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We compute holographic three-point correlation functions or structure constants of a zero-momentum
dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical
approximation. We show that the semiclassical structure constants match exactly with the three-point
functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the
large ’t Hooft coupling constant limit. A special limit J � √

λ of our result is compared with the relevant
result based on the Lüscher corrections.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Correlation functions of conformal field theories (CFTs) can be
in principle determined in terms of basic conformal data {Δi, Cijk},
where Δi ’s are conformal dimensions defined by two-point corre-
lation functions〈O†

i (x1)O j(x2)
〉 = δi j

|x1 − x2|2Δi
(1.1)

and Cijk ’s are structure constants by three-point correlation func-
tions〈Oi(x1)O j(x2)Ok(x3)

〉
= Cijk

|x1 − x2|Δ1+Δ2−Δ3 |x1 − x3|Δ1+Δ3−Δ2 |x2 − x3|Δ2+Δ3−Δ1
.

(1.2)

Hence a complete determination of conformal data for a given CFT
is a most important step in the conformal bootstrap procedure.
While this is well-established in two dimensions where the confor-
mal symmetry is infinite-dimensional [1], it is extremely difficult
to extend the procedure to higher space–time dimensions.

In four dimensions, the AdS/CFT correspondence between the
N = 4 super-Yang–Mills theory (SYM) and type IIB string theory
moving on AdS5 × S5 target space has provided a most promising
framework [2]. A lot of impressive progresses have been made in
this field based on the integrability discovered in the planar limit
of the SYM. In particular, the thermodynamic Bethe ansatz ap-
proach based on non-perturbative world-sheet S-matrix has been

* Corresponding author.
E-mail addresses: ahn@ewha.ac.kr (C. Ahn), bozhilov@inrne.bas.bg (P. Bozhilov).

1 On leave from Institute for Nuclear Research and Nuclear Energy, Bulgarian
Academy of Sciences, Bulgaria.

formulated to provide the conformal dimensions of SYM operators
with arbitrary number of elementary fields for generic value of
’t Hooft coupling constant λ (see for a recent review [3]). In strong
coupling limit λ � 1 the AdS/CFT correspondence relates the con-
formal dimensions to energy of certain classical string configura-
tions which can be computed by either solving the superstring
sigma model directly such as the algebraic curve method [4] or
Neumann–Rosochatius reduction [5].

There have been many interesting progresses on three-point
correlation functions in the AdS/CFT context. Three-point func-
tions for chiral primary operators have been computed first in
the AdS5 supergravity approximation where explicit dependence
on the coupling constant λ is not apparent [6]. It is only re-
cently that several interesting developments have been made to
consider general heavy string states. An efficient method to com-
pute two-point correlation functions in the strong coupling limit is
to evaluate string partition function for a heavy string state prop-
agating in the AdS space between two boundary points based on
a path integral method [7–9]. This method has been extended to
the three-point functions of two heavy string states and a super-
gravity mode which corresponds to a marginal deformation of the
SYM two-point functions by the Lagrangian [10–12]. With these
formulation, many interesting checks of three-point functions of
two heavy mode and one light mode have been performed [13–
23]. Another direction is to compute the structure constants using
the Bethe eigenstates of the underlying integrable spin chain in the
weak coupling limit of the SYM [24,25].

In this Letter we apply the semiclassical formulation of the
three-point correlation functions of a “zero-momentum” dilaton
operator which is the Lagrangian as a light operator along with
two heavy (dyonic) giant magnon string states. Differently from
previous cases with an infinite length of the SYM operator J → ∞
[11,23], we consider finite-size systems J ∼ √

λ � 1. We show that
the semiclassical formulation of the three-point functions is still
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valid for this more general situation. A special limit of our result
is J � √

λ where the finite-size corrections to both conformal di-
mensions and energies of string states have been computed from
the Lüscher corrections.

The three-point functions of two heavy operators and a light
operator can be approximated by a supergravity vertex operator
evaluated at the heavy classical string configuration:〈
V H1(x1)V H2(x2)V L(x3)

〉 = V L(x3)classical.

For |x1| = |x2| = 1, x3 = 0, the correlation function reduces to

〈
V H1(x1)V H2(x2)V L(0)

〉 = C123

|x1 − x2|2ΔH1
.

