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Abstract

We study the ultraviolet asymptotics in non-simply laced affine Toda theories considering them as perturbed non-affine
Toda theories, which possess the extended conformal symmetry. We calculate the reflection amplitudes, in non-affine Toda
theories and use them to derive the quantization condition for the vacuum wave function, describing zero-mode dynamics.
The solution of this quantization conditions for the ground state energy determines the UV asymptotics of the effective
central charge. These asymptotics are in a good agreement with Thermodynamic Bethe Ansatz (TBA) results. To make the
comparison with TBA possible, we give the exact relations between parameters of the action and masses of particles as well
as the bulk free energies for non-simply laced affine Toda theories. © 2000 Elsevier Science B.V. All rights reserved.

PACS 11.25.Hf; 11.55.Ds

1. Introduction

There is a large class of massive 2D integrable
quantum field theories (IQFTS), which can be con-
sidered as perturbed conformal field theories (CFTs)
[1]. The ultraviolet (UV) behavior of these IQFTs is
encoded in the CFT data while their long distance
properties are defined by the S-matrix data. If the
basic CFT admits the representation of the primary
fields of full symmetry agebra in terms of the
exponential fields the CFT data include ‘* reflection

amplitudes’’. These functions define the linear trans-
formations between different exponential fields, cor-
responding to the same primary field. Reflection
amplitudes play the crucial role for the calculation of
the one point functions [2] as well as for the descrip-
tion of the zero mode dynamics [3-5] in integrable
perturbed CFTs. In particular, the zero mode dynam-
ics determines the UV asymptotics of the ground
state energy E(R) (or effective central charge
c«;(R)) for the system on the circle of size R. The
function cy(R) admits in this case the UV series

0370-2693,/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
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expansion in the inverse powers of log(1/R). The
solution of the quantization condition for the vacuum
wave function (which can be written in terms of the
reflection amplitudes), supplemented with the exact
relations between the parameters of the action and
the masses of the particles determines al logarithmic
terms in this UV expansion.

The effective central charge cg(R) in IQFT can
be calculated independently from the S-matrix data
using the TBA method [6,7]. At small R its asymp-
totics can be compared with that following from the
CFT data. In the case when the basic CFT is known
the agreement of both approaches can be considered
as nontrivial test for the S-matrix amplitudes in
IQFT. The corresponding analysis based on the both
approaches was previously done for the sinh-Gordon
[3], super-symmetric sinh-Gorgon, Bullough-Dodd [4]
models and simply-laced affine Toda field theories
(ATFT9) [5].

In this paper we study the UV behavior of the
effective central charge in ATFTs associated with
non-simply laced Lie algebras. These IQFTs have
two different classical limits. Namely, the weak and
strong coupling limits correspond to the dua pairs of
affine Toda theories. As a result, the mass ratios in
these IQFTs depend on the coupling constant and
flow from the classical values characteristic for Lie
algebra G ! to the same values for the dual agebra
GV [8]. The number of particles in ATFTs is equa
to the rank r of G. For large r the numerical
analysis of TBA equations, especialy in the UV
region, becomes rather complicated. The analytical
approach to the TBA equations [10,11] does not
give, at present, the regular UV expansion. So, it is
useful to have the full logarithmic expansion for
c«(R) following from CFT data. The agreement of
this expansion with the TBA results confirms the
Smatrix as well as the relations between the parame-
ters of the action and masses of particlesin non-sim-
ply laced ATFT.

The remarkable feature of ATFT is that effective
central charge calculated from the CFT data with
subtracted bulk free energy term (like in TBA ap-

! Throughout the paper, we denote an untwisted algebra as G,
while GV refers to a twisted one.

proach) gives a good agreement with the TBA re-
sults even outside the UV region (at R~ #(1)). This
“‘experimental’’ fact still needs the explanation.

