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We propose exact S-matrices for the AdS3/CFT5 duality between type IIB strings on
AdS3 x 83 x My with My = S3 x 81 or T* and the corresponding two-dimensional
conformal field theories. We fix the two-particle S-matrices on the basis of the symmetries
su(1|1) and su(1|1) x su(1]1). A crucial justification comes from the derivation of the all-
loop Bethe ansatz matching exactly the recent conjecture proposed by Babichenko et al.
[J. High Energy Phys. 1003, 058 (2010), arXiv:0912.1723 [hep-th]] and Ohlsson Sax and
Stefanski, Jr. [J. High Energy Phys. 1108, 029 (2011), arXiv:1106.2558 [hep-th]].
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1. Introduction

The discovery of integrable structures on both sides of the AdSs/CFT, correspon-

dence,3*

was crucial in understanding and determining exactly some important
physical quantities (see Ref. 5 and references therein) in N' = 4 super-Yang-Mills
and the IIB superstring theory on AdSs x S° in the planar limit.

From the integrability point of view, one of the most recently investigated
examples of such gauge/string duality is the AdS3;/CFTy correspondence between
IIB superstring theory on AdSs; x S® x S% x S* or AdS3 x S3 x T* backgrounds

with RR fluxes and yet quite unknown two-dimensional CFTs.® Indeed, while the

aIn the case of AdS3 x S3 x T4, the CFT dual is a N = (4, 4) theory on a symmetric product of
T4 6-8
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NS AdS3/CFTs was solved completely by implementing techniques typical of two-
dimensional CFTs,” ' the RR counterpart remains quite obscure: there the usual
2D CFT methods fail, then one of the most promising way to tackle this problem
is given by integrability techniques.

This investigation started in Refs. 1 and 2, where a set of all-loop Bethe equa-
tions, describing in principle at any coupling the asymptotic spectrum of the string
energies and the dimensions of the yet unknown gauge operators, were proposed on
the basis of classical integrability of the corresponding supercoset sigma models.”
Unfortunately, this approach cannot take into account the contribution of some
(massless) modes of the full string theory. Some progress in the direction of in-
corporating them has been done very recently in Ref. 18, where a set of Bethe
equations has been proposed in order to describe the massless modes sector. Now,
on the basis of general physical considerations, we expect that the S-matrix between
the massless and massive modes is diagonal and lead to additional phase factors in
the Bethe equations.

The aim of this paper is to propose an S-matrix for the massive modes, in
order to derive, on a firmer ground, the Bethe equations proposed in Refs. 1 and
2. We shall do this by using an analytic Bethe ansatz involving transfer matrix
cigenvalues derived from the diagonalization of su(1]1) and su(1]1) x su(1]1) in-
variant S-matrices, respectively for the AdSs x S3 x S§3 x S' and AdS; x S3 x T*
cases. Actually, the symmetries preserved by the vacua of these theories are cen-
trally extended versions of su(1|1) and su(1]1) x su(1]1), respectively, as argued in
Refs. 19 and 20.

In the different context of open AdSs;/CFT, spin chains, the analytic Bethe
ansatz built on a su(1|1)-invariant S-matrix, previously found in Refs. 22 and 23,
was already performed, without considering possible scalar factors, by Ref. 24 in
order to determine the corresponding transfer matrix eigenvalues and Bethe equa-
tions. On the other hand, an su(1]1) x su(1|1)-invariant S-matrix was proposed in
Ref. 20 to describe the scattering of magnons in AdSs x S3 x T*; however, only
magnons in the su(2) sector were analyzed there, in order to derive the dressing
phase up to one-loop, and Bethe equations were not derived.

Note Added

Shortly after the first version of this paper was published on the arXiv, another
paper?! appeared. In that paper, two different S-matrices, coming from two different
choices of central extension, were derived for AdSz x S3 x §3 x S1. One can check
that the S-matrix written in App. D of Ref. 21 is the same® as the S-matrix we
have proposed in this paper.

