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Three-point correlation function of giant magnons in the Lunin-Maldacena background
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We compute semiclassical three-point correlation function, or structure constant, of two finite-size
(dyonic) giant magnon string states and a light dilaton mode in the Lunin-Maldacena background, which
is the y-deformed, or TsT-transformed AdSs X §7, dual to 2N" =1 super Yang-Mills theory in four
dimensions. We also prove that an important relation between the structure constant and the conformal
dimension, checked for the N =4 super Yang-Mills case, still holds for the 7y-deformed string

background.
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I. INTRODUCTION

The AdS/CFT duality correspondence between type 1IB
string theory on AdSs X S and N* = 4 super Yang-Mills
(SYM) theory [1] has been actively investigated and led to
many exciting developments toward understanding non-
perturbative structures of the string and gauge theories. In
particular, the integrability structure has been discovered in
the computations of energies of string states and conformal
dimensions of the gauge theory in the planar limit.

In view of the AdS/CFT duality, the general correlation
functions of primary operators of the SYM as a conformal
field theory (CFT) should be related to those of the corre-
sponding closed-string vertex operators in the string theory
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side. The conformal dimensions appear as critical expo-
nents of the two-point correlation functions. Three-point
correlation functions are important for the conformal boot-
strap approaches. As is well known, the correlation func-
tions of any CFT can be determined, in principle, in terms
of the basic conformal data {A;, C;j}, where A; are the
conformal dimensions defined by the two-point correlation
functions

Ci20;

lx; — x| 28

(01 (x)0;(x,)) = (1.1)

and C;;; are the structure constants in the operator product
expansion

<Oi(x1)(9j(x2)(9k(x3)> =

Thus, the determination of the initial conformal data for a
given CFT is the most important step in the conformal
bootstrap approach.

Most of recent studies on the three-point functions are
focused on the string theory side in the strong coupling
limit using the holographic principle. In particular, the
three-point functions of two heavy operators and a light
dilaton operator can be approximated by a supergravity
vertex operator evaluated at the heavy classical string
configuration:

<VH(x1)VH(x2)VL ()C3)> = VL (x3)classical'

For |x;| = |x,| = 1, x3 = 0, the correlation function re-
duces to
Vi)V () Vo (0)) = — 18
H 1 H 2 L |x1 _ x2|2AH M

Then, the normalized structure constants
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Ciy
can be found from
CS = CA VL(O)classical’ (13)

where ¢, is the normalized constant of the corresponding
light vertex operator.

Recently, there has been an impressive progress in the
semiclassical calculations of two, three, and four-point
functions with two heavy operators [2-22]. An efficient
method to compute two-point correlation functions in the
strong coupling limit is to evaluate string partition function
for a heavy string state propagating in the AdS space
between two boundary points based on a path integral
method [2,3]. This method has been extended to the
three-point functions of two heavy string states and a
supergravity mode which corresponds to a marginal defor-
mation of the SYM two-point functions by the Lagrangian
[4-6]. Another direction is to compute the structure
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constants using the Bethe eigenstates of the underlying
integrable spin chain in the weak coupling limit of the
SYM [23].

Most of these works, however, considered a limit of
J > /A where J stands for the large angular momentum
of a string state or the length of the SYM operator. It is
important to generalize this to the case of finite J. Several
important integrability techniques have been developed for
computing conformal dimensions with the finite J. The
finite-size effect for the structure constants have been first
studied and compared with the same effect for the confor-
mal dimensions in [19]. However, almost all of these
achievements are made for the case the maximal N = 4
SYM.

An interesting aspect in the AdS/CFT duality is the role
of the supersymmetry because extended conformal sym-
metries are intimately related to the structure constants. To
see this, we think it is important to compute the structure
constants of another CFT which has less supersymmetry
and holographic duality with a string theory. Such corre-
spondence between gauge and string theory models with
reduced supersymmetry is provided by an exactly marginal
deformation of N' = 4 super Yang-Mills theory [24] and
string theory on a B-deformed AdSs X §° background
suggested by Lunin and Maldacena in [25]. When 8 = vy
is real, the deformed background can be obtained from
AdSs X $3 by the so-called TsT transformation, which
preserves the classical integrability of string theory on
AdSs X §° [26].

Motivated by the above, we investigate in this paper
semiclassical correlators in the framework of the duality
between string theory in AdSs X S§y and N = 1SYM. We
notice that there is a paper devoted to the same topic [22].
where the three-point correlation function of two infinite-
size giant magnons and the dilaton has been obtained. Our
object is to extend the results to finite-size system,
J ~ /A > 1, for the case of finite-size giant magnons.
This paper is organized as follows. In Sec. II we solve
classical integrable system to express the energies (or
conformal dimensions) and structure constants in terms
of the finite angular momenta. This is our main result.
We check the validity of our results by comparing them
with the conformal dimensions of finite-size system in
Sec. III. For this purpose, we use an expansion of large
but finite value of J. We will conclude with a brief sum-
mary in Sec. IV and some mathematical formulae in the
Appendix.

