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Abstract

We investigate various excited states of sine-Gordon model on a strip with Dirichletboundary conditions on both boundari
using a non-linear integral equation (NLIE) approach.
 2004 Published by Elsevier B.V.

1. Introduction

Consider the quantum field theory of a self-interacting scalar bosonφ(x, t) on a (1+ 1)-dimensional strip
infinite in time direction and finite in space with bulk action

(1)ADSG= 1

2

+∞∫
−∞

dt

L∫
0

dx

[
(∂tφ)2 − (∂xφ)2 + m2

0

β2 cosβφ

]
,

and with the Dirichlet boundary conditionsφ(0, t) ≡ φ− + 2π
β

m− andφ(L, t) = φ+ + 2π
β

m+, m± ∈ Z. We shall
refer to this integrable theory as the Dirichlet sine-Gordon (DSG) model. It has several important applicati
ranging from condensed matter physics to string theory.

The well-known bulk particle spectrum of sine-Gordon,composed of solitons and antisolitons with topological
charge 1 and−1, respectively, and, only in theattractive regime 0< β �

√
4π , bound states of solitons known

breathers, is complemented by the rich structure of boundary bound states described in[1]. The expressions for th
bulk S-matrices can be found in[2], those for the fundamental soliton or antisoliton reflection matrices are give
in [3] and the general boundary bound state excited reflection matrices can be found in[1].
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An important feature of DSG is the conservation of the topological charge

(2)Q ≡ β

2π

[ L∫
0

dx
∂

∂x
φ(x, t) − φ+ + φ−

]
= m+ − m− ∈ Z.

The model enjoys the discrete symmetry of the fieldφ → φ + 2π
β

m and simultaneouslyφ± → φ± + 2π
β

m

(m ∈ Z). The charge conjugation symmetryφ → −φ sending solitons into antisolitons is also guaranteed prov
φ± → −φ± simultaneously. It sendsQ → −Q, so one can restrict attention to the study of positiveQ and then ac
with this transformation to obtain states of negativeQ. The periodicity allows to restrict the boundary parame
to the range 0� φ± < 2π

β
.1

A problem of great interest is to connect the scattering theory approach just mentioned to the so
complementary description of perturbed conformal field theory data. In this Letter we attack this problem f
the point of view of the nonlinear integral equation (NLIE) approach which was developed for vacuum s
functions in[4–6] and extended later to the excited states[7–11]. In this framework, exact scaling functions
finite size effects provide a way to investigate the flows from ultraviolet (UV) to infrared (IR) scales in integ
quantum field theory, hence building a bridge between the perturbed CFT description and the factorized s
one. The NLIE for the vacuum Casimir energy was already deduced, along a similar line to those we shall i
here, some years ago in[12]. Our interest here is to establish a general NLIE valid for all states in the
size spectrum. This allows to identify “particle” states in the scattering description with “conformal” states
perturbed CFT description.

To make this approach viable, one should start from an exact solution of a lattice regularization of the model
This is normally provided, in NLIE approach, by some 2D light-cone vertex model or equivalently by
inhomogeneous 1D spin chain. By suitable scaling limitthe continuum renormalized theory can be reached.
Bethe ansatz equations that solve the lattice model areturned in the continuum limitinto a NLIE that has to be
considered as the basic renormalized tool to calculate the eigenvalues of the integral of motions of the th
any state in finite volume.

The homogeneous antiferromagnetic XXZ spin-1/2 model in a chain ofN sites with lattice spacinga, coupled
to parallel magnetic fieldsh+ andh− at the left and right boundaries, respectively, has Hamiltonian

(3)H(γ,h+, h−) = −J

N−1∑
n=1

(
σx

n σx
n+1 + σ

y
n σ

y

n+1 + cosγ σz
nσ z

n+1

) + h−σz
1 + h+σz

N .

Here σα
n , α = x, y, z, are Pauli matrices and 0� γ < π . Where convenient, we shall also use the equiva

parameterp = π
γ

− 1, whose range is 0< p < ∞. The Hamiltonian(3), as well as its inhomogeneou
generalizations, can be constructed in a double row transfer matrix framework. For details see[13].

