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1 Introduction

Integrable quantum field theories (QFTs) have special properties that can provide quantitative
methods to study QFTs non-perturbatively [1]. Physically important cases are those QFTs
whose renormalization group (RG) flows interpolate between the UV (ultra-violet) and IR
(infra-red) conformal field theories (CFTs) [2]. In general, this class of QFTs is very difficult
to study analytically since they become non-perturbative at the IR scale. Fortunately,
integrable QFTs in two dimensions have provided quantitative methods to address this
difficulty. A fundamental quantity in integrable QFTs is the exact scattering (S)-matrix
between asymptotic particle states, which are determined by the IR physics such as on-shell
symmetries and other axioms. From these exact S-matrices, thermodynamic Bethe ansatz
(TBA) equations can be derived, whose solutions provide scaling functions which describe
the RG flows at all scales [3].
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A traditional approach is to start with an UV CFT perturbed by a relevant operator
which maintains integrability and to find the corresponding IR CFT with its S-matrix and
identify its irrelevant deformations. Many exact S-matrices have been constructed in this
way. In practice, exact RG flows have been found from the TBAs, some of which are
not directly related to S-matrices [4–7, 9, 10]. Another interesting feature arises from the
fact that different integrable QFTs may arise from a given UV CFT by different relevant
perturbations. Hence, it is conceivable that several different UV CFTs may lead to a common
IR CFT along their RG flows.

This possibility raises an important question, “Can we completely classify UV CFTs that
can be reached from a given IR CFT?”. To answer this question, we need a new approach of
classifying all possible irrelevant operators of a given IR CFT. This problem has been studied
recently in [11] by exploiting a special class of irrelevant operators belonging to the energy-
momentum tensors and their descendants which preserve integrability [12, 13]. Constrained
to diagonal scattering theories, it has been found that several UV CFTs can be reached from
certain minimal IR CFTs. For example, there are about 4 UV CFTs which all flow into the
critical Ising CFT. Some of these are new which have not been known in the earlier literature.

In this paper, we focus on non-diagonal scattering theories for which this approach can
be more restrictive and powerful. In particular, we can identify all the UV CFTs and their
relevant perturbations, and discover their explicit integrable QFTs which show new integrable
flows into the unitary minimal CFTs in the IR limit.

This paper is organized as follows. In section 2, we review RSOS scattering theories
and associated TBA systems. Their derivations are reviewed in appendix A. In section 3,
we construct exact S-matrices and derive the TBA systems for the [T T̄ ]s-deformed unitary
minimal models. We introduce in section 4 the Lagrangians and other exact known results of
the PShG models and their UV CFTs, the parafermionic Liouville theories. In section 5, we
identify these explicit QFTs with the deformed models by showing that the scaling function
from the TBAs match with the results from the reflection amplitudes of the parafermionic
theories. One byproduct of our approach is to discover new S-matrices which provide
previously known roaming TBAs. This is explained in section 6. We will conclude the
paper in section 7. The derivation of how a CDD factor modifies the TBAs for non-diagonal
scattering theories is quite technical and we provide details in appendix A.

2 Massless kink S-matrices and their TBA

2.1 Restricted sine-Gordon model and massive kinks

We start with a minimal CFT Mp with a central charge c = 1 − 6/(p(p + 1)) perturbed
by the least relevant operator Φpert with a conformal dimension h = (p− 1)/(p+ 1), whose
formal action can be written as

Sλ = SMp + λ

∫
d2x Φpert. (2.1)

This model is a well-known integrable QFT [1], which is related to the quantum sine-Gordon
model with Uq(su2) quantum group symmetry, where the deformation parameter q is related
to p [14]. The S-matrix of (2.1) for a given p is obtained by truncating the multi-soliton
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Figure 1. Kink S-matrix.

and antisoliton Hilbert space for q a root of unity. On-shell particles are “kinks” connecting
two adjacent vacua denoted by the corresponding spins

a

x b = Kab(θ), a, b = 0, 1
2 , · · · , p2 − 1, with |a− b| = 1

2 . (2.2)

When λ < 0, the kink particles are massive with an energy and momentum

E = M cosh θ, P = M sinh θ, (2.3)

where the mass M is related to λ by [17]

π|λ| = (p+ 1)2

(p− 1)(2p− 1)

γ
(

3p
p+1

)
γ
(

1
p+1

)
1/2 √

πMΓ
(

p+1
2

)
2Γ
(p

2
)

4/(p+1)

. (2.4)

Here γ(x) = Γ(x)/Γ(1 − x). Amplitudes for two kinks scattering process in figure 1

Kda(θ1) +Kab(θ2) → Kdc(θ2) +Kcb(θ1) (2.5)

are given by1

Sp(θ)ab
dc = U(θ) (Xac

db )
iθ
2π

[
(Xac

db )
1
2 sinh

(
θ

p

)
δdb + sinh

(
iπ − θ

p

)
δac

]
, (2.6)

where U(θ) is a well-known scalar factor of the sine-Gordon model (θ = θ1 − θ2) given by

U(θ) = 1
sinh 1

p(θ − iπ)
exp

[∫ ∞

−∞

dk

k

sinh kπ(p−1)
2

2 sinh kπp
2 cosh kπ

2
eikθ

]
, (2.7)

and

Xac
db = [2a+ 1][2c+ 1]

[2d+ 1][2b+ 1] (2.8)

with the q-number defined by

[n] = qn − q−n

q − q−1 , with q = − exp
(−iπ

p

)
. (2.9)

1In a recent paper [15], a generalized crossing symmetry related to a non-invertible symmetry allows new
S-matrix without the prefactor (Xac

db )
iθ
2π . This gauge factor does not change the TBA.

– 3 –



J
H
E
P
1
1
(
2
0
2
4
)
0
7
8

② ✐ ✐✐0 1 p− 3p− 4

M cosh θ

Figure 2. Ap−2 Dynkin diagram for massive RSOS theories.

The exact two-particle S-matrices are obtained by a quantum group reduction of the scatter-
ings of the quantum sine-Gordon model when the multi-soliton and antisoliton Hilbert space
is truncated for the quantum group deformation parameter q a root of unity.

A fundamental tool to investigate scaling functions such as the vacuum energy for a
given scale is TBA, which minimizes the free energy that is expressed by densities of on-shell
particle states subject to periodic boundary condition (PBC) [3]. For non-diagonal scattering
theories such as for the RSOS scattering theory above, deriving the TBA involves the difficult
step of diagonalizing an inhomogeneous transfer matrix. This problem has been well studied
both in QFTs and statistical lattice models in two dimensions. The eigenvalues are expressed
in terms of new degrees of freedom, the so called “magnons” of p − 3 different species, as
well as the “physical” on-shell particles

TRSOS({θi})|Ψ⟩ = Λ
(
{θi},⊕p−3

a=1{α(a)
j }

)
|Ψ⟩. (2.10)

The TBA equations are obtained for the pseudo-energies corresponding to the densities
of magnons and particles,

ϵa(θ) = δa0MR cosh θ −
p−3∑
b=0

Iabφ ⋆ ln
(
1 + e−ϵb

)
(θ), a = 0, · · · , p− 3, (2.11)

where the “universal” kernel φ is given by

φ(θ) = 1
cosh θ , (2.12)

⋆ is the convolution and I is the adjacency matrix of the Ap−2 Dynkin diagram, namely Iab

is 1 if nodes a and b are connected in figure 2 and zero otherwise.

2.2 Massless kinks scattering

We can think of the original conformal field theory as the λ → 0− limit of the massive
scattering theory. In this limit the scattering states become massless with a dispersion
relation E2 = P 2 between the energy (E) and momentum (P ) carried by the asymptotic
particles. The E = +P and E = −P cases describe right-moving (R) and left-moving (L)
massless states, respectively. These states can be thought of as an extremely relativistic
limit of massive states by rescaling all rapidities θi → θ̂i + Λ for (R) and θi → θ̂i − Λ for (L)
in (2.3) and taking limits M → 0, Λ → ∞ while keeping MeΛ = M̂ finite. We will take θ̂ as
the rapidity from now on with which the dispersion relation is expressed as

E = ±P = M̂

2 e±θ̂, + = R, − = L. (2.13)
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Figure 3. Ap−2 Dynkin diagram for conformal RSOS theories.

