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1. Introduction

The newly discovered integrable structure [1] of the planar N = 4 super Yang-Mills theory

played important role in testing the AdS/CFT correspondence [2] over all range of the

‘t Hooft coupling parameter. By mapping the dilatation operator to an integrable spin-

chain, scaling dimension of single trace operators is computable to all orders in perturbation

theory [3]. The spectrum is then compared with the excitation energy spectrum of a free

closed string in AdS5 × S
5 with large angular momenta. Important physical observables

in this setup are the spectrum and the states. Worldsheet scattering S-matrices offer

a powerful method for extracting them [4]. Utilizing underlying symmetries, Beisert [5]

derived the S-matrices up to an overall phase-factor. This phase-factor contains important

dynamical information and was later determined by Beisert, Eden and Staudacher [6]. The

phase-factor was shown to satisfy a certain crossing relation [7].

A new interesting feature arises upon introducing boundaries. In integrable quantum

field theories, in the presence of boundaries, full integrability of the bulk can be maintained

only for appropriate choices of boundary condition. The same situation arises in AdS/CFT

correspondences [8]. In the string theory side, D-branes introduce the boundary to string

worldsheet. In the N = 4 super Yang-Mills (SYM) side, bifundamental or subdeterminant

field (products) introduce boundaries to composite operators. Not all boundaries would

maintain integrability. Recently, Hofman and Maldacena [9] investigated two integrable

boundary conditions which correspond to maximal configurations of a giant graviton in-

teracting with elementary magnons of the spin chain attached to it. There are two kinds

of them. One is the Y = 0 brane, represented by composite operators containing a deter-

minant factor det(Y ):

OY = ǫ
j1...jN−1A
i1...iN−1BY i1

j1
· · ·Y

iN−1

jN−1
(Z . . . ZχZ . . . Zχ′Z . . .)BA , (1.1)
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where χ, χ′, . . . represent other SYM fields. Another is Z = 0 brane, represented by com-

posite SYM operators containing a determinant factor det(Z):

OZ = ǫ
j1···jN−1A
i1···iN−1BZi1

j1
· · ·Z

iN−1

jN−1
(χZ · · ·Zχ′Z · · ·Zχ′′Z · · ·χ′′′)BA . (1.2)

An important difference of Z = 0 brane from the Y = 0 brane is that the open super Yang-

Mills spin chain is connected to the giant graviton through boundary impurities χ and χ′′′.

In this paper, for simplicity, we shall take χ = · · · = χ′′′ = Y . The dilatation operator

determining the conformal dimension of these operators has been derived and mapped to

the integrable spin chain models with appropriate boundary conditions. The corresponding

boundary S-matrices were obtained in [9] up to boundary dressing phase-factor. Recently,

this factor was determined from boundary crossing relation by Chen and Correa [10] for

Y = 0 brane. On the other hand, the corresponding factor for Z = 0 brane is unknown.

With the boundary terms preserving integrability, this system can be completely described

by the reflection scattering matrix (namely, boundary S-matrix) which preserves particle

numbers and energies in the same way as the bulk scattering matrix does. On the other

hand, momenta are reversed.

In this paper, using fusion procedure, we construct complete set of reflection amplitudes

of magnons and their bound-states off a giant graviton and compare analytic structure of

these amplitudes with that of bulk scattering amplitudes between magnon bound-states.

Thus, in section 2, we first recapitulate relevant results of the bulk scattering amplitudes.

In section 3, utilizing the boundary dressing phase-factor of [10], we study reflection ampli-

tudes of a magnon bound-state off the Y = 0 brane. We find a remarkable structure that

the reflection amplitude takes a square-root form of the bulk scattering amplitude. Taking

this relation as a guide and utilizing known strong and weak coupling results [9], we then

study in section 4 the Z = 0 brane as well. We first find the reflection dressing phase-factor

for an elementary magnon and show that it satisfies the crossing and the unitary condi-

tions. Using it, we proceed to compute the reflection amplitude of a magnon bound-state

off the Z = 0 brane. We again confirm that the amplitude takes a square-root form of the

bulk scattering amplitude that involves a magnon bound-state and boundary modes. From

these amplitudes, we also extract the reflection phase-shifts of the dyonic giant magnon

off both types of the giant gravitons. At strong coupling, the result may be compared

with string theory worldsheet computations. In the latter, the phase-shift is computable

from soliton scattering in complex sine-Gordon model. In section 4, we compute these two

results and find perfect agreement.

