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1 Introduction

Investigations on AdS/CFT duality [1-3] for the cases with reduced or without supersym-
metry is of obvious interest and importance. An interesting example of such correspondence
between gauge and string theory models with reduced supersymmetry is provided by an
exactly marginal deformation of N' = 4 super Yang-Mills theory [4] and string theory on
a [-deformed AdS5 x S° background suggested in [5]. When 8 = v is real, the deformed
background can be obtained from AdSs x S° by the so-called TsT transformation. It in-
cludes T-duality on one angle variable, a shift of another isometry variable, then a second
T-duality on the first angle [5, 6]. Taking into account that the five-sphere has three iso-
metric coordinates, one can consider generalization of the above procedure, consisting of
chain of three TsT transformations. The result is a regular three-parameter deformation
of AdSs x S° string background, dual to a non-supersymmetric deformation of N' = 4
super Yang-Mills [6], which is conformal in the planar limit to any order of perturbation
theory [7]. The action for this v;-deformed (i = 1,2, 3) gauge theory can be obtained from
the initial one after replacement of the usual product with associative x-product [5, 6, 8].

An essential property of the TsT transformation is that it preserves the classical inte-
grability of string theory on AdSs x S° [6], which also implies that in the light-cone gauges
of [9, 10] the string dynamics on both backgrounds is described by the same Hamiltonian
density. The y-dependence enters only through the twisted boundary conditions and the
level-matching condition. The last one is modified since a closed string in the deformed
background corresponds to an open string on AdSs x S° in general.

The finite-size correction to the giant magnon [11] energy-charge relation, in the -
deformed background, has been found in [12], by using conformal gauge and the string



sigma model reduced to R; x S. For the deformed case, this is the smallest consistent
reduction due to the twisted boundary conditions. It turns out that even for the three-
parameter deformation, the reduced model depends only on one of them - ~3. As far
as there are two isometry angles ¢, ¢ on S3, the solution can carry two non-vanishing
angular momenta Ji, Jo. Then, the giant magnon is an open string solution with only one
charge J; # 0. The momentum p of the magnon excitation in the corresponding spin chain
is identified with the angular difference A¢; between the end-points of the string, since
in the light-cone gauge ¢ = 7, ps, = 1, it is equal to the worldsheet momentum p,,s of a
soliton [13]. The other angle satisfies the following twisted boundary conditions [12]

Agy = 2m(ng — 13.J1),

where ng is an integer winding number of the string in the second isometry direction of the
deformed sphere S%.

An interesting extension of this study is the dyonic giant magnon. This state cor-
responds to bound states of the fundamental magnons and stable even in the deformed
theory. Understanding its string theory analog in the strong coupling limit can be helpful
to extend the AdS/CFT duality to the deformed theories.

The paper is organized as follows. In section 2 we consider in brief the y-deformed
giant magnon as described in the article by Bykov and Frolov [12], and give their result
about the finite-size effect on the dispersion relation. In section 3 we introduce the classical
string action on R; x S3, the corresponding Neumann-Rosochatius (NR) integrable system
and compute the conserved quantities and angular differences for the case at hand. In
section 4 we provide our main result on the finite-size dyonic giant magnon. We conclude
the paper with some remarks in section 5. appendix A contains information about the
elliptic integrals appearing in the calculations, the e-expansions used and the solutions for
the parameters.

2 The ~-deformed giant magnon

Our aim here is to briefly describe the explanations and the main result derived in [12].

The bosonic part of the Green-Schwarz action for strings on the y-deformed AdSs x
Sf’{ [14] reduced to R; X Sf’{ can be written as (the common radius R of AdSs; and Sf’{ is
set to 1)

S = —Z /deO’ {\/—Wyab [—8at(9bt + OgriOpr; + Gr?@agpiabgpi (2.1)
+ Grirsrs (3i0.9i) (1;0605)]
—2G € (43777130a010502 + 1757500020003 + %7“:%7”%(9@0331;901)} :
where T is the string tension, 7% is the worldsheet metric, ¢; are the three isometry angles

of the deformed S,EY’, and

Z r? =1,G =1+ ’3/37‘%7“5 + %T%r% + %T%rg. (2.2)



The deformation parameters 4; are related to ~; which appear in the dual gauge theory

as follows
4 = 20Ty = V.

