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We propose exact S-matrices for the AdS3/CFT2 duality between type IIB strings on
AdS3 × S3 × M4 with M4 = S3 × S1 or T 4 and the corresponding two-dimensional
conformal field theories. We fix the two-particle S-matrices on the basis of the symmetries
su(1|1) and su(1|1)×su(1|1). A crucial justification comes from the derivation of the all-
loop Bethe ansatz matching exactly the recent conjecture proposed by Babichenko et al.

[J. High Energy Phys. 1003, 058 (2010), arXiv:0912.1723 [hep-th]] and Ohlsson Sax and
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1. Introduction

The discovery of integrable structures on both sides of the AdS5/CFT4 correspon-

dence,3,4 was crucial in understanding and determining exactly some important

physical quantities (see Ref. 5 and references therein) in N = 4 super-Yang–Mills

and the IIB superstring theory on AdS5 × S5 in the planar limit.

From the integrability point of view, one of the most recently investigated

examples of such gauge/string duality is the AdS3/CFT2 correspondence between

IIB superstring theory on AdS3 × S3 × S3 × S1 or AdS3 × S3 × T 4 backgrounds

with RR fluxes and yet quite unknown two-dimensional CFTs.a Indeed, while the

aIn the case of AdS3 × S3 × T 4, the CFT dual is a N = (4, 4) theory on a symmetric product of
T 4.6–8

1350168-1

http://dx.doi.org/10.1142/S0217751X13501686
mailto:ahn@ewha.ac.kr
mailto:diegobombardelli@gmail.com


December 30, 2013 13:49 WSPC/139-IJMPA S0217751X13501686

C. Ahn & D. Bombardelli

NS AdS3/CFT2 was solved completely by implementing techniques typical of two-

dimensional CFTs,9–16 the RR counterpart remains quite obscure: there the usual

2D CFT methods fail, then one of the most promising way to tackle this problem

is given by integrability techniques.

This investigation started in Refs. 1 and 2, where a set of all-loop Bethe equa-

tions, describing in principle at any coupling the asymptotic spectrum of the string

energies and the dimensions of the yet unknown gauge operators, were proposed on

the basis of classical integrability of the corresponding supercoset sigma models.b

Unfortunately, this approach cannot take into account the contribution of some

(massless) modes of the full string theory. Some progress in the direction of in-

corporating them has been done very recently in Ref. 18, where a set of Bethe

equations has been proposed in order to describe the massless modes sector. Now,

on the basis of general physical considerations, we expect that the S-matrix between

the massless and massive modes is diagonal and lead to additional phase factors in

the Bethe equations.

The aim of this paper is to propose an S-matrix for the massive modes, in

order to derive, on a firmer ground, the Bethe equations proposed in Refs. 1 and

2. We shall do this by using an analytic Bethe ansatz involving transfer matrix

eigenvalues derived from the diagonalization of su(1|1) and su(1|1) × su(1|1) in-

variant S-matrices, respectively for the AdS3 × S3 × S3 × S1 and AdS3 × S3 × T 4

cases. Actually, the symmetries preserved by the vacua of these theories are cen-

trally extended versions of su(1|1) and su(1|1)× su(1|1), respectively, as argued in

Refs. 19 and 20.

In the different context of open AdS5/CFT4 spin chains, the analytic Bethe

ansatz built on a su(1|1)-invariant S-matrix, previously found in Refs. 22 and 23,

was already performed, without considering possible scalar factors, by Ref. 24 in

order to determine the corresponding transfer matrix eigenvalues and Bethe equa-

tions. On the other hand, an su(1|1)× su(1|1)-invariant S-matrix was proposed in

Ref. 20 to describe the scattering of magnons in AdS3 × S3 × T 4; however, only

magnons in the su(2) sector were analyzed there, in order to derive the dressing

phase up to one-loop, and Bethe equations were not derived.

Note Added

Shortly after the first version of this paper was published on the arXiv, another

paper21 appeared. In that paper, two different S-matrices, coming from two different

choices of central extension, were derived for AdS3 × S3 × S3 × S1. One can check

that the S-matrix written in App. D of Ref. 21 is the samec as the S-matrix we

have proposed in this paper.

bSome first tests of these Bethe equations against string energy calculations have been performed
in Ref. 17.
cAfter mapping our variables x±

1,3 to their x∓, z∓, x±
1̄,3̄

to −1/x∓,−1/z∓ and ω1,2 to ηp,q. We

thank Alessandro Sfondrini for correspondence on this point.
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2. Spectrum and S-Matrix