II. THREE-POINT
CORRELATION FUNCTION

The bosonic part of the Green-Schwarz action for strings
on the y;-deformed AdSs X $3 [27] reduced to R, X S5,
can be written as (the common radius R of AdSs and SS%, is
setto 1)
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T
S = ~5 [drda{«/—)”yab[_aatabt F 0410y

+Gria,$i0,p; + Grirsr3(7,0,¢0:)(7;0,6;)]
— 2G€™ (¥3r1r30,10, by + ¥173r30,620, 05
+ §or3rio,d30,41)},

where 7 is the string tension, y”b is the worldsheet metric,
¢, are the three isometry angles of the deformed SSI,, and

@2.1)

3

2 — -1 — ~2.2.2 52,22 52,22
D=1 G =1+ 7y + yinrs + yarirs.
i=1

(2.2)

The deformation parameters ¥, are related to y; which
appear in the dual gauge theory as follows

yi=2mTy;, = \/X%*

When ¥; = ¥ this becomes the supersymmetric back-
ground of [25], and the deformation parameter y enters
the 2N = 1 SYM superpotential in the following way

W x tr(ei”7®1®2¢)3 - e—iﬂ’)/(bl(b:;q)z).

This is the case we are going to explore here.

To consider the (dyonic) giant magnon string solution,
we restrict ourselves to the subspace R, X S3, parameterize
(see (2.2))

ry = siné, r, = cosb,
and use the ansatz [28]
t(r, o) = kT, 0(r, o) = 6(¢),
¢(1,0) = w;7 + f;(§), §=ao+ B, (2.3)
K wj, a, [B = constants, j=12

Then the string Lagrangian in conformal gauge, on the
y-deformed three-sphere, can be written as (prime is used
for d/d¢)

L,=(a?- 32)[9'2 + Gsin29(fq -

Bwy )2

QZ_BZ

Bw, )2

a2 — B2
+ Gcoszﬁ(fé -

a?

- WG(Q)%SIHZQ + Q)%COS29)
ol —
] /
+ 2a7Gsineos?0 21— /2] (2.4)
Y o2 — B2

where

1
1+ #%sin?0cos26°

The equations of motion for f;, following from (2.4)
can be integrated once to give

126011-2



THREE-POINT CORRELATION FUNCTION OF GIANT ...
| c
= —[

a’ — B2 Lsin’6 + Bw; — Ylaw, — 7C1)00829],

1 C
fé = [—2 + ,8(1)2 + )7(aa)1 + ’)~/C2)Sin20i|,

a? — B%Lcos?6

(2.5)

where C| , are integration constants.

Replacing (2.5) into the Virasoro constraints one finds
the first integral 6’ of the equation of motion for # and a
relation among the parameters

2 2
a G

(a2 + B2 — 1 —

n_
0= —
sin-6

cos26

1
(a?— Bz)z[
—(aw; + §C,)?sin’*0 — (aw, — ‘7C1)200526], (2.6)

a)ICl + a)2C2 + BKZ = 0. (27)

Now, we introduce the variable

X = cos26,
and the parameters
B Q, ( K )2
= A W =\~
VT T Q, Q,
C C
K=o =oiv,2)
al), aw;
C
O, = wz(l - 5’—1)
aw-y

By using them and (2.7), the three first integrals can be
rewritten as

e
fl 1—

Q, 1 [vW—uK
al—v?

—u(1-7K) - wx],

Q 1 7K
="t 2[_—uv(1—7K)—7v2W+7(1—)()],

a l—vLly
Q \/1_ 2 - “Am “An
PRI Op = 00— xm) (X X), 2.8)
a 1—v x{—=x)
where
2=(1+v)W—u?
/\/p+Xm+Xn_ l_uz ’
1-(1+ )W+ (W —uK)*—K?
XpXm T XpXn+ XmXn= ) ,
K2
X})Xm/\/nz_l_uz' (2.9)

We are interested in the case of finite-size giant magnons,
which corresponds to

0<)(m<X<Xp<l, X <O0.
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Replacing (2.8) and (2.9) in (2.4), we find the final

form of the Lagrangian to be (we set @ = ; = 1 for
simplicity)
1 -
L= —1_v2[2—(1+v2)W—2yK

=21 — YK — u(u — yuK + yvW))x1.