When 4; = 4 this becomes the supersymmetric background of [5], and the deformation
parameter v enters the N’ =1 SYM superpotential in the following way

W oo tr (€701 @o®y — e ™D P3Py

By using the TsT transformations which map the string theory on AdSs x S to the
~vi-deformed theory, one can relate the angle variables ¢; on S° to the angles ¢; of the

~i-deformed geometry [6]:

pi = i, iy = 17 (¢ — 2mepipk) i = 1,2,3, (2.3)

where p;, 7; are the momenta conjugated to ¢;, ¢; respectively, and the summation is over
7, k. The equality p; = m; implies that the charges

Ji = /dUPi

are invariant under the TsT transformation.
If none of the variables r; is vanishing on a given string solution, from (2.3) one gets

¢; = @ — 2m€i K7Dk

Integrating the above equations and taking into account that for a closed string in the

~-deformed background
Ap; = @i(r) — pi(—=r) = 27n4,n; € Z,

one finds the twisted boundary conditions for the angles ¢; on the original S® space

T

Ag; = ¢i(r) — ¢i(—r) = 2w (ni — v4) , v = €ijiYi Ik, Ji = / dop;.

-

It is obvious that if the twists v; are not integer, then a closed string on the deformed
background is mapped to an open string on AdSs x S°.

The particular case considered in [12] corresponds to Jo = J3 = 0, v; = 0, and as a
result the angles ¢ 5 of the undeformed S? satisfy the following twisted boundary conditions

p=A¢1=01(r) — ¢1(=7),0 = Ada = $2(r) — g2(—1) = 27 (n2 — ¥3.1),
where in fact § plays the role of the deformation parameter. By using the ansatz

o1 = wT + ;(0—v7)+¢(0—v7),

Oy = vT + 2(1(0—1)7') + alo —vT),
X = x(o —v7),



where ¢, a and y satisfy periodic boundary conditions, the authors of [12] found that the
giant magnon string solution can be completely determined from the equations

E 0
& S:2/ do = 2r,

ot
Jl 2 9 Xmax 1 _ X
Jr = = (TU Ay —i—w/ dx ,
\2/7? 1 - UQ Xmin ’X,‘
J Xmax
Jo = \/1\ o T2 Ay +I// dx X, =0, (2.4)
2T Xmin |X |
P n rw vA; /X"‘“ dx
21 -2 1= ). (=]
5+ v vAs /Xma" dx
1 - U2 1 o /U2 Xmin X|X/| ’

where A; and As are parameters related by wA; +vAs+1=0, x =1— r% = 7"%, and

2/w? — 12
XT=""" 2V Otmax = ) (X = Xamin) (X = Xn),
0 < Xmin < X < Xmax < 1, xn <0.

The dispersion relation in the large J; limit can be found from (2.4) as an expansion

P (‘sing;/z)) ’

and up to the leading order it is [12]

in

E—J = \{T)‘ sin(p/2) [1 - 2‘2 sin?(p/2) cos(®) exp <—Sm‘£/2)>] , (2.5)

where

)

d —
23/2 cos3(p/4)

,—m<o<m-—m<p<m.

In the limit ® — 0 the formula (2.5) reduces to the one obtained in [13].

3 Towards finite-size dyonic giant magnon

As explained in the previous section, instead of considering strings on the y-deformed
background AdSs5 x S,?, we can consider strings on the original AdS5 x S° space, but with
twisted boundary conditions. Actually, here we are interested in string configurations living
in the R; x S3 subspace, which can be described by the NR. integrable system [15].