2. Bulk S-matrix of magnon bound-state

The magnon bound-states [11] constitute an important set of BPS excitations of a sin-

gle closed string. Starting from the Bethe equation, scattering amplitudes between two

magnon bound-states of charge m and n were constructed [12]. The same result is also ob-

tainable [13] from Beisert’s S-matrices [5]. Consider two magnon bound-states B(m),B(n)

B(m) = |Y1 · · ·Ym〉 ↔ tr(Z · · ·ZY1Z · · ·Z · · ·YmZ · · ·Z)

B(n) = |Y1 · · · Yn〉 ↔ tr(Z · · ·ZY1Z · · ·Z · · ·YnZ · · ·Z) (2.1)
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formed by a complex adjoint scalar field Y in the ferromagnetic ground-states of Z. We

denote by x±
k the spectral parameters of elementary magnon inside B(m):

x±
k =

e±ipk/2

4g sin pk

2

(
1 +

√
1 + 16g2 sin2 pk

2

)
(2.2)

and similarly by y±k the spectral parameters of elementary magnons inside B(n). Here,

g2 = g2
YMNc/16π

2. They obey the so-called multiplet shortening conditions [5]:

x+
k +

1

x+
k

− x−
k −

1

x−
k

=
i

g
, y+

k +
1

y+
k

− y−k −
1

y−k
=

i

g
. (2.3)

The elementary magnon has dispersion relation

E =

√
1 + 16g2 sin2

(p

2

)
. (2.4)

In order for these elementary magnons to form bound-states, the spectral parameters ought

to obey [11, 13]

x−
1 = x+

2 , x−
2 = x+

3 , · · · x−
m−1 = x+

m

y−1 = y+
2 , y−2 = y+

3 , · · · y−n−1 = y+
n (2.5)

The spectral parameters of the bound-states B(m) and B(n) are given by

X+ = x+
1 , X− = x−

m; Y + = y+
1 , Y − = y−n (2.6)

and obey the multiplet shortening conditions

X+ +
1

X+
− X− −

1

X−
=

mi

g
; Y + +

1

Y +
− Y − −

1

Y −
=

ni

g
. (2.7)

The bound-states of charge Q (which equals to m,n in the present case) obey the dispersion

relation

EQ =

√
Q2 + 16g2 sin2

(p

2

)
where eip =

X+

X−
. (2.8)

We are especially interested in analytic structure of scattering amplitudes. We thus begin

with recapitulation of the structure for the bulk S-matrix of magnon bound-states.

We first recall how the S-matrix is computed. In the ferromagnetic vacuum, excitations

are organized by chiral and antichiral supergroups psu(2|2) ⊗ psu(2|2) ⋉ Z
2,1, extended by

diagonal off-shell sl(2) central charges. The physical excitations (8|8) transform under

each psu(2|2) ⋉ Z
2,1 as (2|2) irreducibly. Overall, (8|8) = (2|2) ⊗ (2|2). Since the centrally

extended supergroup symmetries are identical, the N = 4 super Yang-Mills S-matrices are

computed from product of chiral and antichiral S-matrices as

SN=4
ab (x±

a , x±
b ) = S0(x

±
a , x±

b )Sab(x
±
a , x±

b )
1

A(x±
a , x±

b )
Sab(x

±
a , x±

b ) (2.9)
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X Y

Figure 1: The bulk scattering between two magnon bound-states with spectral parameters

X±, Y ±. The BDS scattering amplitude originates from the diagonal vertex interactions. The

extra phase-factor MB originates from the off-diagonal vertex interactions.