In this limit, S-matrices between the same types (R or L) of massless particles are the
same as the massive ones (2.6) because θ1 − θ2 = θ̂1 − θ̂2

SRR
p (θ) = SLL

p (θ) = Sp(θ). (2.14)

Scatterings between R and L particles become independent of the rapidities because |θ1 −
θ2| → ∞ and the kernels between these particles vanish in the TBA. Therefore, the TBA
equations for massless kink theories are described by two separate sets (R and L) of equations,2

ϵ±a (θ) = δa0
M̂R

2 e±θ −
p−3∑
b=0

Iabφ ⋆ ln
(
1 + e−ϵ±

b

)
(θ), a = 0, · · · , p− 3, (2.15)

where the adjacency matrix Iab is given by figure 3. This TBA system describes the scale-
invariant minimal CFT Mp since any change of the scale R can be absorbed into a shift
of the rapidity θ.

Eq. (2.1) with λ > 0 was shown to generate an RG flow from a UV Mp CFT to the
Mp−1 IR CFT [2]. We can also think of the same flow the opposite direction, i.e. connecting
the IR Mp−1 minimal model to the UV Mp minimal model. As we already formulated
the integrable scattering description of the Mp minimal model, we will concentrate on the
(shifted) flow when the IR CFT is the Mp minimal model and the UV CFT is the Mp+1
minimal model. This is a conceptual change of point of view. We would like to describe
the flow by deforming the IR CFT with irrelevant operators. In the scattering language it
means to introduce non-trivial scatterings between the left and right moving particles. The
quantitative evaluation of the corresponding scaling function, such as the effective central
charge, can be obtained by the TBA system first conjectured in [4].

This conjecture was confirmed based on the massless scattering theory in [7]. In this
work, the S(p)RL

RSOS (θ) scatterings between the left- and right-moving kinks were determined
by the crossing-unitarity relations and the Yang-Baxter equation (YBE) between this and
the S(p)RR

RSOS , S
(p)LL
RSOS scattering matrices giving

SRL
p (θ) = Ũ(θ)

U(θ + ipπ
2 )

Sp

(
θ + ipπ

2

)
, SLR

p (θ) = − Ũ(θ)
U(θ − ipπ

2 )
Sp

(
θ − ipπ

2

)
, (2.16)

where Ũ(θ) is given by [7]

Ũ(θ) = 1
cosh 1

p(θ − iπ)
exp

[
−
∫ ∞

−∞

dk

k

sinh kπ
2

2 sinh kπp
2 cosh kπ

2
eikθ

]
. (2.17)

2We will replace θ̂ with θ for the rapidity from now on and use superindex ‘+’ for R-type and ‘−’ for
L-type in the TBA equations.
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Figure 4. Ap−1 Dynkin diagram for massless RSOS theories.

The non-trivial scatterings between left and right movers modify the finite volume spectrum.
As the RSOS part of the left-right scattering is shifted we have to diagonalize an inhomogenous
transfer matrix, in which the inhomogeneities corresponding to the right movers are shifted.
This shift implies that the right movers couple to the p − 3 magnons differently: we have
to flip that part of the Dynkin diagram. This was shown for p = 4 rigorously and argued
that the same happens with higher p’s in [7] . In the appendix we present a mechanism
how such a flip can happen for general p. This leads to the conjectured TBA in [2], whose
adjacency matrix Iab is given by the Dynkin diagram in figure 4,

ϵa(θ) = δa0
M̂R

2 eθ + δa,p−2
M̂R

2 e−θ −
p−2∑
b=0

Iabφ ⋆ ln
(
1 + e−ϵb

)
(θ), a = 0, · · · , p− 2, (2.18)

where the two distinguished R− and L− nodes are colored red and blue, respectively. The
ground-state energy at the scale R and effective central charge are defined by

E0(R) = −M̂

4π

∫ ∞

−∞

[
eθ ln

(
1 + e−ϵ0(θ)

)
+ e−θ ln

(
1 + e−ϵp−2(θ)

)]
dθ = −πCeff(M̂R)

6R . (2.19)

This TBA system generates a RG flow from the Mp+1 CFT (R = 0) to the Mp CFT (R = ∞).
Therefore, this set of S-matrices SRR

p (θ), SLL
p (θ), SRL

p (θ), SLR
p (θ) describes the CFT Mp

deformed by an irrelevant operator Φ3,1 and its descendants. The TBA given in (2.18)
interpolates through an RG flow from the IR CFT Mp to the UV CFT Mp+1.

Certainly, different irrelevant deformations will generate different flows to other UV CFTs
perturbed by some relevant operators. For example, one simple possibility is to choose

SRR
p (θ) = SLL

p (θ) = SRL
p (θ) = SLR

p (−θ) = Sp(θ). (2.20)

This RL S-matrices do not have shifts in the rapidity shown in (2.16). In this case, a
R-particle will scatter with both R- and L-particles with the same S-matrix in the virtual
process when we move it around the periodic volume. The resulting PBC equation is obtained
by the same transfer matrix as (2.10). In the same way, a L-particle will generate the same
transfer matrix after scattering with all other particles. This common transfer matrix can be
diagonalized and its eigenvalue is expressed in terms of the magnons. The resulting TBA
equations are still given by (2.18) but with a different adjacency matrix in figure 5 where
both R- and L-nodes are connected to the first magnon node. See the appendix how it
happens in details. In fact this TBA has been already conjectured for a Parafermion CFT
perturbed by a relevant bilinear parafermionic fields in [8] without specifying the S-matrices.
The massless S-matrices in (2.20) provide them. The two cases above show clearly how
the same LL and RR but different RL S-matrices based on the same IR CFT can describe
different QFTs that reach at distinct UV CFTs.
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Figure 5. Dp−1 Dynkin diagram for massless RSOS theories.

3 [T T̄ ] deformations of RSOS S-matrices

In this section, we deform an integrable QFT with a special set of irrelevant operators that
maintain integrability with a deformed S-matrix. When a CFT is perturbed by a relevant
operator Φpert, the holomorphic and anti-holomorphic conserved charges rearrange to satisfy
new conserved local currents satisfying the continuity equations

∂z̄Ts+1 = ∂zΘs−1, ∂zT̄s+1 = ∂z̄Θ̄s−1, (3.1)

where s is a positive integer with s+ 1 and −(s+ 1) the spins of Ts+1 and T̄s+1 respectively.
For s = 1 these are the components of the universal stress-energy tensor and the conserved
charges are the left and right components of the energy and momentum. For higher s,
the above currents depend on the model, in particular the choice of Φpert. Smirnov and
Zamolodchikov showed that from these one can construct well-defined local operators [T T̄ ]s:

[T T̄ ]s = Ts+1T̄s+1 − Θs−1Θ̄s−1 (3.2)

with scaling dimension (mass)2(s+1). More importantly, perturbation by such operators
preserves integrability [12]. Thus, we can consider the theory defined by the action

Sλ = SMp + λ

∫
d2x Φ3,1 +

∑
s≥1

αs

∫
d2x [T T̄ ]s (3.3)

where αs are coupling constants of scaling dimension [mass]−2s.

