − iu−n) + χ(θ + iu−n) if u−n < πp,

and at the same time make the corresponding modification of the energy

E = −M

m∑
j=−n+1

cosII(uj ) −
{

cosII(u−n) if u−n > πp,

cos(u−n) if u−n < πp.

The contribution of the wide and close roots reads explicitly

source = −χ(θ − ium) − χ(θ + ium); E = −M cosum

if u−n < pπ and

source = −χ(θ − ium) − χ(θ + ium) + χ(θ − iu−n−1) + χ(θ + iu−n−1);
E = −M cosum + M cosu−n−1

if u−n > pπ . The NLIE and the BAE is periodic with period iπ(1 + p). From now on we use
the imaginary strip between 0 and π(1 + p) as the fundamental range in contrast to the usual
[−π

2 (p + 1), π
2 (p + 1)]. Roots with negative imaginary parts are mapped to the upper half plane

by the u → u + π(1 + p) transformation as is demonstrated on Fig. 6.
Taking any allowed root −πp > ū > −π

2 (p + 1) we replace it with the root u = ū+π(p + 1)

which is now in the strip π
2 (p + 1) < u < π . In the energy formula the corresponding change is

to replace cosII(ū) by cosII(u), but they are equal since

cosII(ū) = cos(ū) − cos(ū + πp) = cos(u − πp − π) − cos(u − π)

= cosu − cos(u − πp) = cosII(u).
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Fig. 7. The figure of the two possible (n,0) strings.

Similarly in the source term we replace χII(θ − iū) + χII(θ + iū) by χII(θ − iu) + χII(θ + iu).
Their equality follows from the fact that χII(θ − iu) + χII(θ + iu) is symmetric for u =
π
2 (p + 1),which is a consequence of the identity (13).

Let us analyze now the boundary energy as well as the reflection factors of the solitons in case
of the (n,m) string added. To make correspondence with the BAE we remark that ν0 = u0 =
ξp − πp

2 . As a consequence

u−n = νn; um = π − wm.

We start the analysis with the simplest m = 0 string. We have to distinguish two cases as
shown on Fig. 7.

In the first case (left) u−n < πp. The energy compared to the state |1;0〉 (described by the
pure NLIE) is

E = E|1;0〉 − M

0∑
j=n

cosII νj − M cosνn = E|1;0〉 − M cosν0

while for the reflection factor we obtain the factors

P +(θ) = P +
|1;0〉a(θ − iν0)

−1a(θ + iν0)
−1.

This is the same result we obtained in the repulsive regime when added one root at iν0 thus we
conclude that it describes the ground-state |0〉. So the ground-state corresponds to the longest
string and this is true as far as 0 < ν0 < π

2 which is equivalent to 0 > H+ > −1. This result was
obtained also by [11]. Let us note that we can describe the ground-state by analytic continuation
in H+ as we did in the repulsive case. The difference being, that once H+ reaches the value when
νn(H+) enters the physical strip we have to move it through the integration contour which results
in its source term. That is why the longest possible (0, n) string gives the vacuum.

Suppose now that u−n > πp (right on the figure) so the bottom root is in the second determi-
nation, too. Using the second determination of the cosine function we obtain the energy as

E = E|1;0〉 − cosν0 + cosνn+1

while the reflection factor turns out to be

P +(θ) = P +
|1;0〉

a(θ − iνn+1)a(θ + iνn+1)

a(θ − iν0)a(θ + iν0)
.
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Fig. 8. The figure of the two possible (n,m) strings.

This is all consistent with the proposal that this string corresponds to the state |1;n+1〉. From the
DM analysis we know that this state exists when νn+1 > 0 which is just the statement u−n > πp

we obtained from the asymptotic analysis.
Consider now the most general (n,m) string with m > 0. Distinguish again two cases depend-

ing on whether u−n < πp or u−n > πp as shown on Fig. 8.
In the first case (left) u−n < πp the energy of an (n,m) string is

E = E|1;0〉 − cosum = E|1;0〉 + coswm

while the reflection factor is

P +(θ) = P +
|1;0〉

1

a(θ + i(π − wm))a(θ − i(π − wm))

= P +
|0〉

a(θ − iν0)a(θ + iν0)

a(θ + i(π − wm))a(θ − i(π − wm))
.

Both the energy and the reflection factor is consistent with the identification of the string with the
|0;0,m〉 BBS. From the DM bootstrap analysis we know that this bound-state exists whenever
π
2 > ν0 > wm > 0. The ν0 > wm condition is equivalent to condition u1 + um > π(p + 1) as
obtained from the asymptotic analysis. The wm > 0 condition is equivalent to um < π which
follows from the continuum counting equation (6).