The rest of the paper is organized as follows.
After introduction of some basic notations we give
the exact relations between the parameters of the
action and masses of particles in non-simply laced
ATFTs. Then following the procedure of Ref. [5], we
obtain the reflection amplitudes and quantization
conditions for the wave function, describing the vac-
uum zero mode dynamics. Using these results we
calculate the UV asymptotics of the effective central
charges for ATFTs and compare these asymptotics
with numerical data following from TBA equations.
We omit here the details, which can be found in Ref.
[5], devoted to the analysis of UV asymptotics in
simply laced ATFTs.

2. Mass-u relations and reflection amplitudes

The ATFTs corresponding to Lie algebra G is
described by the action

1 2 d - .
o = fdzx[g(é’uqo) + E:l,uiebe' €+ el |,
(1)

where g, i =1,...,r are the smple roots of the Lie
algebra G of rank r and —e, is a maximal root,
satisfying the relation:

r
Y. ne=0, ny=1. (2)
i=0

Non-simply laced ATFTs have standard simple roots
with e? = 2 and nonstandard simple roots with e* =
£2(# 2). We choose the corresponding parameters
w; as w (for standard roots) and ' (for nonstandard
ones) respectively 2.

In the case of non-simply laced ATFTSs, the exact
mass ratios are different from the classical ones and

2 We choose the convention that the length squared of the long
roots are four for CY and two for the other untwisted algebras.
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get guantum corrections [8,9]. To describe the spec-
trum it is convenient to introduce the notations:
b? H h+ b?h" 3
S 1+b?2 0 1+b% )
where h and hY are Coxeter and dual Coxeter
numbers of the algebra. Then the spectrum of ATFTs
can be expressed in terms of one mass parameter m
as.
BY: M,=m, M,=2msin(wa/H),
a=12,....r—1

CWH: M,=2msin(ma/H), a=12,....r

GP: M;=m, M,=2mcos(m(1/3—1/H))
FP: M, =m,

M, = 2mcos(7(1/3—-1/H)),

M, = 2mcos(7(1/6 — 1/H)),

M, = 2M,cos(7/H). (4)

The relation between the parameter m in the above
spectra and the parameters w; in the action (1) can
be obtained by Bethe Ansatz method (see for exam-
ple [12,13]). The corresponding analysis gives:

r

.l_[ [_Wﬂi)’(l + ei2b2/2)] n;

=[mk;G)F(1;B)F(1+E)
(5

where, as usud y(x)=T'(x)/I'(1—x), and k(G)
is a function depending on the algebra:

2H(1+b?)

k(B®) = e k(CP) = 2
orH)” VT r(/Hy”
. I'(2/3)

k(G) = 20 (1/2)I(1/6+1/H) "
1 re/

)= 2raarasermy ©

The similar relations for the dua ATFTs can be
easily obtained from Egs. (5) and (6) if we use the

dudlity relations for the parameters w; and u,’
corresponding to the dual pairs of ATFTs:

2 e?b?/2
=l o

The ATFTs can be considered as perturbed CFTs.
Without the last term with the zeroth root e, the
action in Eq. (1) describes the non-affine Toda the-
ory (NATT), which is conformal. To describe the
generator of conformal symmetry we introduce the
complex coordinates z=x; +ix, and z=Xx, —iX,
and vector:

= |y

e’b?
2

Tk 7(

1
p_2 a,

a>0

1
=bp+—p"
Qpbp

=5 Z a’ (8)
a>0
where the sum in definition of Weyl vector p (p ")
runs over all positive roots a (co-roots a ) of G.
The holomorphic stress-energy tensor

T(Z)= —%(3Z¢)2+Q'(922¢ (9)

ensures the local conformal invariance of the NATT
with the central charge c=r + 12Q?2

Besides the conformal invariance the NATT pos-
sesses extended symmetry generated by W(G)-alge-
bra. The full chiral W(G)-algebra contains r holo-
morphic fields W(z) (W,(2) =T(2)) with spins j
which follows the exponents of Lie algebra G. The
primary fields @, of W(G) algebra are classified by
r eigenvalues w, j=1,...,r of the operator W ,
(the zeroth Fourler component of the current Wi( z))