The bare continuum limitN → ∞, a → 0 while Na = L remains fixed, is known to give, in the homogene
case(3) a massless free bosonφ(x) compactified on a circle of radiusR = 1/

√
2(π − γ ) [14]. Among the many

possible deformations of the Hamiltonian(3) leading to sine-Gordon in the bare continuum limit, we choose
one introducing alternating inhomogeneitiesϑn = (−1)nΘ in the sites of the chain. This choice has been kno
for sometime[15,16]to give a correct construction of sine-Gordon model in the bulk in cylindrical geometry,
the appropriate scaling limit is chosen, with periodic or twisted boundary conditions. It is then natural to exp
that the same construction in the presence of boundary magnetic fieldsh± can also provide an effective tool
define the renormalized DSG theory. It is worthwhile torecall that, as the homogeneous XXZ chain is equiva
to a 6-vertex model on a square lattice, this modified XXZ chain is also equivalent to a 6-vertex model, bu

1 Notice that, unlike in the single boundary case of[1,3,19], in the present two boundaries model wecannot further restrict both bounda
parameters to 0� φ± < π

β .
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consequence of the introduced inhomogeneities—definedon a lattice rotated by 45, i.e., on what can be thou
as a Minkowski space discretized along the light-cone directions. This is why this construction is often refe
light cone lattice construction of the sine-Gordon model[15]. ForΘ → ∞, N → ∞ anda → 0 while L = Na is
fixed, contact can be made, along lines similar to those in[17], with the Lagrangean formulation of DSG mod
Eq. (1). The XXZ anisotropyγ is related to the SG couplingβ by β2 = 8(π − γ ) = 8πp

p+1. Details of this bare
continuum limit are out of the scope of the present Letter.

In this preliminary Letter we put our accent on the presentation of the NLIE got from this construction a
analyze only a few bulk excited states with nonexcited boundaries, in order to show consistency with e
results. The careful treatment of the full situation with boundary bound states would involve more delicate
of analytic continuation in the boundary parametersφ± that we choose to postpone to a more extensive forthcom
publication[31] for the reasons explained at the end ofSection 2.

2. Bethe ansatz and NLIE

The Bethe ansatz equations for the boundary XXZ chain(3) have been written by Alcaraz et al.[18] and
Sklyanin [13] some years ago, using an algebraic approach. It is straightforward to generalize them with t
introduction of the alternating inhomogeneities[19].

Eigenvalues of the double row transfer matrix can be constructed in terms of sets of distinct numbersϑ1, . . . , ϑM

calledroots. They are in number ofM (M � N ) and must satisfy the Bethe ansatz equations

(4)
[
s1/2(ϑj + Θ)s1/2(ϑj − Θ)

]N
sH+/2(ϑj )sH−/2(ϑj ) =

M∏
k=1,k �=j

s1(ϑj − ϑk)s1(ϑj + ϑk),

where

sν(x) = sinh γ
π
(x + iνπ)

sinh γ
π
(x − iνπ)

,

andH± is defined such thath± = sinγ cot γ
2 (H±+1), and we choose as fundamental region−p−1 < H± < p+1.

Notice that the boundary terms in the Bethe equations disappear whenH± = 0, i.e.,h± = 1+ cosγ ≡ hc. In such
case, as it was shown in[20,21], the system becomesSLq(2)-invariant.

The antiferromagnetic vacuum turns out to be a maximal setM = N/2 of real roots and it exists forN even
only. In the region 0� γ < π of interest for us, and for small enough boundary magnetic fields, this is the
ground state of the theory. ForN odd instead the states with lowest possible total spin haveM = N−1

2 roots and
one hole. However, to deal correctly with the continuum limit one has to considerboth N even and odd sectors, lik
it was shown in the periodic case in[9–11]. The symmetry of(4) {ϑj } → {−ϑj }, evident from the Bethe equation
implies that only roots with positive real part are independent parameters characterizing a Bethe state. T
ϑj = 0 is a solution of(4) for anyN andM. However, the corresponding Bethe state would vanish, so on
always to subtract this unwanted root, i.e., to create a hole atϑ = 0.