3.1 CDD factors

It is known that the perturbation by the irrelevant operators αs[T T̄ ]s simply modifies the
original S-matrix by a CDD factor [12],

S
(s)
CDD(θ) = eigs sinh sθ, (3.4)

where a dimensionless coefficient gs is given by

gs = −αsM
2s. (3.5)

Being CDD, this additional S-matrix factor acts as a scalar factor which does not change
the matrix structure. If the particles become massless, this relation changes by the massless
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scaling limit θ → θ̂ ± Λ,Λ → ∞,M → 0 with MeΛ = M̂ finite as explained in (2.13). Then,
the CDD S-matrices become

S
(s)RR
CDD = S

(s)LL
CDD = 1, S

(s)RL
CDD (θ) = exp[iĝse

sθ], S
(s)LR
CDD (θ) = exp[iĝse

−sθ]. (3.6)

Here we replaced θ̂ with θ and defined

ĝs = −αsM̂
2s. (3.7)

If we add these irrelevant operators to the deformed minimal model with Φpert as in (3.3),
the diagonal CDD factor S-matrix becomes

S
(α)RL
CDD (θ) =

∞∏
s=1

exp[iĝse
sθ], (3.8)

which will modify only the RL and LR scattering processes. We use a super-index (α)
to denote the set of coefficients αs in (3.3). The resulting S-matrices that replace those
in (2.14) and (2.16) are

S(α)RR
p (θ) = S(α)LL

p (θ) = Sp(θ), (3.9)

S(α)RL
p (θ) = S(α)LR

p (−θ) = S
(α)RL
CDD (θ) · Sp(θ + ipπ

2 ). (3.10)

The theory (3.3) is described by these new RSOS massless S-matrices and a corresponding
TBA equation. Since the CDD factors are scalar functions, the magnonic structure is the
same as the TBA in (2.18) with an additional link between the two colored nodes in figure 3
by a kernel given by

φRL(θ) = φLR(−θ) = 1
i

∂

∂θ
lnS(α)RL

CDD (θ). (3.11)

These kernels depend on all possible sets of the parameters αs. See appendix A for the
derivation of these statements. We will choose such sets which will generate RG flows into
some well-defined UV CFTs. For this, we can consider a much simplified version of the TBA,
namely, a plateaux equation as used in [11].

3.2 TBA and UV complete theories

If the theory is UV complete, the TBA should have well-defined solutions in the r ≡ M̂R → 0
limit where the pseudo-energies have constant values in a wide region centered at θ = 0.
Then, the TBA equations are reduced to much simpler algebraic equations between these
plateaux values.3

These equations are given by

xn = (1 + xn−1)1/2(1 + xn+1)1/2, n = 1, · · · , p− 3, (3.12)

x0 = (1 + x1)1/2(1 + xp−2)a, xp−2 = (1 + xp−3)1/2(1 + x0)a, (3.13)
3If the UV theory is an irrational CFT, these plateaux may not appear. Even so, it turns out that these

equations still give correct UV central charges.
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Figure 6. Âp−1 (p = 3, 4, 5, 6, 7) affine Dynkin diagrams for new scattering theories with blue (R),
red (L), and empty (magnons) nodes. The green links denote shifted universal kernels by α.

where we have defined

xn ≡ e−ϵn(0), a =
∫ ∞

−∞
φRL(θ) dθ2π . (3.14)

This set of algebraic equations can be easily solved either numerically or even analytically
depending on the exponent a. We need to find such a which gives real solutions since the
pseudo energies should be real. It can be easily found that only a = 0, 1/2 satisfy this
condition. The a = 0 case corresponds to the TBA (2.18) because no CDD factors are added.
The S-matrices between L- and R-particles are given by (2.16).

If a = 1/2, the TBA is described by the affine Dynkin diagram Âp−1 in figure 6. The
CDD factor which satisfies the crossing-unitarity relation is given by

SRL
CDD(θ) = SLR

CDD(−θ) = − tanh
(
θ − α

2 − iπ

4

)
. (3.15)

where α is a constant to be fixed later. The kernel associated with this is

φRL(θ) = φLR(−θ) = 1
cosh(θ − α) . (3.16)

From eq. (3.14), the integration of this kernel gives 1/2. Hence, we can have just one such
CDD factor to get the real solution. Comparing with (3.8), we can find that the coefficients
of the [T T̄ ]s should be

ĝs = −2 is e−sα, with s = odd. (3.17)

While α is still an arbitrary parameter, it should be real to have real solutions for the
pseudo-energies in the TBA. We present the α = 0 case in this section and discuss the
α ̸= 0 case in section 6 as they behave very differently. In the α = 0 case the UV limit
corresponds to a non-rational CFT, while for large α it exhibits roaming behaviours. This is
similar to the relation between the sinh-Gordon and the staircase models in [18, 19], which
formally corresponds to the p = 3 case here.

When α = 0, φRL becomes the universal kernel and the TBA is the same as (2.18) with
an additional link connecting the nodes 0 and p − 2. A few cases of Dynkin diagrams are
given in figure 6. These can be explicitly written as

ϵa(θ) = δa0
r

2e
θ + δa,p−2

r

2e
−θ − φ ⋆

[
ln
(
1 + e−ϵa−1

)
+ ln

(
1 + e−ϵa+1

)]
(θ),

with ϵa ≡ ϵa+p−1, for a = 0, · · · , p− 2. (3.18)
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Thanks to this additional link, the UV limit r → 0 will be very different from (2.18). We will
show in the next section that the UV CFT is the parafermionic Liouville field theory (PLFT)
and the S-matrices (3.9), (3.10), and (3.15) are those of the parafermionic sinh-Gordon
(PShG) model.

4 Parafermionic sinh-Gordon model

Parafermions (PFs) [20] appear in various two-dimensional QFTs. As fermions can generate
supersymmetry, PFs can generate fractional supersymmetry [21]. In this section, we will focus
on the PShG model which generalizes the ordinary sinh-Gordon and the supersymmetric
(fermionic) sinh-Gordon (SShG) models.

4.1 The sinh-Gordon model

This simple integrable QFT has several interesting properties which are shared by both the
SShG and PShG models. The sinh-Gordon model is an integrable QFT with a Lagrangian

LShG(Φ) = 1
4π (∂aϕ)2 + 2µ cosh 2bϕ. (4.1)

This model can be viewed as a perturbed Liouville field theory (LFT)

LL(Φ) = 1
4π (∂aϕ)2 + µ e2bϕ, (4.2)

by a relevant operator e−2bϕ where b is the coupling constant and µ is a dimensionful parameter
known as the cosmological constant. The LFT is a CFT with a central charge

cL = 1 + 6Q2, Q = b+ 1
b
, (4.3)

where Q is a background charge. The vertex operators

Vα(x) = e2αϕ(x) (4.4)

have conformal dimensions

∆α = α(Q− α). (4.5)

If α = b, the vertex operator e2bϕ has the holomorphic dimension 1 and becomes a screening
operator.

Primary fields are given by (4.4) with α = Q
2 + iP with arbitrary real P . Since the

dimension becomes Q2/4 + P 2, the two operators with α = Q
2 ± iP have the same dimension

and can be identified up to a proportional constant, namely,

VQ/2−iP = RL(P )VQ/2+iP (4.6)

where RL(P ) is known as the reflection amplitude which can be calculated from the two-point
function

RL(P ) = (πµγ(b2))−2iP/b Γ(1 + 2iP b)Γ(1 + 2iP/b)
Γ(1 − 2iP b)Γ(1 − 2iP/b) , (4.7)

with γ(x) ≡ Γ(x)/Γ(1 − x).
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The sinh-Gordon model can be described by an exact S-matrix between two scalar
particles created by the field ϕ(x)

SShG(θ) = sinh θ − i sin πp
sinh θ + i sin πp, p = b

Q
= b2

1 + b2 . (4.8)

The TBA of the sinh-Gordon model can be derived simply from this S-matrix

ϵ(θ) = mR cosh θ − φShG ⋆ ln
(
1 + e−ϵ) (θ) (4.9)

where the kernel is a logarithmic derivative of SShG

φshG(θ) = 1
cosh

(
θ − iπ(p− 1

2)
) + 1

cosh
(
θ + iπ(p− 1

2)
) . (4.10)

As we will explain in the next section, both the reflection amplitudes and the TBA can
be used to derive the scaling functions independently and can be shown to be identical. For
this comparison, a relation between the mass m and the cosmological constant µ, known
as the mass gap relation, is needed [17]

− πµ

γ(−b2) =
[
m

4
√
π

Γ
( 1

2(1 + b2)

)
Γ
(

1 + b2

2(1 + b2)

)]2+2b2

. (4.11)

Another relevant quantity is the bulk vacuum energy [22] given by

E = m2

8 sinh πp. (4.12)

The reflection amplitude, the mass gap relation, and the vacuum energy can be used to
compute the ground-state energy E0(R) independently from the TBA. This computation
will provide cross-checks as we will explain later.