To obtain the finite-size effect on the three-point corre-
lator, we use (1.3) and the explicit expression for the
dilaton vertex'

V= (Yy+ Ys) *z272(94x,0_x" + 9,20_2)

+ 0, X0-X.], (2.10)

where

1 1

Yy =—@"x, +2>2—1), Ys = —(x"x,, + 2>+ 1).
27 2z

Here, x,,, z are coordinates on AdSs, while X, are the

coordinates on S°. For giant magnons, this leads to
[16,19] (it = 7,)

0 dr L
= od e 2
cA[ oy fiL do(k* + L. (2.11)

C
—o0 cosh?(

el

Performing the integrations in (2.11), one finds
y 16 4 1
R JI— AW, — 1)
X[((1 = w)(1 = 7K) = yuvW)/x, = X.E(l — €)
+ (WA~ yuvy,) — (1 - ¥K)
X (1= —=u?)x,)K(1 — e)]
where K(1 — €) and E(1 — €) are the complete elliptic

integrals of first and second kind, and the following nota-
tion has been introduced

(2.12)

e =Xm~ Xn (2.13)

Xp — Xn

This is our exact result for the normalized coefficient C}
in the three-point correlation function, corresponding to
the case when the heavy vertex operators are finite-size
dyonic giant magnons living on the 7y-deformed three-
sphere.

For further purposes, let us also write down the exact
expressions for the conserved charges and the angular
differences

e Esz:2(1 — )W K(1 — €)
\/X V1 —u? «/Xp_/\/n’

(2.14)

! Actually, this vertex corresponds to dilaton with zero Kaluza-
Klein momentum: j = 0. For the general case, j # 0, see [6,16].
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27TJ1
VA

2 [I—Xn—v(vW—uK)

vl—u2 VAXp T Xn
“NAp T XnE(l - 6)],

J =

K(l —¢)

(2.15)

K(l —¢)

2] 2 uy, — vk
T, = 2 _ [X

D -l =x

+u /X, = x.E( - e)], (2.16)

p1=Ad, = ¢(L) — (L)
vW — ukK

2
= uz{(l — X)X = X»

x H(—M — [o(1 = 9K) + uy,]

P
K(l —€) B
ﬁ yux, — x.E( 5)} (2.17)
= Ady = ¢,(L) — ¢o(—L)
2 K Xom
= (1 —Xm |1 -
VI—MZ{XP\/Xp_Xn ( Xp I 6)
— [uv + (W — uK) — y(1 — x,)]
K(1 —
xﬁ—ymml —e)}. (2.18)

Here, E, J, , are the string energy and angular momenta,
while ¢, are the isometry angles on the <y-deformed
three-sphere. I1(m|n) is the complete elliptic integral of
third kind.

III. SMALL e EXPANSIONS

For the case of dilaton operator with zero Kaluza-Klein
momentum, the three-point function of the SYM can be
easily related to the conformal dimension of the heavy
operators. This corresponds to shift ‘t Hooft coupling
constant which is the overall coefficient of the
Lagrangian [5]. This gives an important relation between
the structure constant and the conformal dimension as
follows:

32
C7=—7TCA\/_6AA G.1)
We want to show here that this relation holds also for the
case of finite-size giant magnons on R, X S%, (J, =0),
assuming that A = E — J;, and considering the limit
€ — 0. To this end, we introduce the expansions”

>The expansions for the elliptic integrals we use are given in
the Appendix.
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Xp = Xpo T (Xp1 + xp2log(€))e,

Xm = Xmo + (Xm1 + Xm2 log(e))€,

Xn = Xno T (Xu1 + xu2log(e))e,
v =1+ (v, + vylog(e))e, (3.2)
u = uy + (u; + uylog(e))e,

W =W, + (W, + W,log(e))e,

K =K, + (K| + K,log(¢))e.

A few comments are in order. To be able to reproduce the
dispersion relation for the infinite-size giant magnons, we
set

KO = O, WO = 1.

Xm0 = Xn0 = (33)

In addition, one can check that if we keep the coefficients
Xm2s Xn2s Wo and K, nonzero, the known leading correc-
tion to the giant magnon energy-charge relation [29] will
be modified by a term proportional to 7. That is why we
choose

Xm2 = Xn2 = W = K; = 0. (3.4)
Finally, since we are considering for simplicity giant mag-
nons with one angular momentum, we also set

1o = 0, 3.5)

because the leading term in the e-expansion of 7, is

proportional to u,. By replacing (3.2) in (2.9) and (2.13),
and taking into account (3.3), (3.4), and (3.5), we obtain

/\/p0=1—v0

v
Xp] :1_—01}2[1104(1 - U(2))4 _4K%(1 - Ug) - 2(1 - U%)Ul ],
0

Xp2=—2v0v2,

. =0+ - ) 4K (1 - })

ml 2(1—2) ’
(1= 03 —/(1 = v3)* — 4K} (1 —v})