Here, A refers to the S-matrix of the highest state

A(x±, y±) =
(x− − y+)

(x+ − y−)
(2.10)

and S0 is an overall phase-factor [14]:

S0(x
±, y±) =

(1 − 1
x−y+ )

(1 − 1
x+y−

)

1

σ2(x±, y±)
. (2.11)

The dressing phase-factor σ2(x±, y±), introduced first in [15], is given by exponential of

symplectic form of higher conserved charges [6]:

σ2(x±, y±) =
1

σ2(y±, x±)
=

R2(x+, y+)R2(x−, y−)

R2(x+, y−)R2(x−, y+)
. (2.12)

In the foregoing discussions, we do not need explicit expression for R2(x, y); the expression

can be found, for example, in [16]. For the highest state, A(x±, y±) and the first factor

in S0(x
±, y±) combine into the Beisert-Dipple-Staudacher (BDS) S-matrix [17]. We shall

refer the first factor in (2.11) as BDS conversion factor.

As mentioned above, we restrict excitations to the scalar field Y ≡ φφ. This simplifies

the S-matrix computation considerably. The S-matrix is simply A(x±, y±) in (2.10), so the

full scattering amplitude is essentially the same as S0(x
±, y±) times A(x±, y±) computed

from the psu(2|2) ⋉ Z
2,1 chiral supergroup:

S|φ(x)φ(y)〉 = S0(x
±, y±)A(x±, y±)|φ(y)φ(x)〉. (2.13)

Then, the 2-body S-matrix between the magnon bound-states B(m),B(n) is computable

by fusion procedure, as depicted in figure 1. The result is

S|B(m)(X)B(n)(Y )〉 = SB(X±, Y ±)A(X±, Y ±)|B(n)(Y )B(m)(X)〉 . (2.14)

It takes exactly the same form as the elementary magnon scattering amplitude (2.13). So,

A(X,Y ) is the S-matrix in (2.10) except that the spectral parameters are now replaced by
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those of the bound-state (2.7). In fusion procedure, product of diagonal S-matrices in figure

1 gives rise to the BDS scattering matrix (viz. A(X,Y ) and the BDS conversion factor).

The factor SB(X,Y ) denote an overall phase-factor arising from product of off-diagonal

S-matrices in figure 1:

SB(X±, Y ±) = S0(X
±, Y ±)MB(X±, Y ±) =

(1 − 1
X−Y + )

(1 − 1
X+Y −

)

MB(X±, Y ±)

σ2(X±, Y ±)
. (2.15)

We shall make use of these anatomical observations when drawing a physical picture of

boundary reflection amplitudes in the next sections. In (2.15), S0(X
±, Y ±) is the dressing

phase-factor that appeared in the elementary scattering S-matrices in (2.11) except that

the spectral parameters are now replaced by those of the bound-state X±, Y ±. The extra

contribution MB(X±, Y ±) is the phase-factor that arises from the scattering amplitudes

among the constituent magnons inside each bound-states. For m ≤ n,

MB(X±, Y ±) =

(
X+ + 1

X+ − Y + − 1
Y +

X− + 1
X−

− Y − − 1
Y −

)
m−1∏

k=1

(
−

X+ + 1
X+ − Y + − 1

Y + − ik
g

X− + 1
X−

− Y − − 1
Y −

+ ik
g

)2

. (2.16)

The first part in the product represents the would-be t-channel pole. Notice that, by charge

conservation of the scalar field Φ obeyed throughout the interactions, this part disappears

when m = n.

In the strong coupling limit, the phase-factor (2.16) features interesting analyticity

properties as a function of the spectral variables. In the Hofman-Maldacena regime [18]

(m,n held fixed as g → ∞), the dressing phase-factor S0(X
±, Y ±) dominates over

M(X±, Y ±). In the dyonic giant magnon regime [19] (the ‘magnon density’ m/g, n/g held

fixed as g → ∞), SB(X±, Y ±) and M(X±, Y ±) are of the same order. This demonstrates

that, at least in the strong coupling regime, functional form of the overall phase-factor

SB(X±, Y ±) depends on the density of the elementary magnons only and not on other

details of the bound-states. Therefore, we propose to take magnon bound-state as an in-

teresting probe for diagnosing analytic structure of phase-factors that may also show up in

other processes such as reflection scattering off a boundary.

3. Reflection amplitudes off Y = 0 brane

With the motivations explained in the previous section, we now consider giant gravitons

and scattering a magnon bound-state off them. The giant gravitons are BPS states in

N = 4 super Yang-Mills theory and creates open boundary to the spin chain. In the

AdS/CFT dual description, the giant gravitons are where open fundamental string ends.