3.1 Strings on R; x S® and the NR integrable system
We start with the Polyakov string action

T
9 /d2§\/—77abGab7 Gap = gun0. XM O XY, (3.1)

Oa = 0/0€", a,b = (0,1),(¢°,¢") = (1,0), M,N = (0,1,...,9),

st =—

and choose conformal gauge Y** = n® = diag(—1,1), in which the Lagrangian and the
Virasoro constraints take the form
Ls =

T
9 (Goo — G11) (3.2)
Goo+G11 =0

. Gy =0. (3.3)

We embed the string in R; x S3 subspace of AdSs x S° as follows
Zy = R0 W = Rrj(r,0)e'® 7)) N "W, = R?,
j=1

where R is the common radius of AdSs and S°, and ¢ is the AdS time. For this embedding,

the metric induced on the string worldsheet is given by

2 2
Gap = —a(aZ()ab)Zo + Z a(aWjab) Wj - R? — Oy tOpt + Z (8a7‘j(9b7’j + r?&aqu@bqu)

J=1 J=1

The corresponding string Lagrangian becomes

L=Ls+ A, r2-1],
j=1

where Ay is a Lagrange multiplier. In the case at hand, the background metric does not
depend on ¢ and ¢;. Therefore, the conserved quantities are the string energy Es and two
angular momenta J;, given by

oL, 0L,
B=— [d J=[d .
7 ! Ua(ao%')

9(0pt)
In order to reduce the string dynamics to the NR integrable system, we use the
ansatz [15]

(3.4)

t(r,0) = w7,1j(71,0) =715(§), $5(1,0) = Wit + fi(§), (3.5)

§ = ao + (371, k,wj,a, 8 = constants.

It can be shown that after integrating once the equations of motion for f,, which gives

1 C,
fcll — o BQ (Tg + ﬁwa> ,C, = constants, (3-6)



one ends up with the following effective Lagrangian for the coordinates r, (prime is used

for d/d€)

2 2
b= (e er oy (C] e )

J=1

+ A Z’I“JQ . (3.7)

J=1

This is the Lagrangian for the NR integrable system [15].
The Virasoro constraints (3.3) give the conserved Hamiltonian Hygr and a relation
between the embedding parameters and the arbitrary constants C}:

02 2
r] + ﬁ2) ( 2 +oz2wJ2 ?)] _a +g2 , (3.8)

2

Hygp = (o® = 3°) Z

7j=1
2
> Cjwj + Br* = 0. (3.9)
j=1
On the ansatz (3.5), E; and J; defined in (3.4) take the form
VA K VA 3 )
E, = 97 o /d{, Jj = 97 0 —ﬁQ /d§ <Oij —|—awj7°j> R (3.10)

where we have used that the string tension and the 't Hooft coupling constant A are related

by TR? = \//\
3.2 Conserved quantities and angular differences
If we introduce the variable

x=1-rf=rj
and use (3.9), the first integral (3.8) can be rewritten as
V= 4w%(1 —u?) {_ 3. (1 —w?) + (1 —v?w?) — u? 9

- a?(1—v?)? 1—u? X
B 1— (1 —|—v2)w2 + ,02[(,11}2 o u2j)2 _32]X v2u232
1 —wu? 1 —u?
4w (1 — u?)
= OZ2E1 _ 1)2)2 (Xmax - X)(X - Xmm)(X - Xn)a (311)
where
B wo Ko Cy
v=— ,u= ,W = ,]=—
o w1 w1 Bwa

Correspondingly, the conserved quantities (3.10) transform to

r 2 Xmax
c_ HZ/ i = (1—-w );1} dx ’
@)y \/1 —u Xmin \/(Xmax - X)(X — Xmin) (X — Xn)
1 Xmax 1 —v? (w? —u?j) — x| d
T = ) [ ( 7) = xJdx , (3.12)
V1= Sy v/ Otmax — X)X = Xmin) (X — Xn)
Xmax — ’U2 y d
g— U (x — v%j) dx

\/1 — u? Xmin \/(Xmax - X)(X - Xmin)(X - Xn) .