For u−n > πp the energy of the (n,m) string is

E = E|1;0〉 + coswm + cosνn+1

while the reflection factor is

P +(θ) = P +
|1;0〉

a(θ + iνn+1)a(θ − iνn+1)

a(θ + i(π − wm))a(θ − i(π − wm))
.

From which we can conclude that the corresponding state is |1;0,m,n + 1〉. This state exists
whenever ν0 > wm > νn+1 > 0. The new condition compared to the previous discussions is
wm > νn+1 but this is equivalent to u−n + um < π(p + 1). So this state exists exactly the same
time when the corresponding (n,m) string in the BAE.
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Suppose now that to the (n1,m1) string we have already described we add another (n2,0)

string with n2 < n1. Since u−n2 > πp the second string increases the energy by −M cosν0 +
M cosνn2+1 so changes the zero label to n2 + 1. Explicitly if the original state was |0;0,m1〉
then the new state is |0;n2 + 1,m1〉 if, however, the original was |1;0,m1, n1 + 1〉 then the new
state is |1;n2 + 1,m1, n1〉. If additionally to the (n1,m1) string we add another (n2,m2) string
with n2 < n1 and m2 < m1, then, since u−n2 > πp, the second string increases the energy by
coswm2 + cosνn2+1 so adds two labels. Concretely if the original state was |0;0,m1〉 then the
new state is |0;0,m2, n2 + 1,m1〉, if, however, it was |1;0,m1, n1 + 1〉 then the new state is
|1;0,m2, n2 +1,m1, n1 +1〉.We have checked explicitly that the energy formulas and the reflec-
tion factors are consistent with these assumptions. For the existence of this state the bootstrap
gives the relation νn2+1 > wm1 but we were not able to find its analogue on the BAE side.

3.4. Finite size correction of the ground-state energy: Boundary Lüscher correction

In this subsection the large volume asymptotic of the ground-state NLIE is analyzed and
compared to the Lüscher type correction [12]. The general form of this correction, valid in any
two dimensional boundary quantum field theory, was determined in [12] and first we concretize
the results for the sine-Gordon model with Dirichlet boundary condition.

In the repulsive regime (p > 1), where there is no breather in the spectrum, the finite size en-
ergy correction in leading order is governed by the soliton/anti-soliton reflection contribution as

E0(L) = E0(∞) − M

∞∫
−∞

dθ

4π

[
K−+

α (−θ)K+−
β (θ) + K+−

α (−θ)K−+
β (θ)

]
e−2ML cosh θ + · · ·

where the boundary fugacities can be expressed in terms of the soliton/anti-soliton reflection
factors: K+−

α (θ) = R++(i π
2 − θ)α and K−+

α (θ) = R−−(i π
2 − θ)α .

If, however, we are in the attractive domain then the leading finite size correction is given by
the one particle boundary coupling terms of the breathers:

E0(L) = E0(∞) − mn

gn
αgn

β

4
e−mnL + · · · ; mn = 2M sin

(
npπ

2

)
.

If the one particle terms of the lightest particle, (the first breather), are non-vanishing g1
αg1

β �= 0
then the corresponding term provides the leading finite size correction. If any of them is zero
(symmetric boundary with φ0 = 0) then the leading finite size correction is determined by the
second breather’s term since g2

α is never vanishing.
We are going to recover this behavior from the ground-state NLIE separately for the attractive

and in the repulsive regimes. In the repulsive case the ground state energy can be described either
by the pure NLIE for H+ > 0 or by including the source term corresponding to an imaginary root
for H+ < 0. Since the analysis was already done in the first case in [12] we focus on the second
possibility. The asymptotic form of the NLIE for large volume can be written as

Z(θ) = 2ML sinh θ + Pbdry(θ) − χ(θ − θ0) − χ(θ + θ0); eiZ(θ0) = 1,

where we neglected the exponentially small corrections coming from the convolution term. We
plug this expression into the energy formula

E = −M cosh θ0 − M Im

∞∫
dθ

2π
sinh(x + iη) log

(
1 − eiZ(θ+iη)

)

−∞
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Fig. 9. Coleman–Thun diagrams for the reflection and scattering matrices.

and shift the integration contour to η = π
2 . In doing so we need to know the analytic structure of

Pbdry(θ). Using the relation coming from the soliton quantization condition [8] we can rewrite the
boundary fugacity in terms of the soliton reflection factors on the two boundaries and the soliton-
soliton scattering as in (17). This provides the analytic continuation into the domain where the
original integral representation is not valid. For H+ < 0 the appearing (excited state) reflection
factor has a pole at iν0. This pole is exponentially closely accompanied with a logarithm of zero
singularity at θ0. In shifting the contour we take care of these singularities by encircling them with
the contour. We use that

∮
dθ
2π

dg(θ)
dθ

log(f (θ)) = ±ig(iu±), (where ± applies whenever at u± the
function f has a pole/zero) and obtain the contribution of the singular terms:

−M cosν0 + M cosh θ0.

