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Abstract

We investigate various excited states of sine-Gordodehon a strip with Dirichleboundary conditions on both boundaries
using a non-linear integral equation (NLIE) approach.
0 2004 Published by Elsevier B.V.

1. Introduction

Consider the quantum field theory of a self-interacting scalar bgsens) on a (14 1)-dimensional strip,
infinite in time direction and finite in space with bulk action
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Aose=% / dt / dx [(8@)2 — (0% + FCOS’%}’ 1)
—00 0

and with the Dirichlet boundary conditiogg0, 1) = ¢_ + Zm_ and¢(L, 1) = ¢4 + %m+, m4 € Z. We shall
refer to this integrable theory as the Dirichlet siner@m (DSG) model. It has several important applications
ranging from condensed matter physics to string theory.

The well-known bulk particle spectrum of sine-Gordoamposed of solitons and @solitons with topological
charge 1 and-1, respectively, and, only in thagtractive regime O< g < +/4r, bound states of solitons known as
breathers, is complemented by the rich structure of boundary bound states desdidpethe expressions for the
bulk S-matrices can be found 8], those for the fundamental soliton orteoliton reflection matrices are given
in [3] and the general boundary bound state excited reflection matrices can be f¢uhd in
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An important feature of DSG is the conservation of the topological charge

L
Qzﬁ{/dxiwx,t)—mw_}=m+—m-eZ- 2)
2 ax

0

The model enjoys the discrete symmetry of the figld> ¢ + %’Tm and simultaneouslyy — ¢+ + %’Tm
(m € 7). The charge conjugation symmetsy— —¢ sending solitons into antisolitons is also guaranteed provided
¢+ — —¢+ simultaneously. It send@ — — Q, so one can restrict attention to the study of posiivand then act
with this transformation to obtain states of negatiyeThe periodicity allows to restrict the boundary parameters
to the range & ¢ < 27”.1

A problem of great interest is to connect the scattering theory approach just mentioned to the somewhat
complementary description of perbed conformal field theory data. In this Letter we attack this problem from
the point of view of the nonlinear integral equation (NLIE) approach which was developed for vacuum scaling
functions in[4—6] and extended later to the excited stdtésl1]. In this framework, exact scaling functions of
finite size effects provide a way to investigate the flows from ultraviolet (UV) to infrared (IR) scales in integrable
quantum field theory, hence building a bridge between the perturbed CFT description and the factorized scattering
one. The NLIE for the vacuum Casimir energy was already deduced, along a similar line to those we shall illustrate
here, some years ago [02]. Our interest here is to establish a general NLIE valid for all states in the finite
size spectrum. This allows to identify “particle” states in the scattering description with “conformal” states in the
perturbed CFT description.

To make this approach viable, one should start fromxacesolution of a lattice gularization of the model.
This is normally provided, in NLIE approach, by some 2D light-cone vertex model or equivalently by some
inhomogeneous 1D spin chain. By suitable scaling littné continuum renormalized theory can be reached. The
Bethe ansatz equations that solve the lattice modefuaireed in the continuum limiinto a NLIE that has to be
considered as the basic renormalized tool to calculate the eigenvalues of the integral of motions of the theory on
any state in finite volume.

The homogeneous antiferromagnetic XXZ spif2 Inodel in a chain oV sites with lattice spacing, coupled
to parallel magnetic fields, andi_ at the left and right boundariegspectively, has Hamiltonian

N-1
H(y, heoho)y=—J Z (AR G,fany+l + COS)/O';O';+1) +h_of +hyoy. 3)

n=1

Hereo?, o = x,y, z, are Pauli matrices and Q y < =. Where convenient, we shall also use the equivalent
parameterp = % — 1, whose range is & p < oco. The Hamiltonian(3), as well as its inhomogeneous
generalizations, can be constructed in a doutetransfer matrix framework. For details 448].