Schematically, the scattering between magnon bound-states and the scattering of magnon

bound-state off the giant graviton are shown in figure 1 and figure 2.

We take analytic structure of the bulk phase-factor (2.16) as a useful guide for boundary

reflection amplitudes. We shall be computing the boundary scattering R-matrix explicitly

for Y = 0 and Z = 0 branes and investigate the boundary phase-factors. For R-matrix off

the Y = 0 brane, we shall find that the resulting boundary phase-factor is given in the form

– 5 –
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Figure 2: The reflection of magnon bound-state with spectral parameter X± off the left boundary.

Reflection-double of the process across the boundary is related to the bulk scattering in figure 1.

remarkably consistent with the bulk phase-factor (2.16). Proceeding to the Z = 0 brane,

we shall motivate ourselves by taking these organizing structure of the dressing phase-

factor as a guideline. We then put forward a proposal for the boundary phase-factor by

taking account of all known results at both the weak and the strong coupling regimes. Our

proposal takes a remarkably simple functional form, satisfies all consistency conditions and

fully agrees with the aforementioned analytic structure of the bound-state phase-factor.

For the case of Y = 0 brane, the boundary breaks the excitation symmetry supergroup

to psu(1|2) ⊗ psu(1|2). The reflection matrix is given by

RY
L (x±) = RY

0L(x±)




−x+

x−
0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , RY

R(x±) = RY
0R(x±)




−x−

x+ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 . (3.1)

Here, RY
0L, RY

0R denote the corresponding reflection phase-factors. As for the bulk, the full

super Yang-Mills reflection matrix RY is computed by direct product of psu(1|2)⊗psu(1|2)

chiral and antichiral S-matrices. For the reflection off either boundary, it is defined by

RY (x±) = RY
0 (x±)RY (x±)

1

ÃY (x±)
R

Y
(x±). (3.2)

Here, ÃY
L (x), ÃY

R(x) are the reflection amplitudes of the highest state:

ÃY
L (x±) = −

x+

x−
and ÃY

R(x±) = −
x−

x+
. (3.3)

The reflections off the left- and right-boundary are related by parity operation P : x± →

−x∓.

The boundary phase-factors RY
0L and RY

0R must obey boundary crossing relations [9]:

RY
0L(x±)RY

0L(x̄±) =
1

RY
0R(x±)RY

0R(x̄±)
=

1
x−

+ x−

1
x+ + x+

1

S0(−x̄∓, x±)
(3.4)

– 6 –



J
H
E
P
0
4
(
2
0
0
8
)
0
5
0

where x̄± = 1/x± and S0 is the overall phase-factor for bulk scattering given in (2.11).

More recently, the boundary crossing relation (3.4) was solved for the Y = 0 brane [10].

As the BDS conversion factor in (2.11) becomes trivial in S0(x
±,−x̄∓), the solutions for

left- and right-boundary reflection are simply

RY
0L(x±) =

x−

x+
σ(x±,−x∓) and RY

0R(x±) =
x+

x−
σ(−x∓, x±). (3.5)

Taking them into account, the reflection amplitudes for the Y = φφ magnon (which is the

singlet under psu(1|2) ⊗ psu(1|2)) is given by

RY
L |φ(x±)〉 = RY

0L(x±)ÃY
L (x±)|φ(−x∓)〉

RY
R|φ(x±)〉 = RY

0R(x±)ÃY
R(x±)|φ(−x∓)〉 . (3.6)

We now consider scattering of the magnon bound-state B(n)(X±) in (2.1) off the Y = 0

brane. As depicted in figure 2, the boundary reflection amplitude is computable via the

fusion procedure. The result is

RY
L |B

(n)(X±)〉 = RY
BL(X±)ÃY

L (X±)|B(n)(−X∓)〉 (3.7)

and hence takes the same form as the elementary magnon amplitude. Here, ÃY
L (X±) is

the left-reflection amplitude in (3.3) except the spectral parameters refer to those of the

bound-state B(n). The boundary phase-factor

RY
BL(X±) = ÃY

L (X±)RY
0L(X±)MY (X±) = −σ(X±,−X∓)MY (X±) (3.8)

contains, much the same as the bulk scattering case, the bound-state phase-factor