4.2 The SShG model

The N = 1 supersymmetry maintains the integrability structure of the sinh-Gordon model.
The supersymmetric Liouville field theory (SLFT) is given by

LSL(Φ) = 1
4π (∂µϕ)2 − 1

π
(ψ∂̄ψ + ψ̄∂ψ̄) + 4iµb2 ψψ̄ e2bϕ + πµ2b2 e4bϕ. (4.13)

The SLFT is a CFT with a central charge

cSL = 3
2 + 6Q2, Q = b+ 1

2b , (4.14)

and the primary fields and their dimensions in the NS sector are given by

V NS
P (x) = e2αϕ(x), V R

P (x) = σ e2αϕ(x), α = Q

2 + iP (4.15)

which have conformal dimensions

∆NS
α = α(Q− α) = Q2

4 + P 2, (4.16)

– 11 –



J
H
E
P
1
1
(
2
0
2
4
)
0
7
8

and an additional 1/16 for the R sector due to the twist field σ. The two operators V±P in
both sectors are related by the reflection amplitudes [23, 24]

RNS
SL(P ) =

(
πµ

2 γ (Qb)
)−2iP/b Γ(1 + 2iP b)Γ(1 + iP/b)

Γ(1 − 2iP b)Γ(1 − iP/b) , (4.17)

RR
SL(P ) =

(
πµ

2 γ (Qb)
)−2iP/b Γ

(
1
2 + 2iP b

)
Γ
(

1
2 + iP/b

)
Γ
(

1
2 − 2iP b

)
Γ
(

1
2 − iP/b

) . (4.18)

The SShG model can be constructed in terms of the N = 1 super-field Φ = ϕ + θψ +
θ̄ψ̄ + θθ̄F with a super-potential W (Φ) which yields the Lagrangian

L(Φ) = 1
4π (∂µϕ)2 − 1

π
(ψ∂̄ψ + ψ̄∂ψ̄) − i

2πψψ̄W
′′(ϕ) + 1

4π
[
W ′(ϕ)

]2
. (4.19)

If the superpotential is given by

W (ϕ) = −4πµ cosh(2bϕ), (4.20)

the potential energy is (W ′)2 ∝ sinh2(2bϕ) which vanishes at ϕ = 0. Therefore, the super-
symmetry is exact and the on-shell massive particles respect the on-shell supersymmetry,
which can be used to find the exact S-matrix of the model [25, 26].

However, another SShG model can be defined by a slightly different super-potential [10]

W (ϕ) = −4πµ sinh(2bϕ). (4.21)

This model shows dramatically different behaviour. Since (W ′)2 ∝ cosh2(2bϕ) > 0, the
supersymmetry is spontaneously broken. The Goldstino, a massless fermion, survives stably
in all scale while the bosonic particle created by ϕ becomes unstable and decays into the
chiral (R- and L-moving) fermions as one can see from the ψψ̄ sinh(2bϕ) term in (2.13). We
will focus on this massless SShG model.

Since there is no interactions between R-fermions (and L’s), the S-matrix between LL
or RR fermions are trivially

SLL
SShG(θ) = SRR

SShG(θ) = −1. (4.22)

However, the SLR-matrix between the L- and R-fermions is non-trivial. This can be de-
termined by the crossing-unitarity relation

SLR
SShG(θ)SLR

SShG(θ + iπ) = 1, (4.23)

from which it is derived as

SLR
SShG(θ) = sinh θ − i sin πp

sinh θ + i sin πp. (4.24)

The constant p is related to the coupling constant b by

p = b

Q
= 2b2

1 + 2b2 , (4.25)
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with which the mass gap relation is expressed as

πµb2γ(bQ) =
(
m

8
πp

sin πp

)1+2b2

. (4.26)

The vacuum energy is given by the same result as (4.12).
This massless scattering theory describes the p = 3 (the Ising model) case of the RSOS

models, where Sp=3 = −1 being the scattering between non-interacting fermions and the SLR

is nothing but the CDD factor from the [T T̄ ] deformation in (3.15). The kernel connecting
the R and L nodes in the TBA is again given by (4.10) where p is given by (4.25). Since it is
shifted by imaginary constants, it is not compatible with the real shift α in (3.16) in general.
Only exception arises when both shifts vanish at self-dual point. This corresponds to α = 0
where the kernels connecting the two nodes of Â2 are identical in figure 6.

4.3 Parafermionic Sinh-Gordon models

Our main claim of this paper is that the S-matrices (3.9), (3.10), and (3.15) describe the
parafermionic sinh-Gordon model for a generic integer k. So we will define the theory in
details. The Lagrangian of the PLFT can be written as [27]

LP L = LP F + 1
4π (∂µϕ)2 − µψ1ψ1e

2bϕ + · · · , (4.27)

where ψ1 and ψ1 are Zk parafermions with (anti-)holomorphic dimension 1 − 1/k and LP F

denotes the (formal) Lagrangian of the parafermionic CFT. The ellipsis includes counter
terms whose exact expressions are not important in our study. This PLFT is also a CFT
with a central charge

cP L = 3k
k + 2 + 6Q2, Q = b+ 1

kb
. (4.28)

The primary fields are given by

V
(n)

P (x) = σn e
2αϕ, α = Q

2 + iP, n = 0, · · · , k − 1 (4.29)

with the “spin field” σn. The dimension of this is given by

∆n = Q2

4 + P 2 + n(k − n)
2k(k + 2) (4.30)

where the last term comes from the spin field. For the case of the SLFT (k = 2), two cases
of n = 0, 1 correspond to the NS and R sectors, respectively.

The effective central charge is defined by ceff = c− 24∆0 with ∆0 as a smallest dimension
of the theory. For the PLFT, this is obtained by n = 0 and P = 0,

ceff = 3k
k + 2 . (4.31)

For a generic integer k, we will focus on the n = 0 sector which is a generalization of the
NS sector for the fractional supersymmetry where the dimension is still the same as (4.16).
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Two operators V (0)
±P are related by the reflection amplitude given by [27]

R
(k)
b (P ) = eiδ(k)(P ) =

πµγ
(
b2 + 1

k

)
k(k2b4)1/k

− 2iP
b Γ(1 + 2iP b)Γ

(
1 + 2iP

kb

)
Γ(1 − 2iP b)Γ

(
1 − 2iP

kb

) . (4.32)

One can check that this reproduces (4.7) and (4.18) for k = 1, 2.
Now we can define the PShG models by adding integrable deformations to the PLFT

LP L = LP F + 1
4π (∂µϕ)2 − µ

(
ψ1ψ1e

2bϕ + η ψ†
1ψ

†
1e

−2bϕ
)

+ · · · , (4.33)

with the ellipsis including the counter terms. These models also have both massive and
massless phases in the same way as the SShG model. The PShG model can be considered
as the fractional sine-Gordon model, analysed in [21], with an imaginary coupling constant.
Therefore, it has a fractional supersymmetry, which is a generalization of the supersymmetry.
For the massive phase with η = +, the fractional supersymmetry is maintained, and the
S-matrix describes scatterings among massive multiplets. On the other hand, if it is massless
with η = −, the fractional supersymmetry is broken spontaneously and only massless PFs
will be left to describe the theory.