W, =wae,, W &,=0, n>O0. (10)
The exponentia fields
Va( X) = Q) e(x) (11)

are spinless conformal primary fields with dimen-
sions A(a) = w,(a) =(Q*—a*)/2. The fields V,
are also primary with respect to al chiral algebra
W(G) with the eigenvalues w; depending on a. The
functions w,(a), which define the representation of
W(G)-algebra possess the symmetry with respect to
the Weyl group 7~ of Lie algebra G [14,15], i.e.
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wi(8a) =w(a); for any S€7". It means that the
fields V,, for different S€ 7" are reflection images
of each other and are related by the linear transfor-
mation:

Va(X) = Rg(@)Vea( X)), (12)

where R4a) is the ‘‘ reflection amplitude’’.

This function plays an important role in the analy-
sis of perturbed CFTs. It can be calculated by the
CFT methods (exactly in the same way as it was
done for the simply laced NATTs in [5]) and has the
form:

R(a) = -y (13)

S

where
r
A, = 1_[1 [y (€7b%/2)] "
ol

x [ Tr(l-a,./b)I(1—a,b), (14)
a>0
herea,=a-a, a,v=a-a ¥ and vectors w,” are
the co-weights of G, satisfying the condition w," -
] 1]

In following we will be interested in the values of
function A(P) = A;,. We note that in the semiclas-
sical limit (b — 0 with P/b fixed) the functions
A(SP) coincide with the amplitudes describing the
asymptatics of the wave function of quantum me-
chanical non-affine Toda chain (16) (see for example
[16)).

3. Quantization condition and UV expansion

Function A(P) plays an important role in study
of quantum mechanical problem for zero modes

T dl
eo= [Te(x) 5t (15)

of the fields ¢(x) defined on an infinite cylinder of
circumference 27 with coordinate x, aong the
cylinder playing the role of imaginary time. In the
semiclassical limit b — 0, where one can neglect the

oscillator modes of ¢(x), the Schrodinger equation
governing the zero-mode dynamics is given by:

r
2+ 2 2mp e 90 | V()
i=1

12 ®o
=Eo¥s (o) (16)
with the energy
' + P? 17
B=-3 , (17)

where the momentum P is a real vector. The full
quantum effect can be implemented simply by intro-
ducing the exact reflection amplitudes which take
into account also non-zero-mode contributions [3].

The wave function W,(¢,) in the asymptotic
region (Weyl chamber) can be found by using the
same arguments as was given in [5] for simply laced
NATTs. The only difference is that there are now
two kinds of roots with different lengths. Namely,
each exponential term ;e %o in the Hamiltonian
can be considered as a potential wall normal to the g,
direction. An incident wave is reflected by this wall
to the wave with the Weyl-reflected momentum. The
phase change corresponding to this process should
be the same asin Liouville field theory. By consider-
ing the reflections from all potential walls, we find
that the wave function ¥,(¢,) can be written as a
superposition of plane waves with the momenta
forming the orbit of the Weyl group 7~ of Lie
algebra G,

Vo( o) = X A(SP)eF e, (18)
sew

where
A(P) = T [muyy(eb?/2)] ™"
i=1

x [1T(1—-iP,b)I(1—iP,./b).

a>0

(19)

For the Weyl element §, associated with the simple
root e, the ratio A(§P)/A(P)should be given by
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the reflection amplitude S(e;, P) [3] of the Liouville
field theory

A(SP)
A(P)

=S(¢,P)

= ['n'p,i'y(eizbz/Z)] TiPel/b

r'(1+iP-eb)I'(1+iP-¢"/b)
r(1-iP-eb)r(1-iP-¢"/b)"
(20)

One can easily check that function A(P) satisfies
this functional equation. With this function one can
proceed to obtain the scaling functions in the UV
region of the ATFTs defined on a cylinder with
circumference R— 0. The additional term in the
ATFT Lagrangian corresponding to the zeroth root
e, introduces new potential wall in that direction.
With this term the Weyl chamber is now closed and
the momentum P of the wave function should be
quantized. It depends on the size of the enclosed
region, which is proportional to log(1/R). This
quantized momentum P(R) defines the scaling func-
tion c; in the UV region by Eq. (17).