2.1. AdS3 × S3
× T 4

For the case of AdS3×S3×T 4, the spectrum consists of eight massive modes whose

energy–momentum dispersion relation is given by

E =

√

1 + 4h2(λ) sin2 p

2
, (2.1)

where h is an almost unknown function of the ’t Hooft coupling λ: its strong cou-

pling behavior has been predicted to be h(λ) ≃
√
λ/2π in Ref. 1, while the one-loop

correction has been calculated recently by Ref. 25. These are grouped into bifun-

damentals of su(1|1)× su(1|1), which we refer to as “A” and “B”. The S-matrices

among these bifundamentals are given by tensor products of two su(1|1)-invariant
S-matrices as follows:

S(AA)(p1, p2) = S(BB)(p1, p2) = S0(p1, p2)[Ŝ(p1, p2)⊗ Ŝ(p1, p2)] , (2.2)

S(AB)(p1, p2) = S(BA)(p1, p2) = S̃0(p1, p2)[Ŝ(p1, p2)⊗ Ŝ(p1, p2)] , (2.3)

where20,23,24

Ŝ(p1, p2) =
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2 − x−

2

x+
1 − x−
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ω2
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1 − x+

2

x+
1 − x−

2

0

0 0 0
x−
1 − x+

2

x+
1 − x−

2



























(2.4)

and we set ω1,2 = ω(p1,2) = 1. The x± variables are the usual Zhukowsky variables

defined by

x+

x−
= eip , x+ +

1

x+
− x− − 1

x−
=

2i

h(λ)
. (2.5)

The S-matrix (2.4) satisfies the unitarity condition, but it does not have crossing

symmetry.24 An attempt to derive the crossing symmetry relations for the su(1|1)
algebra has been put forward in Ref. 20 by using the antipode operation, but

this implies, in this case, a transformation on the kinematic variables (x± → x∓)

that does not correspond to the particle–antiparticle transformation (x± → 1/x±).

Then, we guess a possible expression for the scalar factors on the basis of the

unitarity and the final matching with the Bethe equations proposed by:1,2

S0(p1, p2) =
x+
1 − x−

2

x−
1 − x+

2

1− 1
x
+

1
x
−

2

1− 1
x
−

1
x
+

2

σ2(p1, p2)
x−
1

x+
1

x+
2

x−
2

,

S̃0(p1, p2) = σ−2(p1, p̄2)
x+
1

x−
1

x+
2

x−
2

,

(2.6)

1350168-3



December 30, 2013 13:49 WSPC/139-IJMPA S0217751X13501686

C. Ahn & D. Bombardelli

where σ(p1, p2) was conjectured being the BES dressing phase26 in Ref. 1d and p̄

denotes the momentum of an antiparticle, such that x±(p̄) = 1/x±(p). The scalar

factors (2.6) satisfy the relation S0(p1, p2) = S0(p̄1, p̄2), S̃0(p1, p2) = S̃0(p̄1, p̄2), that

will be important later for the construction of the Bethe equations, and unitarity:

S0(p1, p2)S0(p2, p1) = Ssu(2)(p1, p2)σ
2(p1, p2)

x−
1

x+
1

x+
2

x−
2

× S−1
su(2)σ

−2(p1, p2)
x−
2

x+
2

x+
1

x−
1

= 1 , (2.7)

S̃0(p1, p2)S̃0(p2, p1) = σ−2(p1, p̄2)
x+
1

x−
1

x+
2

x−
2

σ−2(p̄2, p1)
x−
1

x+
1

x−
2

x+
2

= 1 , (2.8)

where Ssu(2)(p1, p2) =
x
+

1
−x

−

2

x
−

1
−x

+

2

1− 1

x
+
1

x
−

2

1− 1

x
−

1
x
+
2

.

The Bethe–Yang equations are derived from a periodic boundary condition

(PBC). On a circle with circumference L, NA represents the number of “A” parti-

cles with momenta
{

pA1 , p
A
2 , . . . , p

A
NA

}

and NB represents number of “B” particles

with momenta
{

pB1 , p
B
2 , . . . , p

B
NB

}

. Now, we choose an “A” particle with a momen-

tum pAj and move it around the circle by scattering with all the other particles and

similarly for a “B” particle with a momentum pBj . Since this virtual process does

not change any configuration, we arrive at PBC conditions

eip
A
j L =

NA
∏

k=1, 6=j

S0

(

pAj , p
A
k

)

NB
∏

k=1

S̃0

(

pAj , p
B
k

)

×
[

T̂su(1|1)

(

pAj
∣

∣

{

pAl , p
B
l

})

⊗ T̂su(1|1)

(

pAj
∣

∣

{

pAl , p
B
l

})

]

, (2.9)

eip
B
j L =

NB
∏

k=1, 6=j

S0

(

pBj , p
B
k

)

NA
∏

k=1

S̃0

(

pBj , p
A
k

)

×
[

T̂su(1|1)

(

pBj
∣

∣

{

pAl , p
B
l

})

⊗ T̂su(1|1)

(

pBj
∣

∣

{

pAl , p
B
l

})

]

, (2.10)

where T̂su(1|1) is a transfer matrix made of the su(1|1)-invariant S-matrix,

T̂su(1|1)