Then, the normalized structure constants

C3 = C123

C12

can be found from [23]

C3 = cΔV L(0)classical. (1.3)

Here, cΔ is the normalized constant of the corresponding light ver-
tex operator.

We restrict our consideration to the zero-momentum dilaton
operator, namely the Lagrangian whose vertex operator is given by

V d = (Y4 + Y5)
−4[z−2(∂+xm∂−xm + ∂+z∂−z

)
+ ∂+ Xk∂− Xk

]
, (1.4)

where

Y4 = 1

2z

(
xmxm + z2 − 1

)
, Y5 = 1

2z

(
xmxm + z2 + 1

)
,

and xm , z are coordinates on AdS5, while Xk are the coordinates
on S5.

2. Giant magnons with finite size

The finite-size giant magnon solution [26–28], in the notations
of [29] can be represented as (iτ = τe)

x0e = tanh(κτe), xi = 0, z = 1

cosh(κτe)
,

cos θ =
√

1 − v2κ2 dn

(√
1 − v2κ2

1 − v2
(σ − vτ )

∣∣∣1 − ε

)
,

φ = τ − vσ

1 − v2
+ 1

v
√

1 − v2κ2

× Π

(
−1 − v2κ2

v2κ2
(1 − ε),

am

(√
1 − v2κ2

1 − v2
(σ − vτ )

)∣∣∣1 − ε

)
, (2.1)

where dn(x|y) is one of the Jacobi elliptic functions, am(x) is the
Jacobi amplitude, and Π(x, y|z) is the incomplete elliptic integral
of third kind, and

ε = 1 − κ2

1 − v2κ2
.

To find the finite-size effect on the three-point correlator, we
will use (1.3) and (1.4), which computed on (2.1) gives

Cd
3 = cd

Δ

∞∫
−∞

dτe

cosh4(κτe)

L∫
−L

dσ
[
κ2 + ∂+ Xk∂− Xk

]
, (2.2)

where

∂+ Xk∂− Xk = − 1

(1 − v2) sin2 θ

{
2 − (

1 + v2)κ2

− cos2 θ
[
4 − (

1 + v2)κ2 − 2 cos2 θ
]}

.

The integration variable σ can be changed to ξ = σ − vτ and to θ ,

L∫
−L

dσ · · · =
L−vτ∫

−L−vτ

dξ · · · = 2

θmax∫
θmin

dθ

θ ′(ξ)
· · · (2.3)

using the periodic property of θ(ξ) (periodicity is 2K(1 − ε)) and
the integral becomes independent of τ . We would like to empha-
size that, as explained in [26], unlike the infinite size giant magnon
[30], the finite-size giant magnon is non-rigid. When L → ∞, the
string becomes rigid and the end points touch the equator.

Performing the integrations in (2.2), one finds

Cd
3 = 16

3
cd
Δ

√
1 − v2

1 − ε

[
E(1 − ε) − εK(1 − ε)

]
, (2.4)

where K(1 − ε) and E(1 − ε) are the complete elliptic integrals of
first and second kind. Let us point out that the parameter L in (2.4)
is given by

L = 1 − v2

√
1 − v2κ2

K(1 − ε).

This is our exact result for the normalized coefficient Cd
3 in the

three-point correlation function, corresponding to the case when
the heavy vertex operators are finite-size giant magnons, and the
light vertex is taken to be the zero-momentum dilaton operator.

For the case of this dilaton operator, the three-point function of
the SYM can be easily related to the conformal dimension of the
heavy operators. This corresponds to shift ’t Hooft coupling con-
stant which is the overall coefficient of the Lagrangian [11]. This
gives an important relation between the structure constant and the
conformal dimension as follows:

Cd
3 = 32π

3
cd
Δ

√
λ∂λΔ. (2.5)

We want to show that this relation is correct for the case of the
giant magnons with arbitrary finite size.

In the context of the AdS/CFT correspondence, it is now well-
established that the conformal dimension of a single trace operator
with one magnon state is the same as E − J in the strong coupling
limit. For an exact relation from the gauge theory side, one should
solve the thermodynamic Bethe equations [31]. Although this is
very complicated and analytic solutions are still not available, it
has been shown that finite-size corrections to the conformal di-
mensions of the SYM (dyonic) giant magnon operators computed
by the Lüscher formula for J � √

λ match exactly with E − J of
corresponding string state configurations [32,33]. Based on these
results, we can assume that the conformal dimensions Δ of the
SYM operators are the same as E − J of corresponding string states.