MY (X±) =
n−1∏

k=1

(
−

X+ + 1
X+ − ik

2g

X− + 1
X−

+ ik
2g

)
. (3.9)

Remarkably, the reflection amplitude in (3.8) is exactly the square-root of the bulk coun-

terpart in (2.14) upon taking m = n and Y ± = −X∓ in the latter. In fusion procedure,

this is evident from the observation that figure 1 is the same as reflection-double of figure

2 across the Y = 0 boundary. As there is no localized mode at the boundary, in the

reflection-double process, product of diagonal S matrices ought to be absent. This means

we should remove diagonal A(X,Y ) amplitude and the BDS conversion factor from the

bulk scattering (2.14) and identify square-root of the remaining product of off-diagonal S

matrices with the process in figure 2. This yields precisely (3.8). Recall that the would-be

t-channel pole in (2.16) disappears once m = n is set for the present situation.

Contrary to the bulk factor which contains Coleman-Thun [20] type double poles, this

boundary factor has simple poles. One might be tempted to interpret them as boundary

bound-states. However, this is not the case: it is straightforward to check that these poles

do not satisfy the boundary Bethe-Yang equations. Therefore they have nothing to do with

formation of boundary bound-states. This fits with the fact that Y = 0 brane does not

support localized mode at the boundary. This also fits with the aforementioned relation

for magnon bound-state scattering amplitudes that the boundary phase-factor should be

viewed as square root of the bulk phase-factor.

– 7 –
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4. Reflection amplitudes off Z = 0 brane

We next compute reflection amplitude off the Z = 0 giant graviton. Unlike the Y = 0

brane case, there now exists a localized degree sitting at each boundary (as seen from the

corresponding SYM operators in (1.2)). Its spectral parameter is given by [9]

xB =
i

4g
(2 +

√
22 + 16g2) (4.1)

with the relation

xB +
1

xB
=

i

g
viz. x+

B +
1

x+
B

− x−
B −

1

x−
B

=
2i

g
. (4.2)

Notice that we expressed these relations in suggestive forms that the localized mode may

be viewed as n = 2 magnon bound-state at maximum momentum p = π by interpreting

x±
B ≡ ±xB in (2.7). Below, we shall find further supporting evidence of such interpreta-

tion. Presence of the boundary retains the full psu(2|2) ⊗ psu(2|2) symmetry group. The

boundary mode transforms as the fundamental representation under these groups. Their

energy is again given by the central charge:

EB =
g

i

(
xB −

1

xB

)
=
√

1 + 4g2 . (4.3)

As for the bulk, the reflection matrix can be completely determined up to an overall

phase-factor by utilizing the psu(2|2) symmetry [9]. Here we consider the same type of

scalar for both bulk (φ(x±)) and boundary (φB(xB)). We also focus on scattering off the left

boundary. The right boundary result is obtainable by parity transformation P : x± → −x∓.

Again, we define the full reflection matrix RZ off the left boundary by

RZ
L(x, xB) = RZ

0L(x, xB)RZ
L(x, xB)

1

ÃZ
L(x, xB)

RZ
L(x, xB), (4.4)

where RZ
0L(x, xB) denotes a reflection phase-factor and ÃZ

L(x, xB) is the elementary reflec-

tion amplitude for the highest state

ÃZ
L(x±, xB) = −

x+

x−

(
x+ + xB

x− − xB

)
= −

x+

x−
A(x±

B , x±). (4.5)

Thus, the full reflection amplitude for the scalar Y = φφ is given by

RZ
L |φB(xB)φ(x±)〉 = RZ

0L(x±, xB)ÃZ
L(x±, xB)|φB(xB)φ(−x∓)〉 (4.6)

In (4.5), the first part originates from magnon reflection off the boundary and is the same

as Y = 0 reflection amplitude. The second part depends on xB , so it arises from magnon

scattering with the localized mode at the boundary. The last expression in (4.5) again

supports the proposed interpretation of the localized mode as an n = 2 magnon bound-

state at maximum momentum x± = ±xB.