The mass gap relation has been also computed in [27]:

πκ

k
γ(bQ) =

 m

8Γ
(

k+2
2

)Γ
(

1 + k2b2

2(1 + kb2)

)
Γ
(

k

2(1 + kb2)

)2bQ

, (4.34)

and the vacuum energy is the same as (4.12) with p = b/Q.
We claim that the S-matrices between these massless particles are given by the RSOS

S-matrices (2.14) and (3.15) with the self-dual coupling constant b = 1/
√
k. This will be

justified by comparing scaling functions from the TBA with those obtained by the reflection
amplitudes.

5 Comparing the TBA to the reflection amplitudes

In this section we compare the finite size ground-state energy coming from the reflection
amplitudes to the same quantity coming from the TBA.

5.1 Effective central charge from the reflection amplitudes

In the parefermionic sinh-Gordon model the effective central charge is governed by the primary
field with n = 0 and with the minimum value of the momentum P

ceff(R) = 3k
k + 2 − 24P 2 + O(R). (5.1)

Since the primary field is confined in Liouville potentials on both sides, the momentum
is quantized by the condition

δ(k)(P ) = δ1P + δ3P
3 + · · · = π + 4QP ln x, x = R

2π , (5.2)
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where the reflection phase δ(k) is defined in (4.32). At small volume the momentum can
be expanded as

P = − π

4Q ln x − πδ1

16Q2 ln2 x
− πδ2

1
64Q3 ln3 x

− πδ3
1 + π3δ3

256Q4 ln4 x
+ . . . (5.3)

The corresponding effective central charge has a logarithmic volume dependence

ceff = 3k
k + 2 − 3π2

2Q2 ln2 x
− 3π2δ1

4Q3 ln3 x
− 9π2δ2

1
32Q4 ln4 x

− 3(2π2δ3
1 + π4δ3)

64Q5 ln5 x
+ . . . (5.4)

Observe that the (ln x)−1 term is missing.
The small P expansion takes the form

δ(k)(P ) = −2P
b

ln
πµγ

(
b2 + 1

k

)
k(k2b4)1/k

− 4PQγE + P 3ζ(3)16
3

(
b3 + 1

b3k3

)
+ . . . (5.5)

In order to get the final form we still need to use the massgap relation (4.34). Let us note
that the mass appears only at the linear order as

δ(k)(P ) = −4PQ lnm+ . . . (5.6)

which nicely combines with R to the dimensionless volume mR = r.
In order to compare with the TBA analysis we specify the results for the self dual

point, defined by

b2 = 1
k

; Q = 2√
k
. (5.7)

The mass gap relation simplifies considerably

πµ

k
γ(2/k) =

[
mΓ2(k

4 )
16Γ(k

2 )

]4/k

(5.8)

and the reflection factor

eiδ(P ) =

mΓ2
(

k
4

)
16Γ

(
k
2

)
− 8iP√

k Γ
(
1 + 2iP√

k

)2

Γ
(
1 − 2iP√

k

)2 . (5.9)

The small P expansion of the phase at the self dual point is

δ(k)(P ) = δ1P + δ3P
3 + · · · = − 8√

k
ln

mΓ2
(

k
4

)
16Γ

(
k
2

)
P − 8 γE√

k
P + 32ζ(3)

3k
3
2
P 3 + . . . . (5.10)

Plugging back these values into eq. (5.4) and taking into account that x = R/2π leads to
the coefficients in table 1. We compare these numbers with the same quantities obtained
by numerically solving the TBA equations.
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Figure 7. Logarithmic plot of the effective central charge as the function of the dimensionless volume
r = M̂R for k = 2, 3, 4 (blue,orange,green).

5.2 Numerical solution of the TBA

We solve the TBA equations (3.18), by discretizing the pseudo energies ϵa and performing
the convolutions using discrete Fourier transforms. Iterating the equations until reaching the
prescribed precision, (which we choose to be 10−16), leads to the effective central charge ceff(r)
as the function of the dimensionless volume r = M̂R, which serves as the RG parameter.
We present the results for the k = p − 1 = 2, 3, 4 cases. The behaviour of the effective
central charge is displayed on figure 7.

In the IR, i.e. for large volumes R, the left and right movers decouple and we get back
the IR minimal model CFT with central charge cIR = 1 − 6

(k+1)(k+2) . By investigating the
numerical solution one can observe that the non-trivial behaviour is concentrated on the
small and large θ region. In each domain one of the colored nodes (with the driving term
ϵ0 or ϵp−2 ) becomes negligible. The TBA is then no longer the ring, rather the line, which
describes the same left or right moving scattering theories (2.15).

In the UV, the effective central charge approaches its UV value cUV = 3k
k+2 very slowly.

The reason is that in the central domain the functions Li(θ) = log(1 + e−ϵi(θ)) does not
approach any plateaux value, see figure 8. Indeed in this limit the driving terms are negligible
and the central behaviour is governed by the same function we would have in the sinh-
Gordon theory at the self dual point, where it is well-known that the effective central charge
approaches its UV value logarithmically. We have already obtained this logarithmic behaviour
in our case, which we try to fit numerically now. We thus parametrize the small volume
behaviour of the central charge as

ceff(r) = 3k
k + 2 +

∑
n=2

cn(k)
(log r)n

+O(r) (5.11)

by focusing on the logarithmic corrections and neglecting any higher order polynomials in r.
We extract the coefficients cn(k) numerically, by fitting ceff(r) in the range 10−10 − 10−6. The
results are displayed in the table 1 and shows a convincing agreement with the analytically
obtained expressions from the reflection factors.
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-40 -20 20 40

Li(θ)

Figure 8. Plot of the Li = log(1 + e−ϵi) functions for k = 4 and dimensionless volume r = 10−5

as the function of θ. The functions {L0, L1, L2, L3} correspond to {blue,orange,green,red). Clearly
Li(θ) = L3−i(−θ).

c2 c3 c4 c5
k = 2 7.402199 42.7620 185.218 714.563

7.402203 42.7628 185.282 717.247
k = 3 11.10332 77.8573 409.598 1924.84

11.10330 77.8543 409.425 1919.36
k = 4 14.8045 119.428 722.797 3898.75

14.8044 119.4197 722.475 3892.55

Table 1. Numerically fitted coefficients in the various cases above and their analytical expressions
from the reflection amplitudes, below.

The agreement we found tests not only the approach based on the reflections factors of
the PShG model, but specifically its mass gap relation and the first two coefficients δ1, δ3.

6 Roaming TBA

So far we have considered the SRL and SLR matrices given by (3.15) with α = 0. For the
case of α ̸= 0, the SRL and SLR are changed by a shift α in the arguments. The TBA can
be derived from the same set of massless S-matrices as

ϵa(θ) = −φ ⋆
[
ln
(
1 + e−ϵa−1

)
+ ln

(
1 + e−ϵa+1

)]
(θ), a = 1, · · · , p− 3, (6.1)

ϵ0(θ) = r

2e
θ − φ ⋆ ln

(
1 + e−ϵ1

)
+ φ(+) ⋆ ln

(
1 + e−ϵp−2

)
(θ), (6.2)

ϵp−2(θ) = r

2e
−θ − φ ⋆ ln

(
1 + e−ϵp−3

)
+ φ(−) ⋆ ln

(
1 + e−ϵ1

)
(θ), (6.3)

with kernels φ(±) defined by

φ(±)(θ) = φ(θ ± α) (6.4)

and with the same graph in figure 6.
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Figure 9. ceff(r) vs − log r for p = 4 with α = 10π.

This TBA with real α can be mapped to the some of the TBA systems conjectured
in [28, 29] to describe roaming trajectories between coset minimal models. Although the
kernels in [28, 29] are apparently different, they can be transformed to those in (6.3) by
shifting the rapidities in the definition of the pseudo energies and by redefining the scale r
appropriately. This result implies that the massless S-matrices in (3.9), (3.10), and (3.15)
are the exact S-matrices behind the conjectured roaming TBA of the Zk PF minimal series.