The exact classical expression for finite-size giant magnon
energy-charge relation is given by [29]

E − J ≡ Δ

=
√

λ

π

√
1 − v2

1 − v2ε

[
E(1 − ε)

−
(

1 −
√(

1 − v2ε
)
(1 − ε)

)
K(1 − ε)

]
. (2.6)

The corresponding expressions for J and p are
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J =
√

λ

π

√
1 − v2

1 − v2ε

[
K(1 − ε) − E(1 − ε)

]
,

p = 2v

√
1 − v2ε

1 − v2

[
1

v2
Π

(
1 − 1

v2

∣∣∣1 − ε

)
− K(1 − ε)

]
,

where J is the angular momentum of the string, and p is the
magnon momentum. One can obtain E − J in terms of J and p
by eliminating v , ε from these expressions.

To take λ-derivative on Δ, we need to know λ dependence of v
and ε . Our strategy is to find v ′(λ) and ε′(λ) from the conditions
that J and p are independent variables of λ, namely,

d J

dλ
= dp

dλ
= 0. (2.7)

Solving these conditions, we find the derivatives of the functions
v(λ) and ε(λ)

dv

dλ
= − v(1 − v2)ε[E(1 − ε) − K(1 − ε)]2

2λ(1 − ε)[E(1 − ε)2 − v2εK(1 − ε)2] ,
dε

dλ
= −ε[E(1 − ε) − K(1 − ε)][E(1 − ε) − v2εK(1 − ε)]

λ[E(1 − ε)2 − v2εK(1 − ε)2] . (2.8)

Replacing (2.8) into the derivative of (2.6), one finds

λ∂λΔ =
√

λ

2π

√
1 − v2

1 − ε

[
E(1 − ε) − εK(1 − ε)

]
. (2.9)

Comparing (2.4) and (2.9), we conclude that the equality (2.5)
holds.

Next, we would like to compare (2.4) with the known leading
finite-size correction to the giant magnon dispersion relation [26].
To this end, we have to consider the limit ε → 0 in (2.4). Taking
into account the behavior of the elliptic integrals in the ε → 0
limit, we can use the ansatz

v(ε) = v0 + v1ε + v2ε log(ε). (2.10)

Actually, all parameters in (2.10) are already known and are given
by (see for instance [29])

v0 = cos(p/2), v1 = 1

4
sin2(p/2) cos(p/2)

(
1 − log(16)

)
,

v2 = 1

4
sin2(p/2) cos(p/2),

ε = 16 exp

(
− 2π J√

λ sin(p/2)
− 2

)
. (2.11)

Expanding (2.4) in ε and using (2.10), (2.11), we obtain

Cd
3 = 16

3
cd
Δ sin(p/2)

[
1 − 4 sin(p/2)

(
sin(p/2) + 2π J√

λ

)

× exp

(
− 2π J√

λ sin(p/2)
− 2

)]
. (2.12)

On the other hand, from the giant magnon dispersion relation,
including the leading finite-size effect,

Δ =
√

λ

π
sin(p/2)

[
1 − 4 sin2(p/2)exp

(
− 2π J√

λ sin(p/2)
− 2

)]
,

one finds

λ∂λΔ =
√

λ

2π
sin(p/2)

[
1 − 4 sin(p/2)

(
sin(p/2) + 2π J√

λ

)

× exp

(
− 2π J√

λ sin(p/2)
− 2

)]
. (2.13)

This confirms explicitly that the relation (2.5) holds in the small ε ,
i.e. J � √

λ limit.

3. Dyonic giant magnons with finite size

The dyonic finite-size giant magnon solution is given by

x0e = tanh(κτe), xi = 0, z = 1

cosh(κτe)
,

cos θ = z+dn

(√
1 − u2

1 − v2
z+(σ − vτ )

∣∣∣1 − ε

)
,

φ1 = τ − vσ

1 − v2
+ vW√

1 − u2z+(1 − z2+)

× Π

(
− z2+

1 − z2+
(1 − ε),am

(√
1 − u2

1 − v2
z+(σ − vτ )

)∣∣∣1 − ε

)
,

φ2 = u
τ − vσ

1 − v2
, (3.1)

where

ε = z2−
z2+

, W = κ2.

z2± can be written as

z2± = 1

2(1 − u2)

{
q1 + q2 − u2

±
√

(q1 − q2)2 − [
2(q1 + q2 − 2q1q2) − u2

]
u2

}
,

q1 = 1 − W , q2 = 1 − v2W .