– 8 –



J
H
E
P
0
4
(
2
0
0
8
)
0
5
0

We first determine the overall phase-factor RZ
0L. Based on our result for Y = 0 brane

and lower order result at strong and weak coupling limits of the RZ
0L presented in [9], here

we assert that the overall phase-factor is given by

RZ
0L(x, xB) =

x−

x+

(
x+ + 1

x+

x− + 1
x−

)(
1 + 1

x+xB

1 − 1
x−xB

)
· σ(x±,−x∓)σ2(x±, x±

B). (4.7)

The first part encodes weak coupling perturbative results up to two loops, while the sec-

ond part expressed in terms of dressing phase-factors encodes the strong coupling leading

order results extracted from time-delay in sine-Gordon soliton scattering. We now argue

that (4.7) satisfies all requisite conditions.

First, (4.7) is the minimal extension of the Y = 0 brane to a situation a localized mode

is present at the boundary. This is most transparently seen by arranging the scattering

amplitude (4.6) as

RZ
0L(x, xB)ÃZ

L(x, xB) = RY
0L(x)ÃY

L (x) · SB(xB , x)A(xB , x). (4.8)

In the right hand side, the first part originates from an elementary magnon scattering off

empty (Y = 0) boundary. The second part is due to the localized mode: following the

proposed interpretation of the localized mode as m = 2 magnon bound-state, it originates

from bulk scattering between m = 2 magnon bound-state (at maximal momentum p = π)

and n = 1 elementary magnon with X = xB , Y = x in (2.15). The bulk scattering

amplitude in this case is given by

S0(xB , x) =
1 + 1

x+xB

1 − 1
x−xB

σ2(x±, x±
B); MB(xB , x) =

(
x− + 1

x−
+ xB + 1

xB

x+ + 1
x+ − xB − 1

xB

)
=

x+ + 1
x+

x− + 1
x−

.

(4.9)

Multiplying them, we find that they yield all the xB-dependent parts in (4.7) and (4.8).

Second, the proposed reflection phase-factor solves the crossing relation. Chiral

psu(2|2) part of the crossing relation was computed in [10]. Putting together both chi-

ral and antichiral parts, we obtain the full psu(2|2) ⊗ psu(2|2) crossing relation as

RZ
0L(x±)RZ

0L(x̄∓) =
1

RZ
0R(x±)RZ

0R(x̄∓)
(4.10)

=

(
x− + 1

x−

x+ + 1
x+

)
σ2(−x̄∓, x±) · h2

B

(
x+ + xB

x− − xB

)( 1
x+ + xB

1
x−

− xB

)
.

Here,

hB(x±, xB) =
x+

x−

(
x− − xB

x+ − xB

)
1 + (x+x−xB)2

(1 − x+x−)(1 − (x+xB)2)

=

(
x− − xB

x+ − xB

)( 1
x−

+ xB

1
x+ + xB

)
, (4.11)

where the second line is obtained from the first by using the multiplet shortening conditions

for x± and xB . Compared to Y = 0 brane case, extra part in the crossing relation (4.10)
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arises from magnon scattering with the localized states at the boundary. It is precisely

accomodated by the xB-dependent part in our proposed solution (4.7). By a straightfor-

ward computation, we checked that our proposed phase-factor (4.7) solves the crossing

relation (4.10).

Third, the phase-factor (4.7) satisfies the unitarity condition:

RZ
0L(x±, xB)RZ

0L(−x∓, xB) = 1, (4.12)

provided reversed ordering in properly taken into account in scattering process between

the magnon and the localized mode.

To elucidate our proposed reflection phase-factor (4.7), we compute reflection ampli-

tude of the magnon bound-state B(n) off the Z = 0 brane, again using the fusion method.

For the left boundary, the result takes the same form as the elementary amplitude (4.6):

RZ
L |φB(xB)B(n)(X±)〉 = RZ

BL(X,xB)ÃZ
L(X,xB)|φB(xB)B(n)(−X∓)〉 . (4.13)

Here, RZ
BL is the bound-state reflection phase-factor:

RZ
BL(X,xB) = RZ

0L(X,xB)MZ(X) (4.14)

where MZ is given by

MZ(X) =

(
X+ + 1

X+

X− + 1
X−

)(
X+ + 1

X+ − i
g

X− + 1
X−

+ i
g

)
MY (X±) . (4.15)