The bare continuum limiv — oo, a — 0 while Na = L remains fixed, is known to give, in the homogeneous
case(3) a massless free bosgiix) compactified on a circle of radiug = 1/./2(x — y) [14]. Among the many
possible deformations of the Hamiltoni&) leading to sine-Gordon in the bare continuum limit, we choose the
one introducing alternating inhomogeneitigs= (—1)"® in the sites of the chain. This choice has been known
for sometimg15,16]to give a correct construction of sine-Gordon model in the bulk in cylindrical geometry, when
the appropriate scaling limit is chosen, with periodidwisted boundary conditions. It is then natural to expect
that the same construction in the presence of boundary magnetic/igldan also provide an effective tool to
define the renormalized DSG theory. It is worthwhilerégall that, as the homogeneous XXZ chain is equivalent
to a 6-vertex model on a square lattice, this modified XXZ chain is also equivalent to a 6-vertex model, but—as a

1 Notice that, unlike in the single boundary casd198,19] in the present two boundaries model eannot further restrict both boundary
parameters to & ¢+ < %
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consequence of the introduced inhomogeneities—debinedl lattice rotated by 45, i.e., on what can be thought

as a Minkowski space discretized along the light-cone directions. This is why this construction is often referred as
light cone lattice construction of the sine-Gordon mod#&b]. For® — oo, N — oo anda — 0 while L = Na is

fixed, contact can be made, along lines similar to thoqé i, with the Lagrangean formulation of DSG model,

Eq. (1) The XXZ anisotropyy is related to the SG coupling by g2 = 8(r — y) = %. Details of this bare
continuum limit are out of the scope of the present Letter.

In this preliminary Letter we put our accent on theegentation of the NLIE got from this construction and
analyze only a few bulk excited states with nonexcited boundaries, in order to show consistency with expected
results. The careful treatment of the full situation with boundary bound states would involve more delicate issues
of analytic continuation in the boundary parametgrghat we choose to postpone to a more extensive forthcoming
publication[31] for the reasons explained at the endsefction 2

2. Betheansatzand NLIE

The Bethe ansatz equations for the boundary XXZ cl{8)nhave been written by Alcaraz et 48] and
Sklyanin[13] some years ago, using an algebraic approacls #traightforward to generalize them with the
introduction of the alternating inhomogeneit[&$].

Eigenvalues of the double row transfer matrix can be constructed in terms of sets of distinct néqmbers? ),
calledroots. They are in number o#f (M < N) and must satisfy the Bethe ansatz equations

M

N
[s1/29; + ©)s12(9; — O)] " s, 29 ))su_2(9) = 1_[ s1(0; — D)s1 (P + i), 4)
k=Lk]
where
sinhZ (x +ivm)
sy (x

B sinhZ (x —ivm)’

andH. is defined such thdty. = siny cot%(Hi +1), and we choose as fundamentalregion— 1 < Hy < p+1.
Notice that the boundary terms in the Bethe equations disappear kithenO, i.e.,h+ = 1+ coSy = h.. In such
case, as it was shown [R0,21], the system becomed., (2)-invariant.

The antiferromagnetic vacuum turns out to be a maximaliset N /2 of real roots and it exists fa¥ even
only. In the region X y < 7 of interest for us, and for small enough boundary magnetic fields, this is the true
ground state of the theory. FOF odd instead the states with lowest possible total spin Bdve NT‘l roots and
one hole. However, to deal correctly with the continuum limit one has to consitteV even and odd sectors, like
it was shown in the periodic case[@-11]. The symmetry o{4) {¥;} — {—v;}, evident from the Bethe equations,
implies that only roots with positive real part are independent parameters characterizing a Bethe state. The value
v; =0 is a solution of(4) for any N and M. However, the corresponding Bethe state would vanish, so one has
always to subtract this unwanted root, i.e., to create a hate=a0.

The domain of root distribution can be considered as a semistripf the complex? plane:
7T2 7'[2 7T2
Ur=790€C|Rey >0, —— <Imyv<— or Rey=0,0<Imd < —¢.
2y 2y 2y
This also excludes another unwanted root%f{ and considers only half of the imaginary axis, as it should for
symmetry. However, for computational purposes, it is often better to double this strip by mirroring all the roots

JT2 7'[2
U:{ﬁeC‘ReﬁeR, ——<Imﬁ<—}.
2y 2y
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To each roo#?; associate its mirror roat_; = —¢;. Define the function

p () =m +ilogs,(9), (%)

with the oddity conditionp, (—u) = —¢,, (1) fixing the fundamental branch of the logarithm. It is periodic in the
imaginary direction, with period”72, and real on the real axis. We choose as fundamental periodicity the strip
¢ € U. Singularities of this function are digtuted along the imaginary axis:

Rey =0, Im9==£n(k(p+1)—v), keZ,

so that the fundamental analyticity strip is limitedian 9| < 7 min(v, p + 1 —v).
In terms of the functiorf5) the logarithm of the Bethe equatio(@ can be expressed as