(

p
∣

∣{pAl
}

,
{

pBl
})

= stra

[

ŜaA1

(

p, pA1
)

· · · ŜaANA

(

p, pANA

)

ŜaB1
(p, pB1 ) · · · ŜaBNB

(

p, pBNB

)

]

, (2.11)

and a, Ai and Bi stand for a two-dimensional vector space which the S-matrices

act on.

dActually, results from Refs. 20 and 27 show that σ(p1, p2) differs from the BES dressing phase
starting from one-loop at strong coupling.
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2.2. AdS3 × S3
× S3

× S1

The spectrum of AdS3 × S3 × S3 × S1 is a bit more complicated. Denoting l, R1,

R2 the radii of AdS3 and the two S3’s respectively, one has the following relation

1

R2
1

+
1

R2
2

=
1

l2
. (2.12)

By defining α = l2/R2
1, one can find two massive multiplets, each of which consists

of two bosons and two fermions, with two different masses:

El =

√

m2
l + 4h2(λ) sin2 p

2
, l = 1, 3 , (2.13)

where

m1 = α , m3 = 1− α . (2.14)

We propose that the four particles with mass m1 are grouped into two funda-

mentals of su(1|1), which we refer to “1” and “1̄”; and similarly the other four

particles with mass m3 into two additional fundamentals of su(1|1), which we refer

to “3” and “3̄”. In this case, the Zhukowsky variables are defined as:2

x+
1,1̄

+
1

x+
1,1̄

− x−
1,1̄

− 1

x−
1,1̄

=
2iα

h(λ)
,

x+
3,3̄

+
1

x+
3,3̄

− x−
3,3̄

− 1

x−
3,3̄

=
2i(1− α)

h(λ)
.

(2.15)

The S-matrices among these four doublets are given by single su(1|1)-invariant
S-matrices as follows:

S(11)(p1, p2) = S(33)(p1, p2) = S(1̄1̄)(p1, p2)

= S(3̄3̄)(p1, p2) = S0(p1, p2)Ŝ(p1, p2) , (2.16)

S(11̄)(p1, p2) = S(33̄)(p1, p2) = S(1̄1)(p1, p2)

= S(3̄3)(p1, p2) = S̃0(p1, p2)Ŝ(p1, p2) , (2.17)

S(13)(p1, p2) = S(31)(p1, p2) = S(1̄3̄)(p1, p2)

= S(3̄1̄)(p1, p2) = Ŝ(p1, p2) , (2.18)

S(13̄)(p1, p2) = S(31̄)(p1, p2) = S(3̄1)(p1, p2)

= S(1̄3)(p1, p2) = Ŝ(p1, p2) , (2.19)

where Ŝ(p1, p2) is given in Eq. (2.4) and the scalar factors S0 and S̃0 are defined in

Eq. (2.6).

The Bethe–Yang equations can be written in a similar way as before. On a

circle with circumference L, we put N1 number of “1” particles with momenta
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{

p11, p
1
2, . . . , p

1
N1

}

, N1̄ number of “1̄” particles with momenta
{

p1̄1, p
1̄
2, . . . , p

1̄
N1̄

}

, N3

number of “3” particles with momenta
{

p31, p
3
2, . . . , p

3
N3

}

and N3̄ number of “3̄” par-

ticles with momenta
{

p3̄1, p
3̄
2, . . . , p

3̄
N3̄

}

. From these configuration, the PBC equations

become

eip
1
jL =

N1
∏

k=1, 6=j

S0

(

p1j , p
1
k

)

N1̄
∏

k=1

S̃0

(

p1j , p
1̄
k

)

· T̂su(1|1)

(

p1j
∣

∣

{

p1l , p
1̄
l , p

3
l , p

3̄
l

})

, (2.20)

eip
1̄
jL =

N1̄
∏

k=1, 6=j

S0

(

p1̄j , p
1̄
k

)

N1
∏

k=1

S̃0

(

p1̄j , p
1
k

)

· T̂su(1|1)

(

p1̄j
∣

∣

{

p1l , p
1̄
l , p

3
l , p

3̄
l

})

, (2.21)

eip
3
jL =

N1
∏

k=1, 6=j

S0

(

p3j , p
3
k

)

N3̄
∏

k=1

S̃0

(

p3j , p
3̄
k

)

· T̂su(1|1)

(

p3j
∣

∣

{

p1l , p
1̄
l , p

3
l , p

3̄
l

})

, (2.22)

eip
3̄
jL =

N3̄
∏

k=1, 6=j

S0

(

p3̄j , p
3̄
k

)

N3
∏

k=1

S̃0

(

p3̄j , p
3
k

)

· T̂su(1|1)

(

p3̄j
∣

∣

{

p1l , p
1̄
l , p

3
l , p

3̄
l

})

, (2.23)

where T̂su(1|1) is given in Eq. (2.11).