The domain of root distribution can be considered as a semistripU+ of the complexϑ plane:

U+ =
{
ϑ ∈ C

∣∣∣∣ Reϑ > 0, −π2

2γ
< Imϑ � π2

2γ
or Reϑ = 0, 0 < Imϑ <

π2

2γ

}
.

This also excludes another unwanted root ati π2

2γ
and considers only half of the imaginary axis, as it should

symmetry. However, for computational purposes, it is often better to double this strip by mirroring all the ro

U =
{
ϑ ∈ C

∣∣∣∣ Reϑ ∈ R, −π2

2γ
< Imϑ � π2

2γ

}
.
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To each rootϑj associate its mirror rootϑ−j ≡ −ϑj . Define the function

(5)ϕν(ϑ) ≡ π + i logsν(ϑ),

with the oddity conditionϕν(−u) = −ϕν(u) fixing the fundamental branch of the logarithm. It is periodic in

imaginary direction, with periodi π2

γ
, and real on the real axis. We choose as fundamental periodicity the

ϑ ∈ U. Singularities of this function are distributed along the imaginary axis:

Reϑ = 0, Imϑ = ±π
(
k(p + 1) − ν

)
, k ∈ Z,

so that the fundamental analyticity strip is limited to| Imϑ| < π min(ν,p + 1− ν).
In terms of the function(5) the logarithm of the Bethe equations(4) can be expressed as

N
[
ϕ1/2(ϑj + Θ) + ϕ1/2(ϑj − Θ)

]
+ ϕH+/2(ϑj ) + ϕH−/2(ϑj ) + ϕ1(ϑj ) + ϕ1(2ϑj ) −

2M∑
k=1

ϕ1(ϑj − ϑk) = 2πIj , Ij ∈ Z.

Eigenvalues of the transfer matrix can be expressed in terms of its roots. In the following, we shall be
interested in the energy spectrum, for which the formula is

(6)E = − 1

2a

M∑
k=1

(
d

dΘ
ϕ1/2(Θ − ϑk) + d

dΘ
ϕ1/2(Θ + ϑk)

)
+ 1

a

d

dΘ
ϕ1/2(Θ).

Define forϑ ∈ U the so-calledcounting function

ZN(ϑ) = N
[
ϕ1/2(ϑ + Θ) + ϕ1/2(ϑ − Θ)

] + ϕH+/2(ϑ) + ϕH−/2(ϑ)

(7)−
M∑

k=−M

ϕ1(ϑ − ϑk) + ϕ1(ϑ) + ϕ1(2ϑ)

in terms of which the logarithm of the Bethe equations simply becomes the condition

(8)ZN(ϑj ) = 2πIj .

The last term in(7) takes care of the fact that in the second member of(4) the product does not include facto
with k = j . The last but one instead explicitly subtracts the unwanted rootϑ0 = 0. The integersIj play the role of
quantum numbers.

The analytic structure ofZN(ϑ) makes it convenient to classify the roots and related objects of the Bethe a
(4) as follows

1. Real roots ϑk , k = 1, . . . ,MR , ϑk > 0: they are strictly positive real solutions of(4) and(8);
2. Holes ϑk, k = 1, . . . ,NH , ϑk > 0: strictly positive real solutions of(8) that are not solutions of the Bethe ans

(4);
3. Close roots ϑk , k = 1, . . . ,MC : complex solutions with Reϑk � 0 and imaginary part in the range 0<

| Imϑk| < minπ(1,p);
4. Wide roots ϑk , k = 1, . . . ,MW , Reϑk � 0: complex conjugate solutions with imaginary partπ min(1,p) <

| Imwk| < π2

2γ
.

For further convenience it is useful to introduce the notion ofself-conjugate roots, i.e., wide roots with Imϑk = π2

2γ
,

whose complex conjugate is the root itself, due to the periodicity of Bethe equations. Their number will be in
asMSC. Also we shall refer to roots or holes lying on the imaginary axis asmagnetic.
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The functionZN(ϑ) for ϑ ∈ R is globally monotonically increasing. However, there may be points where lo
ŻN (ϑ) < 0. In particular holes or rootssj such thatŻN (sj ) < 0 are calledspecial holes or roots. If a special object
appears, then there must be also two other objects (real roots or holes) with the same quantum number, a
by the global increasing monotonicity of the counting function. Moreover, as two roots with the same qu
number are not allowed in Bethe ansatz, at maximum one object of this triple can be a root, the others ar
to be holes. In the following we indicate the number of specials withNS . A special object should be counted bo
as special (i.e., inNS ) and as root or hole (i.e., inMR or NH ) according to its nature.

