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Finite-size effect of the dyonic giant magnons in N = 6 super Chern-Simons theory
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We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS, X
CP3 by applying the Liischer w-term formula which is derived from a recently proposed S matrix for the
N = 6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric
configuration where the two external bound states, each of A and B particles, have the same momentum p
and spin J,. We compare this with the classical string theory result which we computed by reducing it to
the Neumann-Rosochatius system. The two results match perfectly.
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L. INTRODUCTION

The AdS/CFT correspondence between type IIB string
theory on AdSs X $° and N =4 super Yang-Mills
(SYM) theory [1-3] led to many exciting developments
and to understanding nonperturbative structures of the
string and gauge theories. Recently, an exciting possibility
that the same type of duality does exist in three-
dimensional gauge theory has been discovered. The prom-
ising candidate for the three-dimensional conformal field
theory is N = 6 super Chern-Simons (CS) theory with
SU(N) X SU(N) gauge symmetry and level k. This model,
which was first proposed by Aharony, Bergman, Jafferis,
and Maldacena [4], is believed to be dual to M theory on
AdS, X S§7/Z,. Furthermore, in the planar limit of N, k —
oo with a fixed value of ’t Hooft coupling A = N/k, the
N = 6 CS is believed to be dual to type ITA superstring
theory on AdS, X CP?. This model contains two sets of
scalar fields transforming in bifundamental representations
of SU(N) X SU(N) along with respective superpartner
fermions and nondynamic CS gauge fields.

The integrability of the planar N' = 6 CS theory, first
discovered by Minahan and Zarembo [5] in the leading
two-loop-order perturbative computation, is conjectured to
exist in all-loop orders and corresponding all-loop Bethe
ansatz equations were conjectured by Gromov and Vieira
[6] based on the perturbative result [5] and the classical
integrability in the large-coupling limit discovered in [7—
9]. Recently, three groups [10-12] computed the one-loop
correction to the energy of a folded spinning string, and
seemed to find disagreement with the prediction of the all-
loop Bethe ansatz equations (BAEs). This controversy may
be resolved by a nonzero one-loop correction in the central
interpolating function h(A) as suggested recently in [13].
(See also [14].)

On the other hand, based on the spectrum and symme-
tries of the model [5,15-17], Ahn and Nepomechie pro-
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posed an S matrix [18] which reproduces the all-loop
BAEs. The S matrix has played an important role in
AdS/CFT as noticed early in [19] and gets more so because
it provides the only way of computing finite-size effect
exactly. For example, one cannot reproduce this from the
all-loop BAEs. Therefore, the finite-size effect can be a
stringent check of the S matrix in integrable models if one
can compare it with an independent result. In the AdS/CFT
correspondence, there are alternative but approximate
ways of computing finite-size effects in semiclassical
ways [20] such as the algebraic curve method [21] or the
Neumann-Rosochatius (NR) method [22-24]. For the
N = 6 CS theory, both methods have been implemented
to compute the effect for a giant magnon (GM) which
moves symmetrically in SU(2) X SU(2) subspace of C[P3
[25]. See [26-30] for subsequent developments on the
finite-size effects of the AdS,/CFT; from the string/mem-
brane side.

The formalism to derive the finite-size effect from the S
matrix is the Liischer correction. This computes a shift in
the energy due to the finite size of spatial length from the S
matrix for all values of the ‘t Hooft coupling constant. This
method has been successfully applied to the AdS/CFT
duality in the N =4 SYM theory [31-35]. Recently
two groups computed the finite-size corrections to the
dispersion relation of GMs [36] from the N =6 CS
theory side [37,38]. They showed that the results are con-
sistent with the classical string theory, which strongly
supports the validity of the S matrix proposed in [18].
Along this line of investigation, another interesting con-
figuration is the classical string state with two angular
momenta, usually called “two spin” solutions. The authors
have computed the finite-size effect for the dyonic giant
magnon (DGM) [39] in the classical limit by the Neumann-
Rosochatius method [40]. It is further extended recently to
a single DGM solution [41]. It is important to check this
since the DGM maintains the BPS saturated form of the
dispersion relation even in the classical limit. Therefore, it
can check the finite-size effect in a most intact form.