3. Derivation of Asymptotic Bethe Ansatz Equations

3.1. Diagonalization of the transfer matrix

The su(1|1) transfer matrix has been diagonalized by the analytic Bethe ansatz

method in Ref. 24. The eigenvalues can be expressed by

Λ(p|{pℓ}, {λj}) = Λ0(p|{pℓ})A(p|{λj}) , (3.1)

Λ0(p|{pℓ}) = 1−
N
∏

ℓ=1

(

x+(p)− x+(pℓ)

x+(p)− x−(pℓ)

)

, (3.2)

A(p|{λj}) =
M
∏

j=1

(

x−(p)− x+(λj)

x+(p)− x+(λj)

)

(3.3)

and the magnonic variables λj satisfy

1 =
N
∏

ℓ=1

(

x+(λj)− x−(pℓ)

x+(λj)− x+(pℓ)

)

. (3.4)

Here, we have used a short notation that N = NA +NB and {pℓ} =
{

pAl , p
B
l

}

for

AdS3 × S3 × T 4; N = N1 +N1̄ +N3 +N3̄, {pℓ} =
{

p1l , p
1̄
l , p

3
l , p

3̄
l

}

for AdS3 × S3 ×
S3 × S1, respectively.
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Inserting these into Eqs. (2.9) and (2.10), we get the asymptotic Bethe ansatz

equations for AdS3 × S3 × T 4:

eip
A
j L =

NA
∏

k=1, 6=j

S0

(

pAj , p
A
k

)

NB
∏

k=1

S̃0(p
A
j , p

B
k )

×
M
∏

j=1

(

x−
(

pAj
)

− x+(λj)

x+
(

pAj
)

− x+(λj)

)

M̄
∏

j=1

(

x−
(

pAj
)

− x+(λ̄j)

x+
(

pAj
)

− x+(λ̄j)

)

, (3.5)

eip
B
j L =

NB
∏

k=1, 6=j

S0

(

pBj , p
B
k

)

NA
∏

k=1

S̃0

(

pBj , p
A
k

)

×
M
∏

j=1

(

x−
(

pBj
)

− x+(λj)

x+
(

pBj
)

− x+(λj)

)

M̄
∏

j=1

(

x−
(

pBj
)

− x+(λ̄j)

x+
(

pBj
)

− x+(λ̄j)

)

, (3.6)

1 =

NA
∏

l=1

(

x+(λj)− x−
(

pAl
)

x+(λj)− x+
(

pAl
)

)

NB
∏

l=1

(

x+(λj)− x−
(

pBl
)

x+(λj)− x+
(

pBl
)

)

, (3.7)

1 =

NA
∏

l=1

(

x+(λ̄j)− x−
(

pAl
)

x+(λ̄j)− x+
(

pAl
)

)

NB
∏

l=1

(

x+(λ̄j)− x−
(

pBl
)

x+(λ̄j)− x+
(

pBl
)

)

. (3.8)

This can be represented pictorially as in Fig. 1.

λλ

A

B

Fig. 1. AdS3 × S3 × T 4: two momentum-carrying nodes (black dots) are connected to two
magnonic nodes (circle).
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λ

1

1

3

3

Fig. 2. AdS3 × S3 × S3 × S1: four momentum-carrying nodes (black dots) are connected to a
single magnonic node (circle).

Similarly, from Eqs. (2.20)–(2.23), we obtain the asymptotic Bethe ansatz equa-

tions for AdS3 × S3 × S3 × S1:

eip
1
jL =

N1
∏

k=1, 6=j

S0

(

p1j , p
1
k

)

N1̄
∏

k=1

S̃0

(

p1j , p
1̄
k

)

M
∏

j=1

(

x−
(

p1j
)

− x+(λj)

x+
(

p1j
)

− x+(λj)

)

, (3.9)

eip
1̄
jL =

N1̄
∏

k=1, 6=j

S0

(

p1̄j , p
1̄
k

)

N1
∏

k=1

S̃0

(

p1̄j , p
1
k

)

M
∏

j=1

(

x−
(

p1̄j
)

− x+(λj)

x+
(

p1̄j
)

− x+(λj)

)

, (3.10)

eip
3
jL =

N1
∏

k=1, 6=j

S0

(

p3j , p
3
k

)

N3̄
∏

k=1

S̃0

(

p3j , p
3̄
k

)

M
∏

j=1

(

x−
(

p3j
)

− x+(λj)

x+
(

p3j
)

− x+(λj)

)

, (3.11)

eip
3̄
jL =

N3̄
∏

k=1, 6=j

S0

(

p3̄j , p
3̄
k

)

N3
∏

k=1

S̃0

(

p3̄j , p
3
k

)

M
∏

j=1

(

x−
(

p3̄j
)

− x+(λj)

x+
(

p3̄j
)

− x+(λj)

)

, (3.12)

1 =
N
∏

ℓ=1

(

x+(λj)− x−(pℓ)

x+(λj)− x+(pℓ)

)

. (3.13)

These sets of Bethe ansatz equations can be represented pictorially as in Fig. 2.