Xm = 21— 02 ’
Ja—vd)t - 4K2(1—ug)

W= - (3.6)

l—vo

The other parameters in (3.2) and (3.6) can be found in
the following way. First, we impose the conditions J, = 0
and p; to be independent of €. This leads to four equations
with solution
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vy (1 — v3)* — 4K3(1 — v3)(1 — logl6)

v 41— v2) ’

vOJ(l — v3)* — 4K} (1 — v}) 3.7)
4(1 — Uo)

K] Vo 10g4 Klvo

u =————, Uy = ——————,

S 2201 -2
where
vy = cos%. 3.8)

Next, to the leading order, the expansions for 7| and p, =
27n, (ny € 7)° give

€= 16exp<—2 - f71 )

2N L
SlIl2

1
K, = =sin’ == P1 sin®, 3.9)
2 2

Y
(I) = 277'(7’12 - ﬁjl)
Now, we consider the limit € — O in the expression
(2.12) for the structure constant in the 3-point correlation

function, by using (3.2), (3.3), (3.4), (3.5), (3.6), and (3.7),
and obtain

4 1
07 —CA—(I 2)3/2[

- v(z)(S + (\/(1 —v3)* -

—8yK;(1— log4))e) - (4’71(1(1 —log4)

4+4v(1 — K, (1 —logd)e)

4K7(1 — vg)(1 —logl6)

—Ja— R ek -wa —10g256))e

- (vg\/a — ) — 4K (1 - )

+29K,(1 - v%)z)eloge

+4/(1— v3)* —4K2(1 —ug)elog(me)]. (3.10)

According to (3.8) and (3.9), the above expression for CZ
can be rewritten in terms of p, J, as

16 P . oD 14
C] = ?CA smé[l - 4sm2?1<cos(l) + 7, csc?l cos®

- %7, Sin(p)efZ*(J]/sin(mﬂ)]' (3.11)

3This follows from the periodicity condition on ¢,.
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In order to check if the equality (3.1) holds for the
present case, let us now consider the dispersion relation
of giant magnons on 7'sT-transformed AdSs X S°, includ-
ing the leading finite-size correction, which is known to be
[30,31]

E—J = J?X sin(p/Z)[l — 4sin*(p/2) cos®

X exp(—Z — ﬁ%{;/%)] (3.12)

Taking the A derivative of (3.12), one finds

A
A0, A = £ sing[l - 4sin2£(cos<1) + 7, cscB cosd
2 2 2 2

— 37 sin®)e 2"/ Sin<P/2>]. (3.13)

Identifying p = p;, and comparing (3.11) with (3.13), we
see that the equality (3.1) is also valid for the y-deformed
case.

IV. CONCLUDING REMARKS

In this note, we have derived the structure constant in the
three-point correlation function of two finite-size (dyonic)
giant magnon string states and a light dilaton state in the
semiclassical approximation, for the case of y-deformed
(T'sT-transformed) AdSs X §°, dual to N" = 1 SYM, aris-
ing as an exactly marginal deformation of N' = 4 SYM.

We have also found that the important relation between
the structure constant and the derivative of the conformal
dimension with respect to the t’Hooft coupling A still holds
for the y-deformed case.

It will be interesting to consider correlation functions of
other light operators or even all the heavy string states in
the future.
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APPENDIX: ELLIPTIC INTEGRALS AND
e-EXPANSIONS

The elliptic integrals appearing in the main text are
given by
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dx

2

j‘ Xp
\/()(,7 -

Xp xdx

- Xm)(X - Xn) - \//\/p A

2Xn

’ \/(Xp = X)X = XX — Xa) X X

dx

2
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K(1 — e),

K(l — € + 2%, = x,E(l — o),

X

(-2 1-4)

Xp _
fxm X\/(Xp — X = X)X — xn)  XpVXp T Xn

dx

Xp

_Xp T Xm

Xp —
me (1= 040 = 00 = X = xa)

where

2 H(
— X)X = X

Xm — Xn

€ = ——m—

Xp — Xn

1—6),

1—)(,,

We use the following expansions for the complete elliptic integrals [32]

K- ¢ = —% log(%)

E(l—e) =1 —%(1 +10g<%))e+

()
1 2og 6 e+ ...,

II(—n|1 —¢€) =

We use also the equality [33]

where

(1]

(2]
(31

(4]
(5]

(71

[9]
[10]

2/narctan(y/n) —log(yy) 2 — 4y/narctan(y/n) + (1 — n)log(%) .

q= "(1 - V)(l - %)

+ ..., n>0.
2(1+n) 8(1 + n)?
q1 m
M(v|m) = =1I(v,|Im) — ————=K(m),
q q vV
q1=\/(1—vl)<l—ﬁ), vzyl_m, v, <0, m<p<l.
14 vy — 1
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