The purpose of this note is to compute the finite-size
effect of the DGM from the Liischer formula and compare
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it with the previous result [40]. In Sec. II, we briefly review
our derivation of the DGM in the SU(2) X SU(2) subspace
of CP? with U(1) fiber dynamics and computation of the
finite-size effect [40]. We generalize the Liischer formula
for multi-DGM particles in Sec. III. We also derive the §
matrix elements between an elementary magnon and its
bound state in Sec. III which will be used in the Liischer
formula. In the classical limit, we confirm that the Liischer
correction exactly matches with the classical string theory
result. We conclude the paper with some remarks in
Sec. IV.

II. CLASSICAL STRING ANALYSIS

Let us consider a classical string moving in R, X CP3.
Using the complex coordinates

7=y + iy, wy; = x' + ix?, wy, = X + ix?,

wy = x> + ix®, wy = x + ix8,
we embed the string as follows [40]:

R .
2= 21, 0) = 5",
2
w, = W,(7, o) = Rr, (7, 0)e!¢:77),

Here 7 is the AdS time. These complex coordinates should
satisfy

4 4
Z WaWa = Rz: Z(WuamWa - WaamWa) = O»
a=1 a=1

or
4 4

21%: 1, ngamgpa =0,

a=1 a=1

m=20,1.(2.1)

A. NR reduction

In order to reduce the string dynamics on R, X CP? to
the NR integrable system, we use the ansatz [22-24]

ro(1, o) = 1,(8),
01, 0) = 0,7+ f,(§),  &=aoc+ BT,

K, W, @, B = constants.

(7, 0) = kT,

(2.2)

It can be shown [40] that, after integration of the equations
of motion for f,, which gives

(e pad)

= C, = tants, (2.3
fa o2 — g2\ P , = constants, (2.3)

one ends up with the following effective Lagrangian for the
coordinates r,:
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Lyg = (a? — B%) i[”&z - (a? - B2 : (C3 + azwgrﬁ):l
a=1

a? — 32)2 g
4
- A(Z r:— 1).
a=1

This is the Lagrangian for the NR integrable system [24].
In addition, the CP? embedding conditions in (2.1) lead to

(2.4)

4 4
D w2 =0, Y c,=o. (2.5)
a=1 a=1

The Virasoro constraints give the conserved

Hamiltonian Hyr and a relation between the embedding
parameters and the arbitrary constants C,:

: 1
Hxr = (a2 - ,32)‘;[’”;2 + ‘(az _ ,32)2

C2
X (Tza + azwﬁrz)]
a

a,2 + ﬂZ K2
Tl p T (2:0)
4
Y C,0, + B(k/2)? = 0. 2.7

a=1

For closed strings, r, and f, satisfy the following period-
icity conditions:

ro(§ + 2ma) = r,(§),

(2.8)
fll(g + 27Ta) = fu(é:) + 27Tna’
where n, are integer winding numbers.
The conserved charges can be defined by
d
E = —fda—ﬁ, J,= /da’L, a=1,2734,
9(dot) 3(d0pa)

where L is the Polyakov string Lagrangian taken in con-
formal gauge. Using the ansatz (2.2) and (2.3), we can find

g, = K2 [ de,
2

2.9)
2422 B
Ja = m [d.f(;Ca + aa)ar%).
In view of (2.5), one obtains [17]
4
>, =0 (2.10)

a=1

B. Dyonic giant magnon solution

We are interested in finding string configurations corre-
sponding to the following particular solution of (2.5):
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1
= — cosf,

V2

1 .
ry = ry = —= sind, Ty = 1y

V2
w| = T w3, Wy = —Wy.
The two frequencies w;, w, are independent and lead to
strings moving in CP? with two angular momenta. The
special case w, = 0 corresponds to the solutions obtained
in [17,27]. From the NR Hamiltonian (2.6) one finds

1 C? + 2
0”2 [ + g2 ( 1 3
O =l 5@ A =
3+ C;
2724) — a?(w?sin?6 + w%coszﬁ)].
cos-6

We further restrict ourselves to C, = C4 = 0 to search for
GM string configurations. Equations (2.5) and (2.7) give

B’
Cl = _C3 = _8—
W)

In this case, the above equation for #’ can be rewritten in

the form
(cosf) = ¥ +—_= v \/(z+ — c0s%60)(cos20 — 72),
2.11)
where
1 w3
5= 7{)’1 ty - —%
2(1 — —) w7y

2
w
+ J(m — ) - [Z(yl + ¥ = 2y1y2) — —w§ —
1

e B
! ’ 2 a24w%'

The solution of (2.11) is given by

o
cosf = z,.dn(Cé&|m), C=%—Y—F—3>-"7,,

m=1-z2/74, (2.12)
where dn(C§&|m) is one of the elliptic functions.