It is convenient to rescale back the size of the
system from R to 27. This leads to the following
rescaling of the parameters w,; in the action (1):

R )2+ bzei2

,U«i_’ViZMi(z

(21)
In the UV limit the size of enclosed region is rather
big and we can neglect the subtleties of interaction
(which give only exponential corrections) taking into
account only the phase shifts coming from the reflec-
tions of the waves by the potential walls. Since the
additional potential term is not different from the
others, the amplitude A(SP) with the momentum SP
(where § is an arbitrary element of Weyl group) has
to satisfy aso the reflection relation (20) with re-
spect to the zeroth root e,

S =5(e ). (22)

Inserting Eqgs. (19) and (20) into Eq. (22), we obtain
the condition for P. After some transformations (see
Ref. [5] for details), it can be written in the form:

iP-8ey /b

[iljj(m’iv(esz/z))ni}

xI1

a>0

[ Z(a,P) rseo . =)

Z(a,—P)
where v, are defined by Eq. (21) and
g(a,P)=T(1-iP,b)I"(1—iP,./b).

For the lowest energy state, Eq. (23) reduces to the
following equation:

LP=2mp— ) ad(a,P), (24)

a>0

where
L 2 h+ b2hV)I R
= — — + PR
b( )n27T
1 i 212 ni

i=0

(25)

and
r(1+iP,b)r(1+ip,./b)

r(1—iP,b)I'(1—iP,./b) "
(26)

6(a,P)=—ilog

This is the quantization condition for the momentum
P in the UV region R— 0. The ground state energy
of the system on the circle of size R isthen given by

6R

E(R) = — with 4 =r—12P2,  (27)

where P is the solution of Eq. (24).
In the UV region we can solve Eq. (24) perturba-
tively by expanding 8(e«,P) in powers of P, ,

8(a,P)=35,(a,b)P, + 8;(a,b)P?

+ 8(a,b)P2 -, (28)
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where the coefficients §,(e,b) and 6« ,b), s=35
are:

8,(a.b) = —2yc|b+ aZZb)'
5 a,b) =(_)¥§§(s) b5+(a22b)s).

(29)

Using the relations: ©,, . s(a@)*a)*=h"8%", and
Yo ol@)a¥)?=hs%, we obtain that:

IP=2mp— )Y 8(a,b)aP?

a>0
- ¥ a(ab)aPio -,
a>0
with
| =L—2yg(bhY+h/b) =L — L. (30)

The above equation can be solved iteratively in
powers of 1/1. Inserting the solution into Eq. (27),
we find:

2m\?
ceff=r—r(h+1)hv(|—)

5

8 2
+;§(3)[C4(Gv)b3+ C4(G)/b3](|_)

24
— - {(9)[Co(G")b®+ Cy(G) /b7]

x(?)7+@’(|8), (31)

where the coefficients C(G) are defined as:

C4(G): Z PaPL’fV’ C4(Gv): Z Pi1

a>0 a>0
Ce(G) = Zpap,fv, Co(G") = ZP.S-
a>0 a>0

For simply laced algebras, these coefficients were
calculated in [5] and have the values:

Cy( AP ) = gn?(n? —1)(2n? - 3),

Co( A1) = s5n?(n® — 1)(n* - 2)(3n” - 5),

C,(D{") = 5 (16n° — 45n” + 27n + 8)
xn(n—1)(2n—-1),

Cs(DSP) = 75(48n° — 213n* + 262n°

+6n°—101n—32)n(n—1)(2n—1).
(32)

For the non-simply laced algebras B and CY, we

can express the results through these values. Namely,
we find:

C(BP)=3C( A% ).

C(BVY) =Ci(Df1,2).