3.2. Comparison to the Bethe equations of Refs. 1 and 2

In order to translate Eqs. (3.5)–(3.8) into the notation of Refs. 1 and 2, we have

to replace pB by p̄B and disentangle the two “magnonic” variables into four. In

Eq. (3.5), for instance, the first step involves the second factor:

NB
∏

k=1

S̃0

(

pAj , p̄
B
k

)

=

NB
∏

k=1

σ−2
(

pAj , p
B
k

)x+
j

x−
j

x−
k

x+
k

. (3.14)
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3

A

B

1

3

1

Fig. 3. AdS3 × S3 × T 4: two momentum-carrying nodes (black dots) are connected to four
magnonic nodes (circle) after redefinition.

Now, since from the momentum constraint we have that
∏NA

k=1
x
+

k

x
−

k

∏NB

k=1
x
−

k

x
+

k

= 1

and
x
+

j

x
−

j

= eipj , finally we get, ignoring for the moment the magnonic part (setting

to zero both M and M̄):

eip
A
j (L+NA−NB) =

NA
∏

k=1, 6=j

x+
j − x−

k

x−
j − x+

k

1− 1
x
+

j x
−

k

1− 1
x
−

j x
+

k

σ2
(

pAj , p
A
k

)

NB
∏

k=1

σ−2
(

pAj , p
B
k

)

. (3.15)

In the case of Eq. (3.6), we get:

e−ipB
j (L+NB−NA) =

NB
∏

k=1, 6=j

x+
j − x−

k

x−
j − x+

k

1− 1
x
+

j x
−

k

1− 1
x
−

j x
+

k

σ2
(

pBj , p
B
k

)

NA
∏

k=1

σ−2
(

pBj , p
A
k

)

. (3.16)

Now, in order to complete the comparison, we need also to redefine the magnonic

variables (after this, Fig. 1 changes to Fig. 3):

x+(λj) = x1,j , j = 1, . . . ,K1 ;

x+(λK1+j) =
1

x1̄,j

, j = 1, . . . ,K1̄ , M = K1 +K1̄ ,
(3.17)

x+(λ̄j) = x3,j , j = 1, . . . ,K3 ;

x+(λ̄K3+j) =
1

x3̄,j

, j = 1, . . . ,K3 , M = K3 +K3̄ .
(3.18)
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Then, Eqs. (3.5)–(3.8) become:

eip
A
j (L+KA−KB+K1̄+K3̄)

=

KA
∏

k=1, 6=j

x+
j − x−

k

x−
j − x+

k

1− 1
x+

j x−

k

1− 1
x
−

j x
+

k

σ2
(

pAj , p
A
k

)

NB
∏

k=1

σ−2
(

pAj , p
B
k

)

×
K1
∏

j=1

x−
(

pAj
)

− x1,j

x+
(

pAj
)

− x1,j

K1̄
∏

j=1

1− 1
x−(pA

j )x1̄,j

1− 1
x+(pA

j )x1̄,j

×
K3
∏

j=1

x−
(

pAj
)

− x3,j

x+
(

pAj
)

− x3,j

K3̄
∏

j=1

1− 1
x−(pA

j )x3̄,j

1− 1
x+(pA

j )x3̄,j

, (3.19)

e−ipB
j (L+KA−KB+K1̄+K3̄)

=

KB
∏

k=1, 6=j

x+
j − x−

k

x−
j − x+

k

1− 1
x
+

j x
−

k

1− 1
x
−

j x
+

k

σ2
(

pBj , p
B
k

)

NA
∏

k=1

σ−2
(

pBj , p
A
k

)

×
K1̄
∏

j=1

x−
(

pBj
)

− x1̄,j

x+
(

pBj
)

− x1̄,j

K1
∏

j=1

1− 1
x−(pB

j )x1,j

1− 1
x+(pB

j )x1,j

×
K3̄
∏

j=1

x−
(

pBj
)

− x3̄,j

x+
(

pBj
)

− x3̄,j

K3
∏

j=1

1− 1
x−(pB

j )x3,j

1− 1
x+(pB

j )x3,j

, (3.20)

1 =

NA
∏

l=1

(

x1,j − x−
(

pAl
)

x+
1,j − x+

(

pAl
)

)

NB
∏

l=1

(

1− 1
x1,jx−(pB

l
)

1− 1
x1,jx+(pB

l
)

)

, (3.21)

1 =

NA
∏

l=1

(

x3,j − x−
(

pAl
)

x+
3,j − x+

(

pAl
)

)

NB
∏

l=1

(

1− 1
x3,jx−(pB

l
)

1− 1
x3,jx+(pB

l
)

)

, (3.22)