To find the full string solution, we also need to obtain the
explicit expressions for the functions f, from (2.3)

fu= g [ae(53 + o).

Using the solution (2.12) for 8(¢), we can find
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27,2
fi=-f;= —,B/a I:Cf - ‘2(1;/3) éa),
%

X H(am(Cf) - l |m>]
-2

+
sz

fo=—fa= ,82§

Here, IT is the elliptic integral of the third kind. As a
consequence, the string solution can be written as

1 — 22 dn*(CE&lm)elrm 1),

R
W, = &
1 \/-Z_J
R )
W, = —=2z,dn(C&|m)e' @27/,

NG

R (2.13)
W = ﬁ\/l — 2dn*(CElm)e T,

W, = %z+dn(C§|m)e_i(“’zT+f2).

The geometric meaning of the explicit solution (2.13) is
as follows. Each pair of complex coordinates, (W;, W,) and
(W3, Wy), describes a spiky solutions in S? sphere geome-
try but with dynamics at opposite points in the U(1) fiber.
The two phases in (W, W,) are exactly opposite to those of
(W5, W,) which, together with the dynamics in U(1), en-
sures the vanishing of the total momentum. This behavior
has been also noticed for strings in R, X S* X S%in [17].

The GM in infinite volume can be obtained by taking
z_ — 0. In this limit, the solution for # reduces to

0 sing
cos) = ————,
cosh(C¢)
where the constant z, = sinp/2 is given by
- W5/ W
2= 2/ 1

1—a)/w1

One spin solution corresponds to w, = 0. Inserting this
into (2.9), one can find the energy-charge dispersion rela-
tion. For the single DGM, the energy and angular momen-
tum J; become infinite but their difference remains finite:

(3
E,— =2+ 2){81112[27

C. Finite-size effects

(2.14)

Using the most general solutions (2.13), we can calcu-
late the finite-size corrections to the energy-charge relation
(2.14) in the limit when the string energy E, — 0. Here we
consider the case of @ > 3% only since it corresponds to
the GM case. We obtain from (2.9) the following expres-
sions for the conserved string energy E; and the angular
momenta J:
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2(l = p*/a?)

wle/l - wi/w?

274 1- BZ(K/Z)Z/CY ? K(1 -

E= K(1 —z2/7%),

Iy = | 2/2)
V1 — w}/w} 24
~E(-22/2))

Ty = MEU —z2/2%),
V1 — w}/w}

Tz =—-T1, T4 =—T>. (2.15)

As a result, the condition (2.10) is identically satisfied.
Here, we introduced the notations

E, J
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The computation of Ag, gives

maxde
pEA¢1=2[ ik

min

S L (U2 v
Zt h_wZ/wZ 1_22+

><H< & -2

-z /Z+> - K(1 - 22-/11)]-
2.17)

1-2%

In the above expressions, K(m), E(m), and II(n|m) are the
complete elliptic integrals.
Expanding the elliptic integrals, we obtain

£ =—=, Jo=—. 2.16
V27 V22 10
|
32Asin* 2
E—J =2 2 + 2Asin? 2P il exp[—
4 2 J2+ 8Asin?2

This also gives a finite-size effect for ordinary GM [20] by
taking J, — 0,

. P A.4p Ji
E—J; =2/2Asin= — 16‘/:sm3—ex [—7—2].
! 2 V2 2L aksing
(2.19)

III. FINITE-SIZE EFFECTS FROM THE S MATRIX

The N =6 CS theory has two sets of excitations,
namely A particles and B particles, each of which forms
a four-dimensional representation of SU(2|2) [16,18]. We
propose an S matrix with the following structure:

S4(py, pa) = SBB(py, p2) = So(p1, P2)S(p1, Pa)
SAB(py, pp) = SPA(py, pa)

where § is the matrix part determined by the SU(2|2)
symmetry, and is essentially the same as that found for
N =4 YM in [42,43]. An important difference arises in
the dressing phases S, S, due to the fact that the A and B
particles are related by complex conjugation.