Although the roaming behaviour was analyzed thoroughly in the more general cases
in [28, 29], we just present here our findings, which also confirm their results. For sufficiently
large α ≫ 1, this TBA is showing interesting roaming trajectories (p = k + 1):

Mk+1 → ZkM1 → ZkMk+1 → ZkM2k+1 → · · · , (6.5)

where we denote the Zk PF minimal series by ZkMℓ (ℓ = 1, 2, · · · ) which can be written
as coset CFTs as follows:

ZkMℓ = su(2)k ⊗ su(2)ℓ

su(2)k+ℓ
, with c = 3kℓ(k + ℓ+ 4)

(k + 2)(ℓ+ 2)(k + ℓ+ 2) . (6.6)

For example, as shown in figure 9 for the p = 4 case, the starting IR CFT has cIR = 0.7
of the M4 CFT. The next central charge jumps to c = 4

5 which is the first CFT in Z3 PF
minimal series and succeeded by c = 22

15 ,
49
30 , · · · .

Among many interesting TBA systems proposed in [28, 29], only a subset has been
reproduced from our S-matrix approach. It would be interesting to extend this approach to
the general cases, not only in the roaming limit but also for other values of the parameters
which may appear in the RL scatterings.
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7 Conclusion

QFTs that interpolate between two CFTs in their UR and IR limits are valuable but rare
examples from which we can understand quantitatively how fundamental degrees of freedom
such as operators and on-shell particles are connected. In this paper, we have approached
to find new QFTs from the IR point of view based on the exact massless S-matrices which
are deformed by [T T̄ ]. These special irrelevant fields preserve integrability and modify the
S-matrices between R- and L-particles in a systematic way. Generalizing [11], we have applied
[T T̄ ] deformations on non-diagonal kink scattering theories of the perturbed minimal CFTs
Mp. We have found fine-tuned [T T̄ ] deformations that can be UV complete. Our main
finding is the Zp−1 PShG model with the self-dual coupling constant which leads to the
Zp−1 PF LFTs in the UV limit. This extends the previous result, which connects the super
Liouville theory to the critical Ising model [10] and contains it as its simplest example. We
have tested this conjecture thoroughly by comparing the UV limit of the TBA equations
with the reflection factors of the UV conformal field theory. It is remarkable to see how a
fractional supersymmetry associated with the Zp−1 PF emerges from the simple minimal CFT
Mp by the fined tuned irrelevant [T T̄ ] deformations. This emergent symmetry generalizes
the phenomena observed in the Ising model (p = 3) [10].

By choosing the real parameter in the CDD factor very large, we obtained the Zp−1
parafermionic minimal CFT series with roaming trajectories and recovered a conjectured
flow of [28, 29]. It is important to emphasize that the UV behaviour depends quantitatively
on the parameter α. In particular, it would be very interesting to investigate the UV limit
for purely imaginary α. We think that it should correspond to the Zp−1 PShG models away
from the self-dual couplings, but further research is needed to decide about this question.

We want to emphasize once more that our TBAs have been derived from exact massless
S-matrices rather than many educated guesses on TBAs and non-linear integral equations
in the literature. (See [9, 31] and references therein.) In addition, we have also derived two
of previously conjectured TBAs, one in figure 5 and the PF roaming TBA, from the exact
S-matrices. It would be nice if we can prove other conjectured TBAs in this way.

In this work, we have considered the Mp CFT as a scattering theory of RSOS kinks
based on the Φ1,3 deformation and mapped the space of all integrable irrelevant perturbations
with a UV limit. In fact, there are other integrable descriptions of the same minimal CFTs
related to different integrable deformations. It would be interesting to find new UV CFTs
based on these different S-matrices associated with the same IR minimal CFTs. In this way,
we may lead to a complete classification of UV complete theories for a given IR CFT.

Massless scattering theories gain attentions recently related to the world-sheet S-matrices
of AdS3/CFT2 duality [30]. Being CFTs, these S-matrices are between RR and LL particles
while RL scatterings are trivial. It will be interesting to consider non-trivial RL scatterings,
possibly related to the [T T̄ ] deformations and their RG flows in the context of AdS/CFT
duality. Another interesting direction is to understand relations between these new RG flows
and non-invertible symmetries associated with some topological defect lines [32].
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A Magnonic scatterings with a CDD factor

In this appendix we investigate how a CDD factor modifies the TBA equations with magnons.
We do the calculations for theories with one or two distinguished (massive) nodes and M

magnons.

A.1 Massive scattering

Let us start with just one single type of massive particles which scatters on itself with
a non-diagonal scattering matrix S(θ) = S0(θ)R(θ), where R(θ) solves the Yang-Baxter
equation, typically a Boltzman weight in an integrable lattice model and S0(θ) is a scalar
factor, which ensures unitarity and crossing symmetry. In determining the finite volume
spectrum the Bethe Yang equations have to be solved

eip(θj)L ∏
k ̸=j

S(θj − θk)Ψ(θ1, . . . , θn) = eip(θj)L ∏
k ̸=j

S0(θj − θk)ΛΨΨ(θ1, . . . , θn). (A.1)

It involves the diagonalization of the lattice transfer matrix and with its eigenvalue, ΛΨ,
the momentum quantization can be formulated as

eip(θj)L ∏
k ̸=j

S0(θj − θk)ΛΨ = 1. (A.2)

In diagonalizing the lattice transfer matrix

T(θ|θ1, . . . , θn) = tr0(
∏

R(θ − θj)) (A.3)

one typically uses the method of (nested) Bethe ansatz. In the rank one case it involves just a
single type of magnonic particles, while for higher rank theories more magnons are needed. In
order to describe all states one also has to investigate the magnon-magnon scatterings, classify
their bounds-states and calculate their scattering matrices, i.e. the magnonic bootstrap has
to be closed. In the following we assume that there are M magnons and that they scatter
on each other by the Snm(θ) scattering factor, n,m = 1, . . . ,M .

The finite volume spectrum can be calculated as if it were a diagonally scattering theory.
We place both physical and magnonic particles and demand the periodicity of their wave
function. Let us denote the massive particle with the label 0 and the massive-massive
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scattering by S00(θ) = S0(θ), where we assumed a specific normalization for the lattice R
matrix. The magnon scatters on the massive particle as Sn0(θ) while the massive particle on
the magnon as S0n(θ). These S-matrix elements are not independent. The S00(θ) scattering
is connected to the S0n(θ) and Sn0(θ) scatterings by crossing symmetry [33], while Snm(θ)
are related to S11(θ) by bootstrap or symmetry relations.

Let us place on the circle N particles of type n1, . . . , nN and rapidities θn1 , . . . , θnN . The
Bethe Yang equation at the magnonic language reads as

eipnj (θj)Leiδ
∏
k ̸=j

Snjnk
(θnj − θnk

) = 1 (A.4)

where pnj (θ) denotes the momentum of the particle of type nj . For massive particles
p0(θ) = p(θ) = m sinh θ, while for magnons pn(θ) = 0. We also included a possible phase
factor eiδ which typically has no effect in the thermodynamic limit.

In the thermodynamic limit we can introduce the densities of the particles of type n as ρnj

and their hole densities as ρ̄nj . The thermodynamic limit of the Bethe Yang equations reads as

ρnj + ρ̄nj = p′
nj
L+

∑
k

ϕnjnk
⋆ ρnk

(A.5)

where p′
nj

(θ) = ∂θpnj (θ), ϕnjnk
(θ) = −i∂θ logSnjnk

(θ) and ⋆ denotes the convolution. Let
us spell out the details by specifying nj to 0 and n = 1, . . . ,M :

ρ0 + ρ̄0 = p′L+ ϕ00 ⋆ ρ0 +
M∑

n=1
ϕ0n ⋆ ρn (A.6)

ρn + ρ̄n = ϕn0 ⋆ ρ0 +
M∑

m=1
ϕnm ⋆ ρm.