N[p12(9) + ©) +¢1/2(; — )]
2M
+ o, 2(07) +on_2(0;) + e1(9;) + 91(20;) — Zm(ﬂj — ) =2nl;, I;jel.
k=1
Eigenvalues of the transfer matrix can be expressed in terms of its roots. In the following, we shall be mainly
interested in the energy spectrum, for which the formula is
E= 1% d @ ﬁ)+d (O+ﬁ)+1d (®) (6)
=" 2 do ¥1/? K+ 55 912 k o da Yv2 )
Define for¢ € U the so-calleadounting function

ZN(®) = N[p1/2(9 + O) + ¢1/2(0 — O)| + @m, j2(9) + @r_j2(9)
M
= Y 1@ — %)+ e1(?) + ¢2(29) @
k=—M

in terms of which the logarithm of the Bethe equations simply becomes the condition
ZNyWj) =2nl;. (8)

The last term in(7) takes care of the fact that in the second membd#pthe product does not include factors
with k = j. The last but one instead explicitly subtracts the unwanted#@et 0. The integerd; play the role of
quantum numbers.

The analytic structure df y () makes it convenient to classify the roots and related objects of the Bethe ansatz
(4) as follows

1. Realroots ¥, k =1, ..., Mg, ¥ > O: they are strictly positive real solutions @f) and(8);

2. Holes®%, k=1, ..., Ny, v > O: strictly positive real solutions @8) that are not solutions of the Bethe ansatz
(4);

3. Close roots ¥, k =1,..., M¢c: complex solutions with R&; > 0 and imaginary part in the range<0
[Im 3| < minn (1, p);

4. Wderoots %, k =1,..., My, Rev; > 0: complex conjugate solutions with imaginary pamnin(1, p) <
[Imwyg| < g

For further convenience it is useful to introduce the notioselffconjugateroots, i.e., wide roots with Int;, = g—z
whose complex conjugate is the rootitself, due to the periodicity of Bethe equations. Their number will be indicated
asMsc. Also we shall refer to roots or holes lying on the imaginary axis\agnetic.
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The functionZy (%) for ¢ € R is globally monotonically increasing. However, there may be points where locally
ZN(®) <0.1In particular holes or roots such tha1Z'N(s.,~) < 0 are calledypecial holes or rootslf a special object
appears, then there must be also two other objects (real roots or holes) with the same quantum number, as imposet
by the global increasing monotonicity of the counting function. Moreover, as two roots with the same quantum
number are not allowed in Bethe ansatz, at maximum one object of this triple can be a root, the others are forced
to be holes. In the following we indicate the number of specials WighA special object should be counted both
as special (i.e., itNg) and as root or hole (i.e., ik or Ng) according to its nature.

One may relate the numbers of various types of roots to the 3rd component of total spin of the system
S = % — M. To do that, we express the asymptotics of the funclign¥¥) on the real axis of¥ where they
can be compared with the counting of real roots and holes. As a result we get the foltmuitigng equation to
be satisfied by any allowed root configuration

A H J )

Ny —2Ng=2S + M + 2ste — 1My + ste -HD+|-——
H s c gy —DMw F(P){p_i_l P

where|x | denotes the integer part efand H = 231

Following the standard derivation as illustrated[10,22] we obtain a NLIE for the functioX y (). The
continuum limit can be taken by sending— oo anda — 0 in such a way thal. = Na remains constant. The
only way to get a sensible NLIE sdiisd by the limiting counting functioX (¢#) = limy_..o Zy () is to admit
that also® rescales as

@ ~ |Og 2_N7
ML
whereM is a mass scale. We often use in the faliiog the dimensionless scale paraméterM L. As a result of
this limit procedure, one can define the NLIE on the continuum

Z(®) =2sinhg + g (9 |{9}) + P(9|Hy, H-) — 2i Im / dx G — x —ie)log[1 — (—1)Msce! 20tie)],

where the boundary contribution is given by
2
P(WO|Hy, H ) =2n / dx [F(x, Hy) + F(x, H-) + G(x) + J (x)]
0

with
+Oodk sinhZ ( Dk
0= [ S 2P for [Imv min(1 10
Go) /Zne 2sinh% pk coshk | | <7 min(d, p), (10)
—00
400

dk ... sinhZ(p — DkcoshZ (p + Dk
J() = / Z_e,k,g 7(p—1) 7(p+1)
JT

b
- for | Im¥| < = min(1, p),
sinh% pk coshZk | < 2 (€.p)