PSome first tests of these Bethe equations against string energy calculations have been performed
in Ref. 17.

¢After mapping our variables fo to their zF, 27T, x%g to —1/zF, —1/2F and w2 to np,q. We
thank Alessandro Sfondrini for correspondence on this 7p0int.

1350168-2



Ezact S-Matrices for AdS3/CFT>

2. Spectrum and S-Matrix
2.1. AdS3 x S3 x T4

For the case of AdS3 x S$3 x T4, the spectrum consists of eight massive modes whose
energy—momentum dispersion relation is given by

E= \/1 + 4h2(\) sin? g , (2.1)

where h is an almost unknown function of the 't Hooft coupling A: its strong cou-
pling behavior has been predicted to be h(\) ~ v/A/27 in Ref. 1, while the one-loop
correction has been calculated recently by Ref. 25. These are grouped into bifun-
damentals of su(1]1) x su(1|1), which we refer to as “A” and “B”. The S-matrices
among these bifundamentals are given by tensor products of two su(1|1)-invariant
S-matrices as follows:

SAN (1 po) = SEB (p1, py) = So(p1,p2)[S(p1,p2) @ S(p1,p2)] (2.2)
SUB) (p1,pa) = SBY (py,p2) = So(p1,p2)[S(p1,p2) @ S(p1,p2)] (2.3)
where20:23,24
1 0 0 0
0 x£ - mQ: xi — x{ wa 0
rf — x; rf — x5 w
g(pl,pg) =10 R w1 ol —af 0 (2.4)
xf — Xy W2 xf — Ty
-+
0 0 0 S
L1 — Tg

and we set w1 2 = w(p1,2) = 1. The a2 variables are the usual Zhukowsky variables
defined by

+ .
i—_:e“’, x++xi+—x*—xi_:%. (2.5)
The S-matrix (2.4) satisfies the unitarity condition, but it does not have crossing
symmetry.? An attempt to derive the crossing symmetry relations for the su(1[1)
algebra has been put forward in Ref. 20 by using the antipode operation, but
this implies, in this case, a transformation on the kinematic variables (z* — x7F)
that does not correspond to the particle-antiparticle transformation (z* — 1/z%).
Then, we guess a possible expression for the scalar factors on the basis of the
unitarity and the final matching with the Bethe equations proposed by:!»2
1

P P _
xra —X rqa X
So(p1,p2) = —E——2 ——— 720" (p1,p2) ==,
Ty — I o 7y 1 T2 (2.6)
+ o
a _ BN R 1
So(p1,p2) = o *(p1,p2) ===,
Ty Tg
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where o (p1, p2) was conjectured being the BES dressing phase? in Ref. 19 and p
denotes the momentum of an antiparticle, such that x*(p) = 1/2%(p). The scalar
factors (2.6) satisfy the relation So(p1, p2) = So(P1,P2), So(p1,p2) = So(P1,P2), that

will be important later for the construction of the Bethe equations, and unitarity:

+
] x
So(p1,p2)So(p2, 1) = Ssu(Q)(p17p2)02(p17p2)x—l+x—2,
1 T2
+
_ T, x
X S (prpe) ot =1, (2.7)
2 Ty
+ o4 S
= -~ B Cxt el ] x
So(p1p2)So(p2:p1) = 02 (p1,D2) == 20 2 (P2 1) =2 =1, (2.8)
Ty Ty Ty Xy
etz e
where Sgy,(2)(p1,p2) = x%_é ﬁ
ool