C(CP)=C(DY,),

Ci(Crﬂl)v) =Ci(D(,1)n), (i=4,6). (33)
For exceptional algebras G$P and F(Y, we obtain:
C4(GP) = 1C,( DY) = 392,

C,y(GV V) =%,

Co(GP) = 3C4( D) = 7386,

Ce(GP V) = 5&°,

C,(F{Y) = 3C,( E{Y) = 27378,

C,(FVYV) =235,

Co( F{Y) = 1C4( ES) = 2203578,

Co((FiP ) = *55. (34)
We note that above equations relating coefficients
C./(G) for different Lie agebras follow from the

similar exact relations between the ground state ener-
gies &(G) of quantum affine Toda chains associated
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with these Lie algebras. These exact relations are
valid if the parameters u, u' for non-simply laced
Lie algebras and corresponding parameter u for
simply laced ones satisfy the condition:

w2 W /E%)? = ul, where z=2h-h"),
2-¢2

4. Comparison with TBA results

The effective central charge calculated above from
the CFT data (reflection amplitudes) can be com-
pared with the same function determined from nu-
merical solution of the TBA equations for ATFTs.
Namely:

r
GEM(R) =
i=1 7

xfcoshelog(1+e’fi("'R))dB, (35)
where functions €(6,R) (i=1,...,r) satisfy the
system of r coupled integral equations:

m; Rcosh6 = €( 6, R)

+ Xr: f<Pij(9_ 0")
j=1

!

, .. de
><Iog(1+e‘f‘("*R))2—, (36)
o

with the kernels ¢;;, equal to the logarithmic derivar
tives of the Smatrices §;(6) of ATFTSs, conjectured
in [8,9].

The function E"™A)X(R) defined from the TBA
equations differs from the ground state energy E(R)
of the system on the circle of size R by the bulk
term: E(TBA)(R) = E(R) — fR, where f is a specific
bulk free energy [7]. To compare the same functions
we should subtract this term from the function E(R)
defined by Eqg. (31) i.e.

6R?
SGPM(R) = SGV(R) + —1(G). (37)
The specific bulk free energy f(G) for non-simply

laced ATFTs can be calculated by the Bethe Ansatz
method with the result:

msin(m/H)
gsin(wB/H)sin(7(1—B)/H) "’
G=B®,CcY,
f(G)

f(G) =

mPcos(7(1/3—1/H))

~ 16c0s(7/6)sin(7wB/H)sin(m(1—B)/H)

G=GP,FD. (38)
The contribution of bulk term f(G) becomes quite
essential at R~ @(1).

The TBA equations (36) were solved numerically
for non-simply laced algebras, BSY (= C), B,
B, CP, C, G and FV. The effective central
charge c{?*(R) was then computed from Eq. (35)
for many different values of parameter mR. After
taking into account the bulk term, the numerica

Table 1
L&A versus LTBA) for non-simply laced ATFTs

B

0.3 0.4 05 0.6 0.7 0.8
LEAC) 11.5882 11.3111 11.5443 12.2537 13.6035 16.162
LrBA(cd) 11.5882 11.3111 115443 12.2537 13.6035 16.162
LEACD) 16.6266 16.0240 16.1620 16.9666 18.6419 21.9342
LrBAcd) 16.6266 16.0240 16.1620 16.9666 18.6419 21.9319
LEACD) 21.6649 20.7370 20.7798 21.6796 23.6803 27.7064
LrBA(C) 21.6649 20.7370 20.7798 21.6795 23.6802 275
LEA(BEY) 14.3593 13.1962 12.6987 12.7250 13.3516 15.0076
LrBA(BY) 14.3589 13.1962 12.6987 12.7250 13.3516 15.0076
LEABEY) 19.3977 17.9092 17.3165 17.4379 18.3900 20.7798
LrBA(BY) 19.32 17.9089 17.3165 17.4379 18.3900 20.7792
LEAAGE) 13.6035 12.2537 11.5443 11.3111 11.5882 12.6987
LGBANGE) 13.3 12.2529 11.5443 11.3111 11.5882 12.6987
LEAED) 27.9629 25.4499 24.2431 24.0360 24.9398 27.7064
LGBA(FD) 251 24.238 24.0360 24.9398 275
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Table 2
cRA) versus c{"BA) for non-simply laced ATFTs