—00

sinhZ(p+1—|H |k
sinhZ pk coshZk

+o00
F, H) = / g—iel‘kl’ sign(H) for | Im | < %|H|. (11)
—00

The source term is given by

g(@{n) = cr[xa @ — 90) + X0 @ + 0],
k



542 C. Ahn et al. / Physics Letters B 595 (2004) 537-546

where
2

X(ﬁ):Zn/de(x), (12)
0

and {9} is the set of position of the various objects (holes, close and wide roots, specials) characterizing a certain
state. They are characterized by the quantization rule

ZNWj) =2nl;, IJ'EZ-l-%, p = Msc mod 2
The coefficientsy are given by

_ | +1 forholes
“=1-1 forall other objects,

and for any functiory (¢) we define

Su (@) for wide roots
fuoo (@) = { f@ +ie)+ f(0 —ie) forspecials
f@®) for all other objects

where thesecond determination of f(#) is defined as

9) — fO)+ f(® —imsignimy) if p>1
fut )_{f(ﬁ)—f(ﬁ—inpsignlmﬁ) if p<1

The contribution of special objects comes from the fact that the logarithmic term inside the integral can go off the
fundamental branch right whefy < 0. In this case, the contribution of the jump in the logarithm amounts exactly
to the source term of a special object. For lafgehere the driving term dominates, monotonicity excludes the
presence of special holes or roots. Therefore, they shmotl be regarded as objects that can be added at will, but
better as artefacts that appear only for relatively small valuésdittated by the breakdown of analyticity of the
equation at certain points. It is also clear from analysis dorj8,itD,22,23}that the numbeNy — 2N, remains
constant along a flow ify and equalvy for [ sufficiently large.

For the vacuum state containing real roots only, this equation coincides with the one found some years ago
in [12]. Once the equation is solved f@(¥ + i) one can use this result to compute th&?) function at any
value in the analyticity striglm#| < & min(1, p), provided the functionP(¢|Hy, H_) is well defined there
(see comments below). To extend the function outside this analyticity strip one has to resort to the following
modification of the NLIE

for |Im®| > 7 min(d, p).

Z(®) =2 sinhy ¥ + gu (9{0%}) + Pu (O|Hy, H-)
—2ilm f dx G (0 —x —ie) Iog[]_ — (_1)MsceiZ(x+is)]_

OnceZ(¥) is known, it can be used to compute the energy. It is composed of bulk and boundary terms whose
expression can be found jh2] and a Casimir energy scaling function given by

dr
E:MXk:ckcoshk) ﬁk—/\/lfismhx 0(x).

In the IR limit/ = ML — oo one can make contact between the NLIE excited states and the scattering theory
of an underlying field theory. The integral terms in the NLIE and in the energy formula ga@as) and can be
discarded. In the case of a single hole placeghathe NLIE becomes

Z(¥y) =2sinhdy + x (201) + P(91|Hy, H-) = 2l sinhdy + F (91, Hy) + F (91, H-)
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with

9 +o0
dk ., sinhZksinhZ(p — Dk
0, H)=2n | dx| F(x,H —— tkx 2 2 _
7o n/ x|: (e M) 21 ¢ sinhZ pk sinhrk

0 —00

Interpreted, along lines of analysis very similar to thosd1df,22], as a quantization rule for momentum of
a particle of energyM coshd1, this yields its reflection amplitudes at both boundaries, giverrlgy, £1) =
7 (-Hx) Known identitieg12] allow to identify such reflection matrix with the Ghoshal-Zamolodchikov soliton—
soliton one, upon suitable identification of the parameféssand .. &£+ in turn are connected to the DSG

boundary parametets. [3] thus allowing us to relaté/. and¢+ as

Hy= P(lq: §¢i>-
B
Notice that the periodicitypy — ¢+ + 27” reflects in the periodicitydy — Hi + 2(p + 1). By changing sign
to both magnetic fieldd — —h4 simultaneously, one can check that also the antisoliton reflection matrix is
correctly reproduced.

We also checked, along similar lines, that by considering suitable combinations of holes and non-magnetic
complex roots we reproduce the correct bulk S-matrix as well as the expected Ghoshal-Zamolodchikov reflection
matrices in some simple multiparticle states.

Our analysis is limited to the case of boundary magnetic figld$ < 2. = 1 + cosy so that there is no way
to accommodate any magnetic root. This correspaaddsence of boundary bound states, as observl®]n
All bulk states then scatter through the unexcited Ghegteamolodchikov reflection matrix. To go beyond this
limitation, one should modify the Fourier representatiorof.e., consider analytic continuation. The hope is that
such analytic continuation should naturally introduce source terms for magnetic reats|{#}) in accordance
to Saleur—Skorik analysis of Bethe equations, where they found that vacuum changes by adding the maximal string
of magnetic roots. Boundary bound states should theobtained by removing some of these magnetic roots,
thus creating holes on the imaginary axis. This pdace turns out quite cumbersome and delicate, and needs
more investigation, so we choose to postpone the treatment of boundary bound states to a future more detailed
paper[31]. In the IR limit, however, by dropping the convolution term in NLIE, it is easy to check that one can
reproduce the Mattson—Dorey excited reflection matrices.