One may relate the numbers of various types of roots to the 3rd component of total spin of the
S = N

2 − M. To do that, we express the asymptotics of the functionZN(ϑ) on the real axis ofϑ where they
can be compared with the counting of real roots and holes. As a result we get the followingcounting equation to
be satisfied by any allowed root configuration

(9)NH − 2NS = 2S + MC + 2 step(p − 1)MW + step(p − 1) +
⌊
− 2S

p + 1
− H

p + 1

⌋
,

where�x� denotes the integer part ofx andH = H++H−
2 .

Following the standard derivation as illustrated in[8,10,22], we obtain a NLIE for the functionZN(ϑ). The
continuum limit can be taken by sendingN → ∞ anda → 0 in such a way thatL = Na remains constant. Th
only way to get a sensible NLIE satisfied by the limiting counting functionZ(ϑ) ≡ limN→∞ ZN(ϑ) is to admit
that alsoΘ rescales as

Θ ∼ log
2N

ML
,

whereM is a mass scale. We often use in the following the dimensionless scale parameterl =ML. As a result of
this limit procedure, one can define the NLIE on the continuum

Z(ϑ) = 2l sinhϑ + g
(
ϑ

∣∣{ϑk}
) + P(ϑ|H+,H−) − 2i Im

∫
dx G(ϑ − x − iε) log

[
1− (−1)MSCeiZ(x+iε)

]
,

where the boundary contribution is given by

P(ϑ|H+,H−) = 2π

ϑ∫
0

dx
[
F(x,H+) + F(x,H−) + G(x) + J (x)

]

with

(10)G(ϑ) =
+∞∫

−∞

dk

2π
eikϑ

sinhπ
2 (p − 1)k

2 sinhπ
2 pk coshπ

2 k
for | Imϑ| < π min(1,p),

J (ϑ) =
+∞∫

−∞

dk

2π
eikϑ

sinhπ
4 (p − 1)k coshπ

4 (p + 1)k

sinhπ
2 pk coshπ

2 k
for | Imϑ| <

π

2
min(1,p),

(11)F(ϑ,H) =
+∞∫

−∞

dk

2π
eikϑ sign(H)

sinhπ
2 (p + 1− |H |)k

sinhπ
2 pk coshπ

2 k
for | Imϑ| < π

2
|H |.

The source term is given by

g
(
ϑ

∣∣{ϑk}
) ≡

∑
ck

[
χ(k)(ϑ − ϑk) + χ(k)(ϑ + ϑk)

]
,

k
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where

(12)χ(ϑ) = 2π

ϑ∫
0

dx G(x),

and{ϑk} is the set of position of the various objects (holes, close and wide roots, specials) characterizing a
state. They are characterized by the quantization rule

ZN(ϑj ) = 2πIj , Ij ∈ Z + ρ

2
, ρ = MSC mod 2.

The coefficientsck are given by

ck =
{+1 for holes,

−1 for all other objects,

and for any functionf (ϑ) we define

f(k)(ϑ) =
{

fII (ϑ) for wide roots,
f (ϑ + iε) + f (ϑ − iε) for specials,
f (ϑ) for all other objects,

where thesecond determination of f (ϑ) is defined as

fII (ϑ) =
{

f (ϑ) + f (ϑ − iπ sign Imϑ) if p > 1

f (ϑ) − f (ϑ − iπp sign Imϑ) if p < 1
for | Imϑ| > π min(1,p).

The contribution of special objects comes from the fact that the logarithmic term inside the integral can go
fundamental branch right wheṅZN < 0. In this case, the contribution of the jump in the logarithm amounts ex
to the source term of a special object. For largel where the driving term dominates, monotonicity excludes
presence of special holes or roots. Therefore, they should not be regarded as objects that can be added at will
better as artefacts that appear only for relatively small values ofl, dictated by the breakdown of analyticity of th
equation at certain points. It is also clear from analysis done in[8,10,22,23]that the numberNH − 2Ns remains
constant along a flow inl, and equalsNH for l sufficiently large.