= 50(191, Pz)S(Pb P2

A. Liischer p-term formula

Here we want to generalize multiparticle Liischer for-
mula [34,35] to the case of the bound states. Consider M,
number of A-type DGMs, |Q, ... Q m,)» and M number of
B-type DGMs, |0, ... Oy,). We use a; for the SU(2|2)
quantum numbers carried by the DGMs and C;, for A or B,
the two types of particles. Then we propose the multi-

25in 8 (J; + 473 + 8Asin? B3 + 8Asin2§]

2.18
J3 + 8Asin* 4 (218

particle Liischer formula for generic DGM states as fol-
lows:

OE, — —ig{jﬁl(—l)ﬂ(l -

!/
6Q/(Pl))e—iq*L
€1(q")

M+ My

AC, ba
[T Spa"(a" pa)

X I:Resq
k#l

AAba
s’ po)|
/

_ GQ,(PI)
€,(q*)

ba,

Mpg

+ Z(—I)Fb(l
=1

My+Mpg

n ngfbak(q*: Pk)}-

k#1

i BBb
)e iq L[Resq*:q*S «

X (q", p,)] 3.1)

Here, the energy dispersion relation for the DGM is given
by

2
<, 4g%sin? g

1 (3.2)

EQ(P) =
Here the coupling constant g = A(A) is still an unknown
function of A which behaves as #(A) ~ A for small A, and

h(A) ~ /A/2 for large A.

B. S matrix elements for the dyonic GM

The S matrix elements for the DGM are in general
complicated. However, we can consider a simplest case
of the DGMs composed of only A-type ¢;’s which are the
first bosonic particle in the fundamental representation of
SU(2|2). It is obvious that these bound states do exist since
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the elementary S matrix element S7{'!! does have a pole.
The same holds for the B-type DGMs. However, the
hybrid-type DGMs are not possible because the S42 §
matrix does not have any bound-state pole.

The Liischer correction needs only those S matrix ele-
ments which have the same incoming and outgoing
SU(2|2) quantum numbers after scattering with a virtual
particle. In particular, we can easily compute the matrix
elements between an elementary magnon and a the bound
state made of only ¢,’s (Q of them) denoted by 1, [33]:

0
Abl
Sty 20, X9) = [T 42 (v, x,)
k=1

k=1

— n[ ylx opes (v, xp)d, (v, xk)]

(3.3)
where d; are given by [42,43]
iy, x) = a(y x),

a(y, x) = ay(y, x) + as(y, x),
az(y, x) = as(y, x) = ae(y, x)
x” =y n()nk)

G0 = T om0
a4y x) — S y o - X_*)(x’ ) 7(x)7z(y)
07 = xD"y” —xtyT) 7))
yr=x" n(y)

R U}

As noticed in [33], ay/a, and ag/a; are negligible
O(1/g) corrections in the classical limit g > 1.
Therefore, the S matrix with » = 1 is a most important
factor for our computation which can be written as

9 1 - % — +
AAl] + X, —Yy
Q( X©Q) = gpps(y, X9Q) l_[[ — y lxk . /i —

il =2 =y
= opes(y, X©@)Spps(y, X(@) Zgg;
" (%)Q’ (3.4)

ABIIQ(y X©) = gpes(y X )77(X )(ﬁ(Y)) (3.5)

(X @) \(y)
where Sppg 1s defined by
_ 1 _ n
Txo X Ty
S LX) = AL . 3.6
BDs (Y, X) T p—— (3.6)

yx

The spectral parameter X@ for the DGM is defined by
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x0* = e (Q + ‘,QQ + 16g2sin’ E) = 0=ip)/2
4g sinf 2 ’
(3.7)
where we introduce 6 defined by
.0 0
sinh— = . (3.8)
2 4gsing
The frame factors 1 and 7 are given by [43]
mix) _ ) 39)
7(x;) 7(x2)
for the spin-chain frame and
e
n(xl) Xy n(xQ) X

for the string frame.