Now, we have to replace into (2.2) the following expression ob-
tained from the above solution

∂+ Xk∂− Xk = − 1

(1 − v2) sin2 θ

{
1 − v2W 2 + (

1 − u2)z4+ε

+ 2
(
1 − u2) cos4 θ

− cos2 θ
[
2 + z2+(1 + ε) − u2(1 + z2+(1 + ε)

)]}
.

Computing the integrals in (2.2), we find

Cd
3 = 8

3
cd
Δ

1√
(1 − u2)W χp(1 − χp)

×
{
(1 − χp)

[
2
(
1 − u2)χpE(1 − ε)

− (
u2 − (

1 − v2)W + (
1 − u2)(1 + ε)χp

)
K(1 − ε)

]
− (

1 − v2W 2 − χp − (1 − χp)
(
εχp + u2(1 − εχp)

))
× Π

(
− χp

1 − χp
(1 − ε)

∣∣∣1 − ε

)}
, (3.2)

where we introduced the notations

χp = z2+, χm = z2− ⇒ ε = χm

χp
.

This is our exact result for the normalized coefficient Cd
3 in the

three-point correlation function, corresponding to the case when
the heavy vertex operators are finite-size dyonic giant magnons.

To check the relation (2.5), we need to know Δ. As GM case,
we claim that this is given by E − J1. The explicit results are given
by [34]
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E = 2
√

W (1 − v2)√
1 − u2√χp

K(1 − ε),

J1 = 2
√

χp√
1 − u2

[
1 − v2W

χp
K(1 − ε) − E(1 − ε)

]
, (3.3)

J2 = 2u
√

χp√
1 − u2

E(1 − ε),

p = 2v√
1 − u2√χp

×
[

W

1 − χp
Π

(
− χp

1 − χp
(1 − ε)

∣∣∣1 − ε

)
− K(1 − ε)

]
, (3.4)

and

E = 2π E√
λ

, J1,2 = 2π J1,2√
λ

.

In this case, we need to obtain v ′(λ), ε′(λ), u′(λ) from the con-
dition that J1, J2, p be independent of λ. It turns out that the
exact calculations for these are too complicated. Instead, we will
just focus on the ε → 0 limit of (3.2) and λ derivative of Δ from
the Lüscher formula to check (2.5). To this end, we will use the
expansions

χp = χp0 + (
χp1 + χp2 log(ε)

)
ε, χm = χm1ε,

v = v0 + (
v1 + v2 log(ε)

)
ε, u = u0 + (

u1 + u2 log(ε)
)
ε,

W = 1 + W1ε. (3.5)

First note that χp and χm satisfy the following relations

χp + χm = 2 − (1 + v2)W − u2

1 − u2
,

χpχm = 1 − (1 + v2)W − v2W 2

1 − u2
. (3.6)

Expanding (3.6) and using the definition of ε , we arrive at

χp0 = 1 − v2
0

1 − u2
0

,

χp1 = v0

(1 − v2
0)(1 − u2

0)
2

{
v0

[(
1 − v2

0

)2 − 3
(
1 − v2

0

)
u2

0

+ 2u4
0 − 2

(
1 − v2

0

)
u0u1

] − 2
(
1 − v2

0

)(
1 − u2

0

)
v1

}
,

χp2 = −2v0
v2 + (v0u2 − u0 v2)u0

(1 − u2
0)

2
,

χm1 = 1 − v2
0

1 − u2
0

,

W1 = − (1 − u2
0 − v2

0)
2

(1 − u2
0)(1 − v2

0)
. (3.7)

The coefficients in the expansions of v and u, we take from
[35], where for the case under consideration we have to set K1 =
χn1 = 0, or equivalently Φ = 0. This gives

v0 = sin(p)√
J 2

2 + 4 sin2(p/2)

, u0 = J2√
J 2

2 + 4 sin2(p/2)

,

v1 = v0(1 − v2
0 − u2

0)

4(1 − u2
0)(1 − v2

0)

[(
1 − v2

0

)(
1 − log(16)