For the vacuum state containing real roots only, this equation coincides with the one found some ye
in [12]. Once the equation is solved forZ(ϑ + iε) one can use this result to compute theZ(ϑ) function at any
value in the analyticity strip| Imϑ| < π min(1,p), provided the functionP(ϑ|H+,H−) is well defined there
(see comments below). To extend the function outside this analyticity strip one has to resort to the fo
modification of the NLIE

Z(ϑ) = 2l sinhII ϑ + gII
(
ϑ

∣∣{ϑk}
) + PII (ϑ|H+,H−)

− 2i Im
∫

dx GII (ϑ − x − iε) log
[
1− (−1)MSCeiZ(x+iε)

]
.

OnceZ(ϑ) is known, it can be used to compute the energy. It is composed of bulk and boundary terms
expression can be found in[12] and a Casimir energy scaling function given by

E =M
∑
k

ck cosh(k) ϑk −M
∫

dx

2π
sinhx Q(x).

In the IR limit l = ML → ∞ one can make contact between the NLIE excited states and the scattering
of an underlying field theory. The integral terms in the NLIE and in the energy formula go asO(e−l) and can be
discarded. In the case of a single hole placed atϑ1, the NLIE becomes

Z(ϑ1) = 2l sinhϑ1 + χ(2ϑ1) + P(ϑ1|H+,H−) = 2l sinhϑ1 +F(ϑ1,H+) +F(ϑ1,H−)
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F(ϑ,H) = 2π

ϑ∫
0

dx

[
F(x,H) +

+∞∫
−∞

dk

2π
eikx

sinh3π
2 k sinhπ

2 (p − 1)k

sinhπ
4 pk sinhπk

]
.

Interpreted, along lines of analysis very similar to those of[10,22], as a quantization rule for momentum
a particle of energyMcoshϑ1, this yields its reflection amplitudes at both boundaries, given byR(ϑ, ξ±) =
eiF(ϑ,H±). Known identities[12] allow to identify such reflection matrix with the Ghoshal–Zamolodchikovsolit
soliton one, upon suitable identification of the parametersH± and ξ±. ξ± in turn are connected to the DS
boundary parametersφ± [3] thus allowing us to relateH± andφ± as

H± = p

(
1∓ 8

β
φ±

)
.

Notice that the periodicityφ± → φ± + 2π
β

reflects in the periodicityH± → H± ± 2(p + 1). By changing sign
to both magnetic fieldsh± → −h± simultaneously, one can check that also the antisoliton reflection mat
correctly reproduced.

We also checked, along similar lines, that by considering suitable combinations of holes and non-m
complex roots we reproduce the correct bulk S-matrix as well as the expected Ghoshal–Zamolodchikov r
matrices in some simple multiparticle states.

Our analysis is limited to the case of boundary magnetic fields|h±| < hc = 1 + cosγ so that there is no wa
to accommodate any magnetic root. This correspondsto absence of boundary bound states, as observed in[19].
All bulk states then scatter through the unexcited Ghoshal–Zamolodchikov reflection matrix. To go beyond thishc

limitation, one should modify the Fourier representation ofF , i.e., consider analytic continuation. The hope is t
such analytic continuation should naturally introduce source terms for magnetic roots ing(ϑ|{ϑk}) in accordance
to Saleur–Skorik analysis of Bethe equations, where they found that vacuum changes by adding the maxim
of magnetic roots. Boundary bound states should then beobtained by removing some of these magnetic ro
thus creating holes on the imaginary axis. This procedure turns out quite cumbersome and delicate, and n
more investigation, so we choose to postpone the treatment of boundary bound states to a future more
paper[31]. In the IR limit, however, by dropping the convolution term in NLIE, it is easy to check that one
reproduce the Mattson–Dorey excited reflection matrices.

3. UV limit and conformal theory

In the limit l → 0 we make contact with the UV regime of DSG. The roots and holes may rescale to infin
stay in a finite region as

ϑ = ϑ± ± log
1

l
or ϑ = ϑ0.