The Bethe-Yang equations are derived from a periodic boundary condition
(PBC). On a circle with circumference L, N4 represents the number of “A” parti-
cles with momenta {p‘f‘, Py, pﬁ A} and Np represents number of “B” particles
with momenta { pBopB. ... pﬁB } Now, we choose an “A” particle with a momen-
tum p;‘ and move it around the circle by scattering with all the other particles and
similarly for a “B” particle with a momentum pf. Since this virtual process does
not change any configuration, we arrive at PBC conditions

eipr = H So pj ,pk H SO p] vpk

k=1,#j

X {Tsu(ul)(pf‘{qu,pf;}) ®TSU(1\1)(pJA|{plA’plB})} ’ (2.9)
e L — H So( pJ pE HSO pj 7pk

k=1,#j

where fgu(l‘l) is a transfer matrix made of the su(1|1)-invariant S-matrix,

Tsu(1|1)(p‘{2?f‘}7{p13})
= str, {SGA1 (papiq) T SGANA (papﬁA)Safi (p’p{g) o SQBNB (p’pﬁB)} ’ (2'11)

and a, A; and B; stand for a two-dimensional vector space which the S-matrices
act on.

d Actually, results from Refs. 20 and 27 show that o(p1, p2) differs from the BES dressing phase
starting from one-loop at strong coupling.
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2.2. AdS; x 83 x 82 x St

The spectrum of AdSz x S3 x §3 x S! is a bit more complicated. Denoting I, R;,
R, the radii of AdS3 and the two S®’s respectively, one has the following relation

1 1 1
= (2.12)
RITR P
By defining a = 12/ R?, one can find two massive multiplets, each of which consists
of two bosons and two fermions, with two different masses:

E = \/ml2 + 4h2()\) sin? g, 1=1,3, (2.13)
where
m=«a, my=1-—a. (2.14)

We propose that the four particles with mass m; are grouped into two funda-
mentals of su(1|1), which we refer to “1” and “1”; and similarly the other four
particles with mass mg into two additional fundamentals of su(1]|1), which we refer
to “3” and “3”. In this case, the Zhukowsky variables are defined as:?

xfi"’é_ fi_é:@v

' i1 ' Ty1 h(A) (2.15)
x§r3+é_m§3_é:2i(l_a) |

T T3 T T33 h(X)

The S-matrices among these four doublets are given by single su(1|1)-invariant
S-matrices as follows:

S (p1,pa) =SB (py, pa) = ST (p1, p2)
= S (p1,p2) = So(p1,p2)S(p1,p2) , (2.16)
S (p1,pa) = SO (p1, pa) = S (p1, pa)
= S5 (p1, p2) = So(p1,p2)S(p1,p2) , (2.17)
S (p1,pa) = SV (p1, pa) = ST (p1, pa)
= SO (p1,p2) = S(p1,p2) , (2.18)
S (p1,pa) = SEV (py, p2) = SEV (p1, pa)
= ST (p1,p2) = S(p1,pa) , (2.19)
where S(py, ps) is given in Eq. (2.4) and the scalar factors Sy and Sy are defined in

Eq. (2.6).
The Bethe-Yang equations can be written in a similar way as before. On a
circle with circumference L, we put N; number of “1” particles with momenta
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{pl,p3,....p}, }, Ny number of “1” particles with momenta {p},p;, . 7p}vi}7 N3

number of “3” particles with momenta {p:f, P3, ..., p?vg} and N3 number of “3” par-
ticles with momenta {p?, pg, ceey p?vg } From these configuration, the PBC equations
become

el = H So(p} i HSo p}.ok) - Ty 03 [{pE oL 0t 0l }) . (2:20)
k=1,#j

eril = H So(p. pi HSo p}.ok) Ty (0} [{p 010000 }) . (2:21)
k=1,#j

ej’p?l‘ = H So p],pk HS() p],pk su(1|1)(p?|{pl17plivp?7p?})7 (2'22)
k=1,#j

eril = H So(p2, v} HSo P2 03) - Towiy 02| {01 01 07,07 }), (2.23)
k=1,#j

where fgu(l‘l) is given in Eq. (2.11).