In many of the theories the bootstrap or symmetry relations between the various magnons
and their boundstates imply that

(δnm − ϕnm)−1 = δnm − (δn+1m + δn−1m)s (A.7)

for M ≥ n,m > 0, where

s(θ) = 1
cosh(θ) (A.8)

Using this relation the magnonic equations simplify to

ρn + ρ̄n = s ⋆ (ρ̄n+1 + ρ̄n−1) + (ϕn0 − s ⋆ (ϕn+10 + ϕn−10)) ⋆ ρ0

= s ⋆ (ρ̄n+1 + ρ̄n−1) + δn1s ⋆ ρ0. (A.9)

Here we also used that ϕn0 satisfies the bootstrap or symmetry equation and ϕ10 − s ⋆ϕ20 = s.
Finally we can write

ρ0 + ρ̄0 = p′L+ ϕ00 ⋆ ρ0 + ϕ01 ⋆ (s ⋆ ρ0) +
∑

n

ϕ0n ⋆ (−ρ̄n + s ⋆ (ρ̄n+1 + ρ̄n−1))

= p′L+ s ⋆ ρ̄1 (A.10)
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where we used the equations related to the crossing symmetry [33] and the bootstrap or
symmetry equations

ϕ00 + ϕ01 ⋆ s = 0 ; −ϕ01 + ϕ02 ⋆ s = s. (A.11)

Here and from now on all sums go from 1 to M , i.e.
∑

n ≡
∑M

n=1. The diagram, which encodes
the corresponding TBA system is in figure 2. This is a typical TBA system, which appears in
many models. In particular, for the minimal model perturbed with Φ1,3 we have M = p− 3.

A.2 Massless scattering and its irrelevant perturbations

Let us now assume that we have two different distinguished nodes. We denote the new node
by 0̄. This situation corresponds to a CFT when we have the right movers with p0 = meθ and
the left movers with p0̄ = −me−θ and can be obtained as the zero mass limit of the previous
scattering theory. In the CFT the left-left and the right-right scatterings are equivalent to
the scatterings above, while the left-right scattering is the identity. This implies that we have
separate magnons for left and right movers. We distinguish the magnons of the left movers
by a bar, although their kernels are the same as the unbared onces, i.e. ϕ0̄0̄ = ϕ00, ϕ0̄n̄ = ϕ0n.
We can repeat the calculations above resulting two decoupled systems, each looking the same
as the massive one. The only difference is in the driving terms p′

0 = meθ and p′
0̄ = me−θ.

The corresponding diagram is in figure 3.
In the following we introduce irrelevant perturbations which drives the theory away

from the IR fix point. We focus on integrable perturbations which can be described by
coupling the left movers and the right movers by non-trivial scatterings, which satisfy the
Yang-Baxter equation.

A.2.1 Identity type perturbation

Let us assume now that we couple the left and right movers with a CDD factor

SLR(θ) = S00̄(θ)I. (A.12)

This simple scattering do not effect the magnons merely couples the 0 and 0̄ indices as

ρ0 + ρ̄0 = p′
0L+ ϕ00 ⋆ ρ0 +

∑
n

ϕ0n ⋆ ρn + ϕ00̄ ⋆ ρ0̄ (A.13)

and an analogous equation for the 0̄ particle

ρ0̄ + ρ̄0̄ = p′
0̄L+ ϕ00 ⋆ ρ0̄ +

∑
n

ϕ0n ⋆ ρn̄ + ϕ0̄0 ⋆ ρ0. (A.14)

Since the previous kernels do not change we can repeat our simplifying manipulations to
bring the TBA in the form

ρ0 + ρ̄0 = p′
0L+ s ⋆ ρ̄1 + ϕ00̄ ⋆ ρ0̄ ; ρ0̄ + ρ̄0̄ = p′

0̄L+ s ⋆ ρ̄1̄ + ϕ0̄0 ⋆ ρ0. (A.15)

Clearly the new coupling between the left and right distinguished nodes did not participate
in the cancellations and survived the simplifying manipulations. The resulting TBA system
can be encoded into the Dynkin diagram, in which the two colored nodes on figure 3 are
coupled. Although the coupling between 0 and 0̄, namely ϕ00̄ can be different from s.
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A.2.2 Same S-matrix type perturbation

Let us assume now that we couple the left and right movers with the same scattering matrix
as the left-left and right-right scatterings, see also eq. (2.20)

SLR(θ) = S(θ). (A.16)

In this case left and right movers share the same magnons, ρn ≡ ρn̄ and the diagonalization
of the transfer matrix leads to the following equations

ρ0 + ρ̄0 = p′
0L+ ϕ00 ⋆ (ρ0 + ρ0̄) +

∑
n

ϕ0n ⋆ ρn

ρ0̄ + ρ̄0̄ = p′
0̄L+ ϕ00 ⋆ (ρ0 + ρ0̄) +

∑
n

ϕ0n ⋆ ρn

ρn + ρ̄n = ϕn0 ⋆ (ρ0 + ρ0̄) +
∑
m

ϕnm ⋆ ρm. (A.17)

Using similar manipulations as above we can arrive at the TBA equations encoded in the
diagram on figure 5.

By introducing an extra CDD factor between the left and right scatterings

SLR(θ) = S00̄(θ)S(θ) (A.18)

we can repeat the previous calculation which introduces a new connection between the 0
and 0̄ nodes

ρ0 + ρ̄0 = p′
0L+ ϕ00 ⋆ (ρ0 + ρ0̄) +

∑
n

ϕ0n ⋆ ρn + ϕ00̄ ⋆ ρ0̄ (A.19)

and similar equation for 0̄, without affecting the magnonic equations. After the previous
simplification is applied, TBA is given by a diagram in which figure 5 has an extra link
between the 0 and 0̄ nodes. This diagram does not correspond to a Dynkin diagram so
we do not expect a sensible UV limit.

A.2.3 Shifted S-matrix type perturbation

Let us finally investigate the case when the left-right scattering is the appropriately shifted
left-left scattering, see also eq. (2.16)

SLR(θ) = S̄0(θ)S(θ + iα) = S00̄(θ)R(θ + iα) (A.20)

In this case we have to diagonalize an appropriately shifted inhomogenous transfer matrix.
Left and right movers share the same magnons, but they couple to them in a different
way. Choosing the shift appropriately, can introduce the identifications in the magnons
as ρn̄ ≡ ρM+1−n and gives

ρ0 + ρ̄0 = p′
0L+ ϕ00 ⋆ ρ0 + ϕ00̄ ⋆ ρ0̄ +

∑
n

ϕ0n ⋆ ρn

ρ0̄ + ρ̄0̄ = p′
0̄L+ ϕ00 ⋆ ρ0̄ + ϕ0̄0 ⋆ ρ0 +

∑
n̄

ϕ0n ⋆ ρn̄

ρn + ρ̄n = ϕn0 ⋆ ρ0 + ϕn0̄ ⋆ ρ0̄ +
∑
m

ϕnm ⋆ ρm. (A.21)
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Using the kernel identities, the TBA equations can be simplified, which leads to the TBA
diagram on figure 4. Here it was assumed that S̄0(θ) was chosen such a way, that the direct
coupling between the distinguished nodes 0 and 0̄ disappears. This can be done as it is shown
in the explicit example below (A.44), requiring that

ϕ00̄ + ϕ0M ⋆ s = 0 ; ϕ0̄0 + ϕM0 ⋆ s = 0. (A.22)

Let us now introduce an extra CDD factor between the left-right scatterings

SLR(θ) = S̄00̄(θ)S̄0(θ)S(θ + iα). (A.23)

This modifies the TBA equations as

ρ0 + ρ̄0 = p′
0L+ ϕ00 ⋆ ρ0 + (ϕ00̄ + ϕ̄00̄) ⋆ ρ0̄ +

∑
n

ϕ0n ⋆ ρn (A.24)

and similar equation for 0̄. Using again the kernel identities we can simplify the TBA
equations. The effect of the CDD factor is to introduce an extra coupling between the nodes
0 and 0̄, which can be different than s. The effective diagram is the circle diagram shown
on figure 6, where the green links indicate the kernel ϕ̄00̄ of the CDD factor.