1 =

NB
∏

l=1

(

x1̄,j − x−
(

pBl
)

x+
1̄,j

− x+
(

pBl
)

)

NA
∏

l=1

(

1− 1
x1̄,jx

−(pA
l
)

1− 1
x1̄,jx

+(pA
l
)

)

, (3.23)

1 =

NB
∏

l=1

(

x3̄,j − x−
(

pBl
)

x+
3̄,j

− x+
(

pBl
)

)

NA
∏

l=1

(

1− 1
x3̄,jx

−(pA
l
)

1− 1
x3̄,jx

+(pA
l
)

)

, (3.24)

which match exactly the equations conjectured by Refs. 1 and 2, if we define L[1,2] =

L+KA −KB +K1̄ +K3̄).
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2

1

1

3

3

2

Fig. 4. AdS3 × S3 × S3 × S1: four momentum-carrying nodes (black dots) are connected to two
magnonic nodes (circle) after redefinition.

In analogy with the case of AdS3×T 4, in order to get the Bethe equations written

in the notation of Refs. 1 and 2, we need to change p1̄,3̄ → p̄1̄,3̄ in Eqs. (3.9)–(3.13)

and to redefine the magnonic nodes corresponding to the variable 2 into two sets

of 2 and 2̄ variables,

x+(λj) = x2,j , j = 1, . . . ,K2 ;

x+(λj+K2
) =

1

x2̄,j

, j = 1, . . . ,K2̄ ,
(3.25)

as illustrated in Fig. 4:

eip
1
j (L+N1−N1̄+K2̄)

= ei(P1−P1̄)
N1
∏

k=1, 6=j

x+
1,j − x−

1,k

x−
1,j − x+

1,k

1− 1
x
+

1,jx
−

1,k

1− 1
x
−

1,jx
+

1,k

σ2
(

p1,j , p1,k
)

N1̄
∏

k=1

σ−2
(

p1,j , p1̄,k
)

×
K2
∏

j=1

(

x−
(

p1j
)

− x2,j

x+
(

p1j
)

− x2,j

)

K2̄
∏

j=1





1− 1
x−(p1

j)x2,j

1− 1
x−(p1

j)x2,j



 , (3.26)

eip
3
j (L+N3−N3̄+K2̄)

= ei(P3−P3̄)
N3
∏

k=1, 6=j

x+
3,j − x−

3,k

x−
3,j − x+

3,k

1− 1
x
+

3,jx
−

3,k

1− 1
x
−

3,jx
+

3,k

σ2(p3,j , p3,k)

N3̄
∏

k=1

σ−2(p3,j , p3̄,k)

×
K2
∏

j=1

(

x−
(

p3j
)

− x2,j

x+
(

p3j
)

− x2,j

)

K2̄
∏

j=1





1− 1
x−(p3

j)x2,j

1− 1
x−(p3

j)x2,j



 , (3.27)
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e−ip1̄
j (L+N1̄−N1+K2)

= ei(P1̄−P1)

N1̄
∏

k=1, 6=j

x+
1̄,j

− x−
1̄,k

x−
1̄,j

− x+
1̄,k

1− 1
x
+

1̄,j
x
−

1̄,k

1− 1
x
−

1̄,j
x
+

1̄,k

σ2(p1̄,j, p1̄,k)

N1
∏

k=1

σ−2(p1̄,j , p1,k)

×
K2̄
∏

j=1

(

x−
(

p1̄j
)

− x2̄,j

x+
(

p1̄j
)

− x2̄,j

)

K2
∏

j=1





1− 1
x−(p1̄

j)x2,j

1− 1
x−(p1̄

j)x2,j



 , (3.28)

e−ip3̄
j (L+N3̄−N3+K2)

= ei(P3̄−P3)

N3̄
∏

k=1, 6=j

x+
3̄,j

− x−
3̄,k

x−
3̄,j

− x+
3̄,k

1− 1
x
+

3̄,j
x
−

3̄,k

1− 1
x
−

3̄,j
x
+

3̄,k

σ2(p3̄,j, p3̄,k)

N3
∏

k=1

σ−2(p3̄,j , p3,k)

×
K2̄
∏

j=1

(

x−
(

p3̄j
)

− x2̄,j

x+
(

p3̄j
)

− x2̄,j

)

K2
∏

j=1





1− 1
x−(p3̄

j)x2,j

1− 1
x−(p3̄

j)x2,j



 , (3.29)

1 =

K1
∏

ℓ=1

x2,j − x−(p1,ℓ)

x2,j − x+(p1,ℓ)

K3
∏

ℓ=1

x2,j − x−(p3,ℓ)

x2,j − x+(p3,ℓ)

×
K1̄
∏

ℓ=1

1− 1
x2,jx−(p1̄,ℓ)

1− 1
x2,jx+(p1̄,ℓ)

K3̄
∏

ℓ=1

1− 1
x2,jx−(p3̄,ℓ)