3. Derivation of Asymptotic Bethe Ansatz Equations
3.1. Diagonalization of the transfer matriz

The su(1]|1) transfer matrix has been diagonalized by the analytic Bethe ansatz
method in Ref. 24. The eigenvalues can be expressed by

Alpipe} {A}) = Ao(pl{pe}) AlPI{A ) (3.1)
_ M@t (p) —at (o)
Ao(p{pe}) =1 - 1;1;[1 (m) ; (32)
Moo= () — 2 (s
aotvh = 11 (=0 (33
and the magnonic variables \; satisfy
() e ()
=l Gy =srig) 34

Here, we have used a short notation that NV = N4 + Np and {pg} = {plA,pF} for
AdS3 x 83 x T* N = Ny + Ni + N3 + N3, {pe} = {pll,pll,p?,p?} for AdSs x S3 x
53 x 81, respectively.
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Inserting these into Egs. (2.9) and (2.10), we get the asymptotic Bethe ansatz
equations for AdSs x S% x T*:

A
elij: H SO p]apk HSO pjvpk

k=1,#j
(22222 O ()
GinPL _ So(0 P H 5006701
k=1,#j
() T (Re=s) e
iR () e
SR () e

This can be represented pictorially as in Fig. 1.

Fig. 1. AdS3; x S3 x T%: two momentum-carrying nodes (black dots) are connected to two
magnonic nodes (circle).
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Fig. 2. AdSs x S3 x S3 x S!: four momentum-carrying nodes (black dots) are connected to a
single magnonic node (circle).

Similarly, from Egs. (2.20)—(2.23), we obtain the asymptotic Bethe ansatz equa-
tions for AdSs x 9% x S% x St:

.1 M - 1 —x+ >\j
el — H SO pj,pk HSO pj,pk H <x+221§ x+§)\;), (3.9)

k=1,#j j=1 - J

L H Sof HS 0 S AN FYT

it = (], pi P} : .
k=1,#j7 I o k j=1 L (pjl) - x+()‘j)

(2 (p2) — 2t ()

ePsl = So(p2.18) T1 So (02, i ll e Gt
. 11_[7@ 0\F; k H 0\ k B +(p§,) — $+(>\j) ( )

, M — (.3 +

.3 pz)—x (/\j)

it = So(p?.3) T] So(0?, v} < (r; , (3.12)
kll_[# (P}, Pk H o(p,pk) L)~ (y)

N 0 — 2
1= | S =2y W) == (pe) ) (3.13)
LA 7o) =+ )
These sets of Bethe ansatz equations can be represented pictorially as in Fig. 2

3.2. Comparison to the Bethe equations of Refs. 1 and 2

In order to translate Eqgs. (3.5)—(3.8) into the notation of Refs. 1 and 2, we have
to replace pp by pp and disentangle the two “magnonic” variables into four. In
Eq. (3.5), for instance, the first step involves the second factor:

NB~
1 So(vi.5%) HU (p2',p)
k=1

1350168-8
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Exact S-Matrices for AdSs/CFTs

Fig. 3. AdSs; x S% x T*: two momentum-carrying nodes (black dots) are connected to four
magnonic nodes (circle) after redefinition.

+ —
. . Nao Np x,
Now, since from the momentum constraint we have that [[, % —=][, % =& =1
T Ty T Ty

+ .
and %: = ¢e'Pi, finally we get, ignoring for the moment the magnonic part (setting

to zero both M and M):

4 Mozt o~ N
ipd (L+Na—Np) _ j ST 20 A H 2/ A B
e'ts ( 4 5) - - — T 1_ Jl o (pj 7pk) o (pj 7pk') . (315)
k=125 Y3 — Tk ~a7 k=1

In the case of Eq. (3.6), we get:

B LI —x,jl_# 4
—ipP(L+Np—N ; i Tk B B -2/ B A
ey = [ L o of) [[ o 0 ) - (30
k=1,#5 77 k x;af k=1

Now, in order to complete the comparison, we need also to redefine the magnonic
variables (after this, Fig. 1 changes to Fig. 3):

"E+()\j):l'1’j7 j:L...,Kl;