B

03 0.4 0.5 0.6 0.7 0.8
cRAI(CE) 1569.60 124216 1438.68 2183.98 3961.81 8713.17
cTBA(CY) 1567. 1240. 1437. 2182. 3959. 8708.
cRA(CE) 15018.6 10858.7 11399.2 16288.0 28809.0 62845.7
c{TBA(CE) 15000 10840 11380 16270 28790 68000
cRAC) 76141.1 52782.9 52563.7 72394.9 125955. 273273.
c{TBACEM) 76100 52700 52500 72300 125990
cRA(BEY) 8260.97 4765.97 3488.60 3541.95 5151.97 10444.4
cSTBA(BEY) 8500 4761. 3484. 3538. 5147. 10439.
cRA(BEY) 48261.8 28350.9 21550.3 22970.0 34594.6 71159.4
cSTBA(BEH) 29000 21530 22940 34560 73000
cRAUGEY) 4370.29 2385.82 1533.23 1265.48 1524.65 2816.47
cTBA(G) 2600 1532. 1264. 1523 2814.
cRAUFD) 308495. 172966. 118723 109767. 147970. 289824,
c{TBAM(FD) 160000 110055. 148248,

solution for c{{®*)(R) was fitted with the expansion

(31) (neglecting higher order termsin 1/1):

cgﬁA)(R)=r—r(h+1)hV(

277)2
B

TBA results we use the relations (5) between param-
eters w; in the action and the parameter m charac-
terizing the spectrum of particles. It gives the follow-
ing expression for function L(R) in Egs. (30):

2
L=—(h+DbhY)

2 \° 27\’
+cl — | +c—1, (39)
| | | R y 1-B B
with fitting parameters L, ¢; and c,, where parame- xin A e)r H i+ H
ter L, is defined by Eqg. (30). The exact values of 5
h ily identified from Egs. 2h( 2 ;9\2
these parameters can be easily ident ed om Egs +—In(b (£%/2) ) (40)
(30) and (31). To compare the expansion (39) with b
Table 3
c*A) versus c{TBA) for non-simply laced ATFTs
B
0.3 0.4 0.5 0.6 0.7 0.8
cRA(CE) —12262.9 —6566.01 —9109.78 —21843.4 —64594.2 — 247955,
c{TBA(CED) —14000 —8000 —10600 — 23800 — 68000 — 256000
cRA(CE) —304830. —137513. —148031. —324132. —944077. — 3617480
c{TBA(CE) — 330000 — 160000 — 170000 — 350000 —990000
cRA(C) —2878340 —1216910 —1148970 — 2366240 — 6815270 — 26079300
c{TBA(CED) — 3000000 — 1400000 — 1300000 — 2600000 — 7000000
cFA(BEY) —174026. —60330.1 —29061.1 —30298.6 —76073.1 —264814.
c{TBA(BEY) — 65000 —33000 —34000 — 76000 — 270000
cFA(BEY) —1847280 —650082. —338000. —404020. —1004420 — 3769680
c{TBA(BEY) — 380000 — 450000 — 1100000 — 2200000
cAUGE) —97474.0 —32718.2 —13002.5 —7830.99 —122252 —41991.4
c{TBAYGE) — 14000 —9000 — 14000 — 44000
cFAUED) —2913070 —9911730 — 4293750 — 3478610 — 7094660 — 25792400
STBAFY) — 3410000 — 7090000
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R

Fig. 1. Plot of c{* for C§V, C{Y, B, GSV and F{Y ATFTsa B = 0.5. (We omit in the figure C{Y and B$Y cases not to make it too
complicated.) As an example, we aso display cR*) for CSV calculated without taking into account the bulk term. The difference between
this function and c{®*’ gives the bulk free energy of CS$Y ATFT according to Eq. (37).