3. UV limit and conformal theory

In the limit/ — 0 we make contact with the UV regime of DSG. The roots and holes may rescale to infinity or
stay in a finite region as

1
ﬁ:ﬁiilogj or =00

Therefore, we classify these into three types which will be denoted by indiee®’ Accordingly, the NLIE splits
into left and right kink equations. Standard manipulatifgh22] lead to the following energy formula

T 1
E(L)y~—{A—-—
(2 2)
with

_p JLHeFHo oo ook — k) 4+ PELT
_p+1[2< 5 1-2(s-s%)-2(k KW))+ 2 S| +N,

2
N= (15— IE = I = 215 + LjS* + 2K = 2K — $* = 2(s7)%) e 2, (13)
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0l |

Fig. 1. Casimir energy levels for the vacuum stdkeck line) and soliton states with quantum numidet 1 (filled line), / = 2 (dotted line),
I = 3 (dotted-dashed line). In this exampie= 2.3, Hy = 2.2 andH_ =2.4.

wherel; =), I}, with A=H,C, W, ... the various types of roots and holes, and
2St =N} —2NS —ME —2My stepgp — 1), L, =sign(p — 1)(Mw — My}).
The integerk andeT, are defined through the equations

Z4(—00) =2Imlog[1 — (—1)MsceiZ+(=)] 4 7 4 27 K,
g+(—ool{t}) = 2x (c0) (S — 28) + 2n k.
This result should be compared with= 1 CFT of a boson with Dirichletenformal boundary conditions which
is compactified on a circle of radiu8 = % [24,25] The Hilbert space is composed of Heisenberg algebra

representationg,, of c = 1 CFT whose primary statés:) are created from the vacuum by vertex operaigfé :
of U(1) charge

(b9 1
IC—2< ﬁ +2mR)

and conformal dimensiond,, = 2«2. All other states are created from these ones by applying repeatedly the
creation operators

On = {a,kl~~a,kp|m),k1,...,kp €Z+}.

For a generic statg) € Q,, the energy is given by

T 1 P
Ei=z<Am+Ni—zl), N,-=z;k,,ez+.
J=

Comparing this formula witteqg. (13)we see that the winding number is related to the XXZ spin by: = 2S.
Notice that, according to this formula, the ground state= 0) with Dirichlet boundary condition has not
conformal dimension 0 as in the periodic CFT: the nontrivial boundaries contribute some energy to the Casimir
effect.

We end this section by presenting, only in graphical foRig(1), a simple example of numerical integration
of NLIE for the vacuum and few solitonic excited states. A detailed numerical comparison of these and other
numerical data with a truncated conformal space approach is planf@&t]in
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4. Conclusions and per spectives

In this Letter we have obtained the NLIE governing the finite size effects for excited states in sine-Gordon
field theory with twoboundaries, each with an independent Dilgttboundary condition as a continuum limit of
the Bethe ansatz equations of the alternating inhomogeneous XXZ spin chain. Analysis of the IR and UV limits
gives strong evidence that the underlying model is actually the DSG theory. Understanding of states describing the
scattering of bulk solitonic particles with Ghoshaimolodchikov unexcited boundaries are under control.

A better understanding of the generation mechanism of boundary bound statés. ffor . as analytic
continuation of the NLIE due to thergjularities of the boundary source terris and of the general structure
of vacuum in this case, could lead to a full control of the excited boundary situations too, which represents an
achievement of crucial importance in the framework of NLIE approach.

Also, other bulk states should be analyzed more carefully, as breather scattering off unexcited or excited
boundaries. In this preliminary study we did not perform numerical analysis of NLIE. It should, however, be
very valuable in itself and even better if comparable with suitable truncated conformal space approach data.

Finally the understanding of this Bchlet boundary conditions case should be seen just as a step towards the
full investigation of NLIE for general integrable boungl&onditions in sine-Gordon model, whose route has been
recently opened by the deduction of vacuum low magnetic field NLIR®&} starting from the Bethe ansatz for
non-diagonal boundary conditis proposed and studied[Ri7—30}
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