The volume (θ0) dependent terms cancel, the term −M cosν0 gives contribution to the boundary
energy (E0(∞)) while the integral term with its contour shifted to i π

2 gives the same integral
term it gave in the H+ > 0 case and reproduces the expected correction. The cancellation of
the volume dependent terms is the consequence of the fact, that the ground state NLIE with the
source term (H+ < 0) can be considered as the analytic continuation of the ground state (and
pure) NLIE from the H+ > 0 domain in H+.

In the attractive regime things are more complicated even for the H+ > 0 case, where there
is now BBS in the spectrum. Even if eiPbdry(θ) does not contain boundary dependent poles in
the physical strip it has poles which correspond to boundary Coleman–Thun mechanisms [20].
Both the reflection factors and the bulk scattering matrix contain Coleman–Thun type poles at
un+ = iπnp/2 corresponding to on-shell diagrams presented on Fig. 9.

Since the residues are

R++(θ)α ∝ − i

2

f +−
n gn

α

θ − iun+
; a(2θ) ∝ −i

f +−
n f +−

n

2θ − 2iun+
we conclude that eiPbdry(θ) has single poles at θ = iun+ with residues

eiPbdry(θ) ∝ i

2

gn
αgn

β

θ − iun+
.

In the exponentially small neighborhood of these poles there are also logarithm of zero singular-
ities in the energy integral at

(
1 − eiPbdry(iu

n−)+2iML sinh(iun−)
) = 0; un− ≈ un+ + gn

αgn
β

2
e−mnL.
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We calculate the contributions from the poles and zeros as before and obtain the terms

−M
∑
n

[
cos

(
θ + iun+

) − cos
(
θ + iun−

)] = −
∑
n

mn

gn
αgn

β

4
e−mnL

which exactly reproduces the breather’s one particle contributions in the range H+ > 0, since the
contribution of the shifted integral is of order e−2ML.

In the H+ < 0 domain we have to include the longest allowed boundary string to describe
the ground state and additionally to take into account the boundary dependent singularities of
(1 − eiPbdry(θ)+2iML sinh(θ)) when we shift the contour. Since the NLIE with the source terms can
be considered as the analytic continuation of the pure NLIE from the H+ > 0 domain we can
see that the terms coming from the accompanying zeros of the boundary dependent singularities
of eiPbdry cancel with the volume dependent string energies as it was the case in the repulsive
regime.

4. UV behavior

In this section we compute the ultraviolet (UV) behavior of the various energy levels.
As l := ML → 0, one can calculate the Casimir energy analytically by using the asymptotic

solution of the NLIE (4). From this it is possible to extract the effective central charge defined by

ceff(l) = −24L

π
E(L),

where E(L) is given by Eq. (7). In the UV limit, one can show that only roots and holes growing
as − log l can contribute to ceff. Rescaling the roots and rapidities as

θ → θ − log l

and introducing the kink counting function Z+(θ) = Z(θ − log l) together with

(22)Q+(θ) = 2 Im log
(
1 − eiZ+(θ)

)
,

one can express the effective central charge as

ceff(0) = 12

π

[
−

∑
k

cke
θk +

∞∫
−∞

dθ

2π
eθQ+(θ)

]
.

In addition, the NLIE can be rewritten for the kink counting function Z+(θ) as

Z+(θ) = eθ + g+
(
θ |{θk}

) + σ − 2i Im
∫

dx G(θ − x − iε) log
[
1 − eiZ+(x+iε)

]
,

where

g+
(
θ |{θk}

) =
∑

k

ckχ(k)(θ − θk)

and

σ = Pbdry(∞) + 2
(
2S0 + S+)

χ(∞).

Here we defined two integers by

(23)Sa = Na
H − 2Na

S − Ma
C − 2Ma

W step(p − 1), a = 0,+,

where N0 is the number of holes which do not grow in the l → 0 limit, etc.
H
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By following the standard NLIE method [6], one can derive an expression for Δ0, defined by
ceff = 1 − 24Δ0. It is given by

(24)Δ0 = 1

8π2

2p

p + 1

[
Pbdry(∞) + π + 2π

(
K + S0) + 2π

p + 1

2p
S

]2

.