1− 1
x2,jx+(p3̄,ℓ)

, (3.30)

1 =

K1̄
∏

ℓ=1

x2̄,j − x−(p1̄,ℓ)

x2̄,j − x+(p1̄,ℓ)

K3̄
∏

ℓ=1

x2̄,j − x−(p3̄,ℓ)

x2̄,j − x+(p3̄,ℓ)

×
K1
∏

ℓ=1

1− 1
x2̄,jx

−(p1,ℓ)

1− 1
x2̄,jx

+(p1,ℓ)

K3
∏

ℓ=1

1− 1
x2̄,jx

−(p3,ℓ)

1− 1
x2̄,jx

+(p3,ℓ)

. (3.31)

In this case, to have full agreement with Refs. 1 and 2, we have to redefine

the parameter L in different ways in each equation for the momentum-carrying

variables:

L1 ≡ L+N1 −N1̄ +K2̄ , L3 ≡ L+N3 −N3̄ +K2̄ ,

L1̄ ≡ L+N1̄ −N1 +K2̄ , L3̄ ≡ L+N3̄ −N3 +K2̄ .

Independent definitions of the spin chain lengths could be not so strange, since

it has been already needed in Ref. 17 in order to solve an apparent disagreement

between string results and predictions from the Bethe equations for energies of

solutions belonging to the su(2)× su(2) sector.
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4. Discussion

We proposed su(1|1) × su(1|1)- and su(1|1)-invariant S-matrices for the massive

modes of IIB string theory on AdS3×S3×T 4 and AdS3×S3×S3×S1, respectively.

From these we derived the Bethe equations proposed in Refs. 1 and 2. The deriva-

tion involved, among other steps, the particle–antiparticle transformation on some

momenta of the “massive” variables and the doubling of the fermionic variables in

a fashion similar to the AdS5CFT4 (Ref. 28) and AdS4/CFT3 (Ref. 29) cases.

Some scalar factors remained undetermined in our proposal and we were able

to guess them by requiring the unitarity of the S-matrix and the matching with

the conjectured BAEs. Because of the apparently missing crossing relations30 for

the su(1|1) algebra,20,24 a more solid derivation of such scalar factors remains as

an open problem.

Another open problem is to incorporate the massless modes into the S-matrix

formulation. In a relativistic theory, the massless limit can be obtained by shifting

the rapidity to ±∞, which often makes the S-matrices between massive and mass-

less modes trivial. While this mechanism seems unapplicable in our nonrelativistic

case, we believe a similar argument may provide a clue.

Albeit these unsolved problems, we believe that our findings can lead to some

deeper understanding of the yet quite unexplored AdS3/CFT2.

Finally, it would be interesting to investigate possible exact S-matrices for the

analogous case of AdS2/CFT1, for which a set of all-loop Bethe equations has been

recently proposed in Ref. 31.e It will also be interesting to check our proposals in cer-

tain perturbative computations. One immediate way is to compute the worldsheet

S-matrix based on a gauge-fixed string action for the strong coupling limit.f On the

other hand, it would also be important to check the reflectionless of our S-matrices,

as predicted by Ref. 20, through some weak coupling perturbative calculations, for

example, or along the lines of Refs. 34–36.

Acknowledgments

We would like to thank K. Zarembo for useful comments. C. Ahn thanks the

Centro de F́ısica do Porto (CFP) at the University of Porto for the warm hos-

pitality. D. Bombardelli is grateful to D. Fioravanti, S. Piscaglia and M. Rossi

for useful discussions and collaboration on related topics. This work was sup-

ported in part by the WCU Grant No. R32-2008-000-101300 and the Research

fund No. 1-2008-2935-001-2 by Ewha Womans University (C. Ahn) and the FCT

fellowship SFRH/BPD/69813/2010 (D. Bombardelli). CFP is partially funded by

FCT through the projects PTDC/FIS/099293/2008 and CERN/FP/116358/2010.

eSee also Ref. 32 for the derivation of the classical equations in this case and a review about

finite-gap integration in various AdSd backgrounds.
fOur proposal seems to be not compatible with the worldsheet results of Ref. 33. In that paper
some scattering elements at strong coupling have been calculated, however a full computation in

that regime, as well as weak coupling results coming from a spin chain formulation, would be
desirable before excluding our proposal completely.