. 1 (3.17)
T (AKI“I’j):x—? j=1...,Ky, M=K +Kj,

= 1 , (3.18)
x (>\K3+j):—7 7=1....Ks, M=Ks;+ K3.
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Then, Egs. (3.5)—(3.8) become:

ot (L+Ka—Kp+Ki+K3)

1
Ka —+ Np
r; —& ztx
J k k _2( A —2( A B
= — o (v, i) [T o (0", 0)
T, —x, 11— —
k=1,#5 ~J k Ty k=1
Ky — (A 1] — 1
s (p') — 21 = (ph)er,
+(pA) _ 1
o @ (P — e 0 1 -

Ky _
) ) UL ST (3.10)
A 1 ) :
=1 xt (p] ) 3 j=1 ac‘*'(p;.x)xg,j
e~y (L+Ka—Kp+Ki+Kj)
Ko .+ _ . —— Na
_ J k i %k _2( B . B 2(, B A
- 1'4_—CE+1 ]1 o (pj;pk)HJ (p]7pk)
k=1,#j5 "1 k T k=1
K- _ 1
cam () —a1, 11 LT meme,
X H x*( B) — T 1-— L
j=1 Dj Lj j=1 =¥ (pP)z1;
K3 _( B K3 I S
x (pj ) — X3 = (p) )3,
XHx+(pB)_ 741—[1_;7 (3.20)
j=1 J 3,0 j=1 z¥(pF)za,;
N _ N I S
_ T 1’1’] - (piA) T 1 xldx_(p{s) 21
1= o —at (pf) JR— ’ (3.21)
I=1 1,j Py =1 z1 2t (pP)
N _ N _ 1
o - L3, —T (plA) 2 (1 z3,52~ (p) 3.92
1= F e ) rp— : (3.22)
=1 \Ts,; — TP =1 w30t (pP)
N _ N _ 1
1= T xi’] -7 (plB) T 1 T J$7(pl ) (3 23)
N ot - x*( B) 1-— L ’ ’
=1 1, Py =1 x1 jzt (pf)
N _ N _ 1
3 (i m o 0P)\ 1 (1 -
e at . —at(pP) 1—-—1 ’ (324
I=1 \"3,j Py =1 z3 2t (p)

which match exactly the equations conjectured by Refs. 1 and 2, if we define Ly o) =
L+ Ks— Kp+ Ky + Kj3).
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' @

Fig. 4.
magnonic nodes (circle) after redefinition.

AdS3 x S3 x §3 x S': four momentum-carrying nodes (black dots) are connected to two

In analogy with the case of AdS3xT™, in order to get the Bethe equations written
in the notation of Refs. 1 and 2, we need to change p'® — p*3 in Egs. (3.9)-(3.13)
and to redefine the magnonic nodes corresponding to the variable 2 into two sets

of 2 and 2 variables,

at(N) =225, j=1..., Ko
1 (3.25)
x+()\j+Kz)zga ]:17 '7K27
J
as illustrated in Fig. 4:
eiP; (L+N1—Ni+Kj)
, Mgt —ap, z+,1z— N
= iP—F1) — — 1 e (p1,j,P1.k) H 0_2(p1,j7pi,k)
k=1,#j7 xl’j - xl;k Ty T g k=1
K- — (1 K5 1— -1
v H s ) ) — (3.26)
Jf"" (pl) — X2 1-— 1 ’ '
j=1 J J ) j=1 = (pj)rz2,;
eipi?(L-&-N;;—Ng-&-Ki)
ak x;_x;kl— 3, al
i(Ps—P; ; 3, k2 -2
= /(PP ——— 1 202 (ps o ps) [ [ o2 (03,55 p3.k)
k=1,#j x3~,j x?’ak a:;ja:;r)k k=1
K —( 3 Ks -1
» ﬁ x (pj) — T2, 2 1 3;*([)?)%2,] (3 27)
el I | Gp— '
j=1 J J ) =1 = (pF)wa,;
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o~ P} (L+N1—N1+K2)