Here the integer K is introduced to relate Q+(−∞) to Z+(−∞) by

Q+(−∞) = Z+(−∞) + π + 2πK,

using the definition of Q+ in Eq. (22). Also S ≡ S0 + S+ can be expressed from Eq. (23) by

(25)S = NH − 2NS − MC − 2MW step(p − 1).

Since Q+(−∞) should be given in the fundamental domain of the log function, the integer K

should be fixed in such a way that

(26)−π < Q+(−∞) � π.

One can relate (24) to that of the c = 1 conformal field theory with Dirichlet boundary condi-
tion with compactifying radius R given by

R =
√

4π

β
=

√
p + 1

2p

which describes the UV limit of the Dirichlet sine-Gordon model. One can easily calculate the
boundary term from Eq. (5)

Pbdry(∞) = π + π
2p

p + 1

[
sign(H+) + sign(H−) − H+ + H− + 2

p + 1

]
.

Using this and Eq. (8), in Eq. (24) the conformal dimension becomes

(27)Δ0 = 1

2

[
φ+ − φ−√

π
+ mR + 1

R

(
K + S0 + 1

)]2

,

where the winding number m is defined by

m = 1

2

(
sign(H+) + sign(H−)

) − 1 − S.

Writing here S in terms of the holes and imaginary roots as in Eq. (25) one can see that this is
the continuum counting equation introduced in Eq. (6).

For the Dirichlet boundary condition, the momentum mode (i.e. the term proportional to 1/R)
in the conformal dimension (27) must vanish. This gives a condition

K + S0 + 1 = 0

which fixes the integer K . If this condition is met, Eq. (26) can be written as

(28)δ − 3

2
+ p

p + 1
< S0 < δ − 1

2
+ p

p + 1
,

where δ defined by

δ = s+ + s− − γ
(H+ + H−)
2 2π
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takes values in the domain −1 < δ < 1. With this bound, Eq. (28) restricts possible values of
S0 strongly. For the repulsive case p > 1, the allowed values are S0 = −1,0,1 while they are
S0 = −2,−1,0 for the attractive case p < 1. As a special example, let us consider a case where
only imaginary roots exist. Since these roots cannot have large real parts in the UV limit, the
number of these roots should be identified with −S0. This means a possible number of imaginary
roots in the repulsive case is either 0 or 1, which is consistent with the IR analysis in Section 3.

5. Conclusions

In this paper we investigated the NLIE involving purely imaginary roots for the DSG model
on a finite interval L. We were interested in describing the DM BBSs thus we investigated the
case when the boundary parameters at one end of L were “trivial” (i.e. excluded the existence
of DM type bound states) but on the other end admitted such a state. We found an exact match
between the set of DM type bound states and bound state solutions of the NLIE albeit some-
times the correspondence was surprising: it turned out that in certain parameter domains the pure
NLIE (i.e. the one without imaginary roots) describes an excited state and one has to add certain
appropriate root(s) to get the ground state. We established the equivalence by studying the large
L solutions of the NLIE from which we extracted not only the energies but also the reflection
factors. In this process we exploited heavily the fact that sometimes the correct NLIE depends
on the second determination of certain quantities. We confirmed our findings by calculating the
boundary Lüscher corrections for the ground states and by demonstrating that the UV limit of
our NLIE reproduces correctly the conformal dimensions of the expected c = 1 BCFT.

With these achievements in hand one can certainly think of the following problems for future
research: first the numerical investigation of these NLIEs to get information about the finite
volume behavior of the bound states that asymptotically correspond to DM. Second the extension
of the NLIE to the case of two non-trivial boundary conditions at the ends of the interval L

may also prove interesting: in this case one expects that, for large L at least, certain pairs of
DM bound states appear in the spectrum. Recently, using semi-classical quantization for the
DSG model, an interesting restriction (‘matching rule’) was derived for the allowed pairs in
[21]. The semi-classical procedure in the theory with the more general perturbed Neumann type
boundary condition revealed the existence of some critical volumes Lcrit beyond which the bound
states ceased to exist. It would be interesting to see whether these statements are valid in the full
quantum theory, i.e. whether they are valid for the solutions of the new NLIE. The first step in
this direction is to generalize the present discussion to the case when a constraint is satisfied
between the two boundary conditions allowing a BAE type solution of the model [22–24]. The
ground-state NLIE in this case was formulated in [7] while the hole excited states were analyzed
in [9]. Thus there is an evident need for proceeding with the description of the BBS which shows
the same pattern as the Dirichlet one, see [25] for closing the boundary bootstrap in this case.

The boundary sine-Gordon theory is not the only one exhibiting a complex pattern of bound-
ary excited states. Its supersymmetric generalization has an even more complex BBS spectrum
[26] and their description based on the generalization of the ground-state NLIE derived in [27]
is also an interesting problem.
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