1350168-13



December 30, 2013 13:49 WSPC/139-IJMPA S0217751X13501686

C. Ahn & D. Bombardelli

References

1. A. Babichenko, B. Stefanski, Jr. and K. Zarembo, J. High Energy Phys. 1003, 058
(2010), arXiv:0912.1723 [hep-th].

2. O. Ohlsson Sax and B. Stefanski, Jr., J. High Energy Phys. 1108, 029 (2011),
arXiv:1106.2558 [hep-th].

3. J. A. Minahan and K. Zarembo, J. High Energy Phys. 0303, 013 (2003), arXiv:hep-
th/0212208.

4. I. Bena, J. Polchinski and R. Roiban, Phys. Rev. D 69, 046002 (2004), arXiv:hep-
th/0305116.

5. N. Beisert et al., Lett. Math. Phys. 99, 3 (2012), arXiv:1012.3982 [hep-th].
6. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200.
7. J. M. Maldacena and A. Strominger, J. High Energy Phys. 9812, 005 (1998),

arXiv:hep-th/9804085.
8. N. Seiberg and E. Witten, J. High Energy Phys. 9904, 017 (1999), arXiv:hep-

th/9903224.
9. A. Giveon, D. Kutasov and N. Seiberg, Adv. Theor. Math. Phys. 2, 733 (1998),

arXiv:hep-th/9806194.
10. S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, Phys. Lett. B 449, 180 (1999),

arXiv:hep-th/9811245.
11. J. M. Maldacena and H. Ooguri, J. Math. Phys. 42, 2929 (2001), arXiv:hep-

th/0001053.
12. J. M. Maldacena, H. Ooguri and J. Son, J. Math. Phys. 42, 2961 (2001), arXiv:hep-

th/0005183.
13. J. M. Maldacena and H. Ooguri, Phys. Rev. D 65, 106006 (2002), arXiv:hep-

th/0111180.
14. J. de Boer, A. Pasquinucci and K. Skenderis, Adv. Theor. Math. Phys. 3, 577 (1999),

arXiv:hep-th/9904073.
15. S. Gukov, E. Martinec, G. W. Moore and A. Strominger, Adv. Theor. Math. Phys. 9,

435 (2005), arXiv:hep-th/0403090.
16. A. Giveon and A. Pakman, J. High Energy Phys. 0303, 056 (2003), arXiv:hep-

th/0302217.
17. N. Rughoonauth, P. Sundin and L. Wulff, J. High Energy Phys. 1207, 159 (2012),

arXiv:1204.4742 [hep-th].
18. O. O. Sax, B. Stefanski, Jr. and A. Torrielli, On the massless modes of the AdS3/CFT2

integrable systems,” arXiv:1211.1952 [hep-th].
19. J. R. David and B. Sahoo, J. High Energy Phys. 0807, 033 (2008), arXiv:0804.3267

[hep-th].
20. J. R. David and B. Sahoo, J. High Energy Phys. 1010, 112 (2010), arXiv:1005.0501

[hep-th].
21. R. Borsato, O. Ohlsson Sax and A. Sfondrini, J. High Energy Phys. 1304, 113 (2013),

arXiv:1211.5119 [hep-th].
22. N. Beisert and M. Staudacher, Nucl. Phys. B 727, 1 (2005), arXiv:hep-th/0504190.
23. N. Beisert, Bulg. J. Phys. 33(S1), 371 (2006), arXiv:hep-th/0511013.
24. R. I. Nepomechie and E. Ragoucy, J. High Energy Phys. 0812, 025 (2008),

arXiv:0810.5015 [hep-th].
25. P. Sundin and L. Wulff, J. High Energy Phys. 1210, 109 (2012), arXiv:1207.5531

[hep-th].
26. N. Beisert, B. Eden and M. Staudacher, J. Stat. Mech. 0701, P01021 (2007),

arXiv:hep-th/0610251.

1350168-14



December 30, 2013 13:49 WSPC/139-IJMPA S0217751X13501686

Exact S-Matrices for AdS3/CFT2

27. M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A. A. Tseytlin, Quantum cor-
rections to spinning superstrings in AdS3×S

3
×M

4: Determining the dressing phase,
arXiv:1211.6090 [hep-th].

28. M. J. Martins and C. S. Melo, Nucl. Phys. B 785, 246 (2007), arXiv:hep-th/0703086.
29. C. Ahn and R. I. Nepomechie, J. High Energy Phys. 0809, 010 (2008),

arXiv:0807.1924.
30. R. A. Janik, Phys. Rev. D 73, 086006 (2006), arXiv:hep-th/0603038.
31. D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, J. Phys. A 44, 275401 (2011),

arXiv:1104.1793 [hep-th].
32. K. Zarembo, Algebraic curves for integrable string backgrounds, arXiv:1005.1342

[hep-th].
33. P. Sundin and L. Wulff, J. High Energy Phys. 1307, 007 (2013), arXiv:1302.5349

[hep-th].
34. C. Ahn and R. I. Nepomechie, J. High Energy Phys. 0903, 068 (2009),

arXiv:0810.1915 [hep-th].
35. C. Ahn and R. I. Nepomechie, J. High Energy Phys. 0903, 144 (2009),

arXiv:0901.3334 [hep-th].
36. C. Ahn, P. Dorey and R. I. Nepomechie, J. High Energy Phys. 1001, 129 (2010),

arXiv:0910.5584 [hep-th].

1350168-15