A.2.4 Comments

Let us summarize what we found. We investigated IR conformal field theories perturbed
irrelevantly by coupling the left and right movers in an integrable way. We focused on the
effect of introducing an extra CDD factor in the scatterings between left and right movers.
We found that an extra coupling appears in the TBA description between the distinguished
nodes, which is related to the logarithmic derivative of the CDD factor. Our derivation was
very general and did not rely on the explicit form of the kernels. If a simplification appears
in the original TBA describing the irrelevant perturbation, then the same simplification
appears also with the CDD factor and the only effect is the extra coupling between the
distinguished nodes. In the next subsection we provide explicit formulas, how it happens
in the minimal models perturbed by Φ1,3.

A.3 Minimal models perturbed with Φ1,3

The previous considerations were quite general valid for any scattering theories with the
same magnonic structure.

In applying it to the minimal models perturbed by Φ1,3 we have to recall the diagonal-
ization of the RSOS transfer matrices, which was done in [34] for the homogenous case. It
involves one single magnon and by extending it to the inhomogenous case we arrive at

N∏
j=1

sinhµ(αk − θj + iπ
2 )

sinhµ(αk − θj − iπ
2 )

= ω2(−1)N+1
N/2∏
m=1

sinhµ(αk − αm + iπ)
sinhµ(αk − αm − iπ) (A.25)
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where we rescaled the roots of the magnon rapidities αk compared to [], µ = 1
p and ω is a

constant phase. The transfer matrix eigenvalue with these roots take the form

Λ(θ|θ1, . . . , θn, α1, . . . , αm) = ω
∏
j

sinhµ(θ − θj − iπ)
∏
k

sinhµ(θ − αk + iπ
2 )

sinhµ(θ − αk − iπ
2 )

+ ω−1∏
j

sinhµ(θ − θj)
∏
k

sinhµ(θ − αk − 3iπ
2 )

sinhµ(θ − αk − iπ
2 )

. (A.26)

From these Bethe ansatz equations we can extract the magnon-magnon scatterings

S11(α) = sinhµ(α+ iπ)
sinhµ(α− iπ) ≡ [2] (A.27)

where we have introduced the notation

[n] =
sinhµ(α+ n iπ

2 )
sinhµ(α− n iπ

2 )
. (A.28)

With this notation the magnon-massive scattering is simply S10(α) = [−1]. The magnon-
magnon scattering is attractive, with a pole at α = iπ, implying that magnons can form
boundstates. The simplest boundstate is a two string with α ± iπ

2 . The scattering of this
two string labeled by 2 can be bootstrapped as

S12(α) = S11

(
α+ iπ

2

)
S11

(
α− iπ

2

)
= [1][3]. (A.29)

Similarly, the magnon scatters on the boundstate with S20(α) = [−2]. Following this procedure
one arrives at an n-string

{
α+ iπ(n−1)

2 , α+ iπ(n−3)
2 , . . . , α− iπ(n−3)

2 , α− iπ(n−1)
2

}
with scatterings

S1n(α) = [n− 1][n+ 1] ; Sn0(α) = [−n]. (A.30)

Recalling that µ = 1/p and inspecting the scatterings one can see that the last string we
can form is with n = p − 1. Indeed its scatterings are

S1p−1(α) = −[p− 2] ; Sp−10(α) = [1 − p] = −
coshµ(α+ iπ

2 )
coshµ(α− iπ

2 )
. (A.31)

To complete the whole picture we should calculate the scattering of a general n-string on
an m-string:

Snm(α) = [n−m][n−m+ 2]2 . . . [n+m− 2]2[n+m] (A.32)

where we assumed that n ≥ m.
Let us also point out that from the transfer matrix eigenvalue we can extract the massive-

magnon scattering which turns out to be the inverse of the magnon-massive scattering

S0n = [n] = S−1
n0 = [−n]−1. (A.33)

This is related to the fact that we have to choose between the BA for the magnons and its
inverse such a way that the magnon densities will be positive in the thermodynamic limit.
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A.3.1 Kernels in the TBA

In calculating the groundstate energy we will need the logarithmic derivative of the kernels
ϕ(θ) = −i∂θ logS(θ). Performing the calculations we found

ϕnm = (n−m) + 2(n−m+ 2) + · · · + 2(n+m− 2) + (n+m) ; ϕn0 = −(n) (A.34)

where
(n) = iµ cothµ

(
α− inπ

2

)
− iµ cothµ

(
α+ inπ

2

)
. (A.35)

One can show that the bootstrap equations imply∑
n

(δkn − (δk+1n + δk−1n)s)(δnm − ϕnm) = δkm

where s is the inverse of the shift operator: s−1f(α) = f(α + iπ
2 ) + f(α − iπ

2 ).
Some formulas are easier to check in Fourier space. One can go to Fourier space using

log[n] ∼ log
− sinhµ(θ + inπ

2 )
sinhµ(θ − inπ

2 ) = −i
∫ ∞

−∞

dk

k
sin kθ

sinh kπ
2µ (1 − nµ)
sinh kπ

2µ

. (A.36)

In calculating the TBA equations the relation between massive-massive scattering and the
massive-magnon scattering is also important. By inspecting the Fourier transforms we
can see that

ϕ00(θ) =
∫ ∞

−∞
dk

sinh kπ(1−µ)
2µ

2 sinh kπ
2µ cosh kπ

2
cos kθ (A.37)

where we removed the 1
sinh µ(θ−iπ) factor, since its inverse appears from the matrix part of the

scattering. The operator s in Fourier space acts as multiplication with

s = 1
2 cosh kπ

2
(A.38)

we can thus see, that

ϕ00 − s ⋆ ϕ10 = 0. (A.39)

Let us investigate the shifted scatterings eq. (2.16). The corresponding S00̄ can be obtained
by multiplying Ũ(θ) with cosh(µ(θ − iπ)) coming from the scattering matrix elements:

S00̄(θ) = exp
{

−i
∫ ∞

0

dk

k

sinh kπ
2

sinh kπ
2µ cosh kπ

2
sin kθ

}
. (A.40)

The scattering between the massive node and the magnons will be also shifted

S1(α+ iβ) =
sinhµ(α+ iβ − iπ

2 )
sinhµ(α+ iβ + iπ

2 )
. (A.41)

By choosing β = π
2µ we get

S10(α+ iβ) =
sinh[µ(α− iπ

2 ) + iπ
2 ]

sinh[µ(α+ iπ
2 ) + iπ

2 ]
=

coshµ(α− iπ
2 )

coshµ(α+ iπ
2 )

= −Sp−10(α)−1 (A.42)
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In calculating the kernels the relation is

ϕ10(α+ iβ) = ϕ10̄(α) = −ϕp−10(α). (A.43)

One can also check that

ϕ0̄0 + ϕp−10 ⋆ s = 0. (A.44)

Thus all the kernel identities we used are satisfied.

A.3.2 Comments

Let us make a final comment about this approach. The Bethe Ansatz equations are basically
the same as the XXZ Bethe ansatz equations. However not all solutions appear in the RSOS
level. This means that some solutions have to be projected out. This was done in [34].
However this truncation does not seem to be compatible with the n̄ = M + 1 − n relations.

A correct way of deriving the Bethe ansatz was based on the investigation of the
distribution of zeroes of the transfer matrix fusion hierarchy in [35]. In this way the authors
reproduced the massive and the interpolating massless TBA equations as the thermodynamic
limit of an integrable lattice model. This ensures that the final TBA equations are indeed
correct. We believe that the correct approach to obtain the same result from the TBA
language would be to follow this analysis and analyze the zeros of the RSOS transfer matrix
fusion hieararchy in the shifted inhomogenous case, instead of the solutions of the Bethe
ansatz equations. This is, however, beyond the scope of this paper. We initiated a research
into this direction.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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