1
Ni + - 1 - N1
T . — Is + -
i(P;—P, 1,5 1,k T1% 6 2, - Y
elthiP) I | R S B S (P1,>P1k) | I o “(p1;,P1k)
k=1,#j 1,5 1,k xgquk k=1

Ky /. (1 Ky [1— —2 —
x ) — 25 ~ (P )za
y < (py) 24) H T (pjl)m,; 7 (3.28)
j=1 N

+(pl) — 25 . 1
j=1 \* (pj) L2, = (pj)w2

efipg(LJrNngngKz)

e ; —xg’kl_x, z3 A
= ez(PS Fs) H 7] T 1_ 3113 (p?),_ppd k) HO (p37_77p3 k)
k=15 T35 ~ T3k 5% k=1
K> _/ 3 K 1——1
y ﬁ T (P?) — X35 ﬁ z= (p3)x2,; (3.29)
! x*(p??) — x5, ) - 1—-—L '
Jj=1 J /) g=1 = (p3)x2,;
K1 _ Ks _
() R (P10) T2t (P3.0)
o P2 — at(pre) o v — a7t (pse)
Kil_xw(p) _xx(p>
XH 2,5 1,0 H 2,5 3,0 7 (3'30)
=1~ w2 J$+(P 1.0) T J$+(P.3 o)

Ki1-—_— 1  Kszq_ 1

3 - - @

x5 ;2 (P1,¢) x5 2~ (p3.¢)
[ (3.31)

=1 xé,jx+(P1,z) (=1 xé,jx+(p3,2)

In this case, to have full agreement with Refs. 1 and 2, we have to redefine
the parameter L in different ways in each equation for the momentum-carrying
variables:

LlEL—FNl—NT—‘rKQ, LgEL—‘y—Ng—Ng—FKQ,

Li=L+N;{—N1+K;5, L3=L+ N3s— N3+ K5.

Independent definitions of the spin chain lengths could be not so strange, since
it has been already needed in Ref. 17 in order to solve an apparent disagreement
between string results and predictions from the Bethe equations for energies of
solutions belonging to the su(2) x su(2) sector.

1350168-12
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4. Discussion

We proposed su(1|1) x su(1|1)- and su(1|1)-invariant S-matrices for the massive
modes of IIB string theory on AdSs3 x 53 x T* and AdSs x S x S3 x S1, respectively.
From these we derived the Bethe equations proposed in Refs. 1 and 2. The deriva-
tion involved, among other steps, the particle-antiparticle transformation on some
momenta of the “massive” variables and the doubling of the fermionic variables in
a fashion similar to the AdSsCFT4 (Ref. 28) and AdS4/CFT3 (Ref. 29) cases.

Some scalar factors remained undetermined in our proposal and we were able
to guess them by requiring the unitarity of the S-matrix and the matching with
the conjectured BAEs. Because of the apparently missing crossing relations®? for
the su(1]1) algebra,?%2* a more solid derivation of such scalar factors remains as
an open problem.

Another open problem is to incorporate the massless modes into the S-matrix
formulation. In a relativistic theory, the massless limit can be obtained by shifting
the rapidity to o0, which often makes the S-matrices between massive and mass-
less modes trivial. While this mechanism seems unapplicable in our nonrelativistic
case, we believe a similar argument may provide a clue.

Albeit these unsolved problems, we believe that our findings can lead to some
deeper understanding of the yet quite unexplored AdS;/CFTs.

Finally, it would be interesting to investigate possible exact S-matrices for the
analogous case of AdSy/CFT, for which a set of all-loop Bethe equations has been
recently proposed in Ref. 31.¢ It will also be interesting to check our proposals in cer-
tain perturbative computations. One immediate way is to compute the worldsheet
S-matrix based on a gauge-fixed string action for the strong coupling limit.f On the
other hand, it would also be important to check the reflectionless of our S-matrices,
as predicted by Ref. 20, through some weak coupling perturbative calculations, for
example, or along the lines of Refs. 34-36.
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