Tables 1-3 show the values of parameters L, c5
and c, obtained numericaly from TBA equations
(denoted with the superscript (TBA)) and those ob-
tained analytically (Egs. (30) and (31)) from reflec-
tion amplitudes (denoted with the superscript (RA))
for C(V, C{, C, BV, B, GV and F(Y ATFTs
with different values of the parameter B. We see that
both data are in excellent agreement. (Relatively
poor accuracy for ¢, is mainly due to the limitation
of numerical accuracy and the influence of higher
order term (#(178)) in the expansion (39).) This
agreement supports the approach based on the reflec-
tion amplitudes, w-m relations and quantization con-
ditions as well as the Smatrices for non-simply
laced ATFTs.

In Fig. 1, we plot the functions c{**(R) and
cEM(R) for different ATFTs setting M=1. The
first function is computed numerically from TBA
equations. The second one is calculated using Egs.
(24) and (27), based on the reflection amplitudes,

with taking into account the bulk free energy term
according to Eq. (37). For al models, the two curves
are amost identical without essential difference in
the graphs even at R~ #(1). This good agreement
outside the UV region looks not to be accidental.
However, at present, we have no satisfactory expla-
nation of this interesting phenomena in ATFTSs.

5. Concluding remarks

In the main part of this paper we considered the
UV asymptotics of the effective central charges in
ATFTs. The most important CFT data, which we
used for this analysis were the reflection amplitudes
(13) of NATTs. It was mentioned in Introduction,
that these functions play also a crucia role in the
calculation of the one point functions in perturbed
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CFT. The one point functions of the exponentia
fieldsin ATFTs:

7(a) = (expa- ¢) (41)

can be reconstructed from from the same reflection
amplitudes. It follows from the results of the paper
[2] that functions (41) satisfy the functional equa-
tions similar to the relations (12) for the vertex
operators. These equations together with analyticity
and symmetry conditions fix one point functions in
perturbed CFTs. One can find the solution of these
functional equations with proper analyticity proper-
tiesand respecting all symmetries of extended Dynkin
diagram of Lie algebra G. This solution is a natural
generalization to the non-simply laced case of the
one point function for ADE series of ATFTs calcu-
lated in [17] and can be written in the form:

mk(G) (1-B B\ ]2 ¥
S LR

r v b

X [—W;Li'y(1+ei2b2/2)]_m‘ﬁ/

i=1

dt

xexpr[aze’Z‘—é/?( at)], (42)
where
F (at)

_ Z sinh(a, bt)sinh((ba, — 2bQ, + (1+ b?)H)t)sinh((b%x2/2 + 1)t)

q 9 2,2 i 2
=0 sinhtsinh(b% “t/2)sinh((1 + b®) Ht)

(43)

The one point function 9 (a) can be used for the
analysis of ATFTs. In particular, it contains the
information about the bulk free energy f(G), which
was calculated independently by Bethe Ansatz
method. One can easily derive from Egs. (1) and (5)
that:

n, f(G)

H(L+b%) = w7 (be). (44)

Using Eq. (42) for function .77 (a) one finds:

—4my(1+etb?/2)n; f(G)
H(1+ b?)(mk(G))?

[

xexpf?[(bei)ze‘”—,?(bei,t)]. (45)

2

The integral in the exponent can be calculated and
results coincides with Eg. (38). This gives the non-
perturbative test to the one point function .77 (a). In
particular, taking the limit b — 0in Eq. (45) (and the
dual limit) one can derive the amusing relations for
gamma-functions associated with Lie algebras G. It
is convenient to introduce the integers n=n,e?/2
i =0,...,r. Then these relations can be written as:

T (v(e-p¥/n)

a>0

:niv(._ro(ny)“i)l/h, (46)

and

' L\ —L/nY
—ve{TTve)| @

More detailed consideration of one point functionsin
ATFTs we suppose to give in another publication.
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