Again, analytic properties fit to our interpretation of the localized mode as m = 2 magnon

bound-state at the maximum momentum and relation of the amplitude to the bulk scat-

tering amplitude via reflection-double. The reflection amplitude (4.13) is essentially (4.8)

times MZ(X). In relating the reflection-double of figure 2 with figure 1, we note that

product of off-diagonal S matrices is independent of xB and yields the reflection amplitude

for Y = 0 brane. According to our interpretation, product of diagonal S matrices gives

bulk scattering amplitude for m = 2 magnon bound-state and B(n). Indeed, the first fac-

tor in (4.15) combined with the first factor of MB(xB ,X) in (4.9) reproduces the double

pole. The second factor in (4.15) corresponds to the t-channel pole. Finally, A(xB ,X)

times σ2(X±, x±
B) corresponds to the two-body scattering amplitude. As such, comparing

reflection-double of figure2 with figure 1, we should take square-root of figure 1 only for

the off-diagonal contribution.

The factor ÃZ
L in the reflection amplitude (4.13) has a simple pole at

xB = X− (4.16)

with the energy

EB =
i

g

[(
X+ −

1

X+

)
−

(
X− −

1

X−

)]
+

i

g

(
xB −

1

xB

)
=
√

(n + 1)2 + 4g2 . (4.17)

This pole corresponds to the excited state of the boundary degree formed by binding the

n-magnon bound-state to the elementary boundary degree. The remaining factors in MZ

do not give rise to any new bound-state poles for the same reason as the Y = 0 brane case.
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5. Strong coupling limit

To confirm our results, we take the strong coupling limit and compare them with classical

string worldsheet computations. The magnon bound-state is described as a soliton in

complex sine-Gordon equation [19]. The comparison was already made for dyonic giant

magnon scattering in the bulk. In this limit, adopting the notation of [14], the scattering

phase-shift for the bound-state B takes the form

δB(X±, Y ±) = 2g
[
K(X+, Y +) + K(X−, Y −) − K(X+, Y −) − K(X−, Y +)

]
(5.1)

There are two sources contributing to K(X,Y ): the dressing phase-factor and the bound-

state phase-factor. From −[log σ2(X,Y )]/2gi of the dressing factor, we extract that

Kdressing(X,Y ) ≡ −

[(
X +

1

X

)
−

(
Y +

1

Y

)]
log

(
1 −

1

XY

)
. (5.2)

From [log MB(X,Y )]/2gi of the bound-state phase-factor, taking account of the giant

magnon regime, we also extract that

Kbound−state(X,Y ) =

[(
X +

1

X

)
−

(
Y +

1

Y

)]
log

[(
X +

1

X

)
−

(
Y +

1

Y

)]
. (5.3)

In string worldsheet computations, the phase-shift was computed from time-delay in scat-

tering two solitons of complex sine-Gordon model. For the bulk scattering, the two results

were in complete agreement [19]. We now want to check if the same holds for the reflection

phase-shifts.

For Y = 0 brane case, because (3.9) is the square-root of the bulk scattering amplitude,

the reflection phase-shift is immediately given by

δY
L (X±) =

1

2
δB(−X∓, X±). (5.4)

In string worldsheet computations, the corresponding phase-shift is computable from the

method of image. The time delay off the boundary equals to the half of the scattering

between two identical solitons carrying opposite momenta. Therefore, the two results

agree with each other.

For Z = 0 brane case, the boundary mode contribution σ2(X±, x±
B) that enters through

RZ
0L(X,xB) in (4.13) adds extra shift to that common to Y = 0 brane (5.4). Quite re-

markably, noting that x±
B → ±i, we find that Kbound−state(xB ,X) equals zero. It implies

that, in the dyonic giant magnon regime, this contribution is universal for any kind of

the boundary mode, elementary or composite. This leads to the conclusion that the total

reflection phase-shift is given by

δZ
L (X,xB) =

1

2
δB(−X∓, X±) + δB(xB , X±) , (5.5)

where x±
B → ±i. In string worldsheet computations, the second term (boundary mode

contribution) admits an intuitive understanding: in the method of image, this phase-shift

arises from scattering the soliton and its image soliton off a fixed soliton sitting at the

boundary [9]. Once again, both results agree with each other.
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