C. Symmetric DGM state

The classical two spins solution described in Sec. Il is a
symmetric DGM configuration for both of the S? subspa-
ces. The corresponding Liischer formula is given by Eq.
(3.1) with M, = Mp = 1, which can be much simplified as

8E, = —ig(—l)ﬂeiq’l{(l - Z%f;l)) )
X[Resq* g AAle(CI Pl)] S e *(q", p2)
(- S

ABbly ,
X S Q(q,pl)}-

(3.11)

As mentioned earlier, only the two cases of b = 1,2
contribute equally in the sum of Eq. (3.11) since these
elements contain «;. Instead of the summation, we can
multiply a factor 2 for the case of » = 1. In that case, we
can compute easily each term using the S matrix elements
(3.4) and (3.5). Furthermore, we restrict ourselves for the
case where the two DGMs are symmetric in both spheres,
namely, p; = p, and Q = Q. This leads to

e)(p)
e <q*>)

[ReS* ~SAA“Q(61 p)] AB“Q(q p). (3.12)

SE, = —4ie™i L(l -

Explicit computations of each factor in (3.12) are exactly
the same as those in [33]. There are two types of poles of
Spps(v, X@). The s-channel pole which describe (Q + 1)
DGM arises at y~ = X@* while the ¢-channel pole for
(0 — 1) DGM (for Q = 2)aty* = X@* We consider the
s-channel pole first. Using the location of the pole, we can
find
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— i —iL B L where Sqyy is the S matrix of the N = 4 SYM theory.
G* = —2g D) —e ~ exp 2¢ sin(2=9) 1 Explicit evaluation of the residue term becomes in the
2 2(3']3) leading order
From Eq. (3.2), one can also obtain
i oo iD i —6/2
S st e 2 )
€(g") cosh ' sinf5= sint5= \7(X'?)
Furthermore, one can notice from Egs. (3.4) and (3.5) X <%)2Q. (3.16)
nly
Ally, ABIly,
[Res, ¢St (g%, PISTY, “(q", p)
= Res, —;- Sy, (@5 P) (3.15)
779 FSYMIL M 2 B ) Combining all these together, we get
J
SE — — 8ge Psin’ 4 exp[— 2e 7% sink B L ](n(X(Q)))Z(n(y))ZQ
® cosh§ sin”_zlﬁ 2g Sin(”_T’a) 7(X@)) \7(y)
_ 32gsin® £ '@ [_ 2sin” 5 cosh?§ ( L-0 . 1)]
cosh? sin? 5 + sinh?§\2g sin§ cosh?
32¢2%sin L el 25in (L + 4/Q* + 16g%sin £y + 16g%sin’ 4
= — exp[— - ] (3.17)
,QZ + 16gzsin2§ Q2 + 16g2S11’14§

The phase factor ¢’® includes various phases arising in the computation as well as the frame dependence of 7. As argued in
[33], we will drop this phase assuming that this cancels out with the appropriate prescription for the Liischer formula.

The t-channel pole at y* = X(@7 gives exactly the same contribution up to a phase factor. Therefore, combining
together, we finally obtain the finite-size effect of the two symmetric DGM configuration as follows:

64g%sin* &

2sin? 5 (L + \/Qz + 16g2%sin® g)\/Q2 + 16g%sin? &

W= exp[—
[02 202
Q° + 16g°sin* §

This is exactly what we have derived in Eq. (2.18) if we
identify J, = L, J, = Q, and g = {/A/2.

IV. CONCLUDING REMARKS

In this note we have proposed the Liischer formula for
p-term correction of magnon bound states and computed
explicitly the correction for the two symmetric DGMs.
This result is compared with a classical string computation
based on Neumann-Rosochatius reduction. We showed
that the two results match exactly. This provides another
confirmation for the S matrix of the N = 6 CS theory [18]
in addition to those already investigated [37,38]. It is
interesting to apply a similar analysis to asymmetric GM
and DGM configurations on the two S spheres. If the A
and B particles are introduced asymmetrically, the S matrix
elements entering into the Liischer formula become quite
different from those of N =4 SYM theory. A similar

. 3.18
Q* + 16g%sin* & ] (3.18)

analysis for “small GM” has been performed for one spin
case in [37] which contains an imaginary value in the
correction. One way of clarifying the unusual result is to
do a similar computation for DGMs which have two spins.
Finally, we emphasize that we have computed only the
p-term in this paper which gives the leading classical limit.
It would be important to extend this result to one-loop
order in semiclassical string theory and compare with the
S matrix computation.
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