)
− u2

0

(
5 − v2

0

(
1 + log(16)

) − log(4096)
)]

,

v2 = v0(1 − v2
0 − u2

0)

4(1 − u2
0)(1 − v2

0)

[
1 − v2

0 − u2
0

(
3 + v2

0

)]
,

u1 = u0(1 − v2
0 − u2

0)

4(1 − v2
0)

[
1 − log(16) − v2

0

(
1 + log(16)

)]
,

u2 = u0(1 − v2
0 − u2

0)

4(1 − v2
0)

(
1 + v2

0

)
. (3.8)

We need also the expression for ε . To the leading order, it can
be written as [35]

ε = 16 exp

(
−

2 − 2v2
0

1−u2
0

+ J1

√
1 − v2

0 − u2
0

1 − v2
0

)
. (3.9)

By using (3.7), (3.8) and (3.9) in the ε-expansion of (3.2), we
derive

Cd
3 = 16

3
cd
Δ

{J 2
2 + 4 sin2(p/2) − 16 sin4(p/2)exp( f )

2
√

J 2
2 + 4 sin2(p/2)

+ 1

(J 2
2 + 4 sin2(p/2))(J 2

2 + 4 sin4(p/2))2

×
[

32 exp( f )
(

2J 2
2

√
J 2

2 + 4 sin2(p/2) − 3J1

+ 2
(

J1
(
2 + J 2

2

) + J 2
2

√
J 2

2 + 4 sin2(p/2)
)

cos(p)

− J1 cos(2p)
)

sin8(p/2)
]
− J 2

2

2
√

J 2
2 + 4 sin2(p/2)

− 8J 2
2 sin4(p/2)

(J 2
2 + 4 sin2(p/2))3/2

exp( f )

}
, (3.10)

where

f = −
2(J1 +

√
J 2

2 + 4 sin2(p/2))

√
J 2

2 + 4 sin2(p/2) sin2(p/2)

J 2
2 + 4 sin4(p/2)

.

On the other hand, from the dyonic giant magnon dispersion
relation, including the leading finite-size correction,

Δdyonic

=
√

λ

2π

[√
J 2

2 + 4 sin2(p/2) − 16 sin4(p/2)√
J 2

2 + 4 sin2(p/2)

exp( f )

]
,

(3.11)

one obtains

λ∂λΔdyonic =
√

λ

2π

{J 2
2 + 4 sin2(p/2) − 16 sin4(p/2)exp( f )

2
√

J 2
2 + 4 sin2(p/2)

+ 1

(J 2
2 + 4 sin2(p/2))(J 2

2 + 4 sin4(p/2))2

×
[

32 exp( f )
(

2J 2
2

√
J 2

2 + 4 sin2(p/2) − 3J1

+ 2
(

J1
(
2 + J 2

2

) + J 2
2

√
J 2

2 + 4 sin2(p/2)
)

cos(p)

− J1 cos(2p)
)

sin8(p/2)
]

− J 2
2

2
√

J 2
2 + 4 sin2(p/2)

− 8J 2
2 sin4(p/2)

(J 2
2 + 4 sin2(p/2))3/2

exp( f )

}
. (3.12)
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Comparing (3.10) and (3.12), we see that the relation (2.5) is also
valid for finite-size dyonic giant magnons, as it should be.

4. Concluding remarks

In this Letter we have considered three-point correlation func-
tions in the strong coupling side of the AdS/CFT correspondence.
We have used a formulation for semiclassical structure constants of
a zero-momentum dilaton operator and two heavy string states of
(dyonic) giant magnons of finite-size and showed that they match
with the expected results coming from derivatives of two-point
correlation functions w.r.t. ’t Hooft coupling constant.

It is still not clear how to overcome the key approximations
we and many other related papers have assumed. It should be
essential to utilize the integrability to consider correlation func-
tions for arbitrary value of ’t Hooft coupling constant. Develop-
ments in this line have been recently reported in [24,25]. Another
issue is to include other light operators such as generic dilaton
operators which is dual to the SYM or even general heavy string
states.

Considering the remarkable developments on the two-point
functions, the semiclassical analysis has made crucial contributions
in figuring out exact integrability structure hidden in the AdS/CFT
correspondence. We hope that our semiclassical results for the
generic finite-size operators can be a small starting point toward
exact formulation of the three-point correlation functions.
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