Therefore, we classify these into three types which will be denoted by indices “±,0”. Accordingly, the NLIE splits
into left and right kink equations. Standard manipulations[8,22] lead to the following energy formula

E(L) ∼ π

L

(
∆ − 1

24

)
with

∆ = p

p + 1

[
1

2

(
H+ + H−

2p
− 1− 2

(
S − S+) − 2

(
K − K+

W

)) + p + 1

2p
S

]2

+ N,

(13)N =
(
I+
H − I+

C − I+
W − 2I+

S + L+
WS+ + 2K − 2K+

W − S+ − 2
(
S+)2

)
∈ Z,
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Fig. 1. Casimir energy levels for the vacuum state (thick line) and soliton states with quantum numberI = 1 (filled line), I = 2 (dotted line),
I = 3 (dotted-dashed line). In this examplep = 2.3, H+ = 2.2 andH− = 2.4.

whereI+
A = ∑

k I+
A,k with A = H,C,W, . . . the various types of roots and holes, and

2S+ = N+
H − 2N+

S − M+
C − 2M+

W step(p − 1), L+
W = sign(p − 1)

(
MW − M+

W

)
.

The integersK andK+
W are defined through the equations

Z+(−∞) = 2 Imlog
[
1− (−1)MSCeiZ+(−∞)

] + π + 2πK,

g+
(−∞∣∣{ϑ+

k

}) = 2χ(∞)
(
S − 2S+) + 2πK+

W .

This result should be compared withc = 1 CFT of a boson with Dirichlet conformal boundary conditions whic

is compactified on a circle of radiusR =
√

4π
β

[24,25]. The Hilbert space is composed of Heisenberg alge

representationsQm of c = 1 CFT whose primary states|m〉 are created from the vacuum by vertex operators:eiκφ:
of U(1) charge

κ = 1

2

(
φ+ − φ−√

π
+ 1

2
mR

)

and conformal dimensions∆m = 2κ2. All other states are created from these ones by applying repeated
creation operators

Qm = {
a−k1 · · ·a−kp |m〉, k1, . . . , kp ∈ Z+

}
.

For a generic state|i〉 ∈Qm the energy is given by

Ei = π

L

(
∆m + Ni − 1

24

)
, Ni =

p∑
j=1

kp ∈ Z+.

Comparing this formula withEq. (13)we see that the winding numberm is related to the XXZ spin bym = 2S.
Notice that, according to this formula, the ground state (m = 0) with Dirichlet boundary condition has no
conformal dimension 0 as in the periodic CFT: the nontrivial boundaries contribute some energy to the
effect.

We end this section by presenting, only in graphical form (Fig. 1), a simple example of numerical integrati
of NLIE for the vacuum and few solitonic excited states. A detailed numerical comparison of these an
numerical data with a truncated conformal space approach is planned in[31].
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4. Conclusions and perspectives

In this Letter we have obtained the NLIE governing the finite size effects for excited states in sine-G
field theory with twoboundaries, each with an independent Dirichlet boundary condition as a continuum limit
the Bethe ansatz equations of the alternating inhomogeneous XXZ spin chain. Analysis of the IR and U
gives strong evidence that the underlying model is actually the DSG theory. Understanding of states descr
scattering of bulk solitonic particles with Ghoshal–Zamolodchikov unexcited boundaries are under control.

A better understanding of the generation mechanism of boundary bound states for|h±| > hc as analytic
continuation of the NLIE due to the singularities of the boundary source termsF , and of the general structu
of vacuum in this case, could lead to a full control of the excited boundary situations too, which repres
achievement of crucial importance in the framework of NLIE approach.

Also, other bulk states should be analyzed more carefully, as breather scattering off unexcited or
boundaries. In this preliminary study we did not perform numerical analysis of NLIE. It should, howev
very valuable in itself and even better if comparable with suitable truncated conformal space approach da

Finally the understanding of this Dirichlet boundary conditions case should be seen just as a step towar
full investigation of NLIE for general integrable boundary conditions in sine-Gordon model, whose route has b
recently opened by the deduction of vacuum low magnetic field NLIE in[26] starting from the Bethe ansatz f
non-diagonal boundary conditions proposed and studied in[27–30].
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