Now, let us compute the angular differences

p = Ad1 = ¢1(r) — ¢1(—7),0 = Ada = ¢a(r) — d2(—r) = 27 (n2 — y3J1) .

T r 2 _
b= / dh = a2(fuilv2) / <1 - r1u J> “ (319
_ v /X"‘“ <w2 —uj 1) dx
\/1 — u? min 1—x \/(Xmax - X)(X - Xmin)(X - Xn)7
T e Bwo ' J
6_/_rd§f2_a2(1_v2)/_r <1—T%>d§ (3.14)

uv /Xma" (] > dx
- , 1 :
\/1 —u min X \/(Xmax - X)(X - Xmln)(X - Xn)
The elliptic integrals in (3.12), (3.13) and (3.14) are given in appendix A.

4 Finite-size dyonic giant magnon

First of all, for correspondence with the notations in [12], we fix Kk = a = 1, rename w1 — w,
wg — v, introduce the parameters Ay, Ag, and the functions ¢(§), (&) as follows

Cl = —UAl,CQ = —UAQ,
o
fil§) = 5 €+ 6. o) =, €+0l0).

Then, from (3.12), (3.13) and (3.14) one finds

4K
£ = K(1 —¢)
V(= xn)(1 = 52) (
4K v2
S (1 —v2)y/(1 — xn)(1 — 32) [( ™ Xn) (1+VA2)> Kl =)
—w(l = xn)(1 = 7*)E(1 = €)]
To = AR [(v Ag + vxn) ) K(l1—¢) (4.1)

(1= ) /(1 — xa)(1 - 2)
+v(l—xn)(1 - vz)E(l — 6)] ,

_ 4kv 1+ vA, 02 —1 o) —w .
T - - ) [w(l—xn)WH( g 1=l ) K(1 )],
2kv As 1=
"= I o (1=€))l—c¢€
(1_7}2)\/(1_9(71)(1_62) !(162) <1+Xn13262) <1+Xn1 ~2( ) >
+ UK -],

- 11—

KZQ\/wQ_VZ'

In the above equalities we introduced the new parameters

9 1 — Xmax ~ Xmin — Xn
V7 = JE=

11— Xn Xmax — Xn

instead of Ymax and Xmin-



In order to obtain the finite-size correction to the energy-charge relation, we have to
consider the limit ¢ — 0 in (4.1). The behavior of the complete elliptic integrals in this
limit is given in appendix A. For the parameters in (4.1), we make the following ansatz

v = vg + v1€ + vaelog(e), 0 = Ug + V1€ + Uyelog(e), w =1+ wie,
v = vy + vie + vaelog(e), Ay = Agie, Xn = Xnl€- (4.2)
We insert all these expansions into (4.1) and impose the conditions:
1. p - finite
2. Jo - finite

22 w2 2)3/
3.E-T1 = 2\/11_1;% vo _ (1 212(21_1/(2;3 ’ cos(P)e

From the first two conditions, we obtain the relations

1—v5 — 2 1—v5—
p = arcsin UO\/ vg %o , g = o ,Jo = VO\/ vg %o , (4.3)
\/1 — l/g 1—vg

1—vg
as well as six more equations. The third condition gives another two equations for the

coefficients in (4.2). Thus, we have a system of eight equations, from which we can find all
remaining coefficients in (4.2), except Asj. Ag; can be found from the equation for § to be

(1—vf —15)*?
A9 = —A sin(®),
Uo(l — 1/02) ( )
where A is constant with respect to ®. The equations (4.3) are solved by
Vo sin(p) 0o = cos(p/2), Iz (4.4)

gy =
\/j2 + 4sin’ (p/Q) \/j2 + 4 sin? (p/2)

Replacing (4.4) into the solutions for the other coefficients, one obtains the expressions
given in appendix A.
To the leading order, the equation for [J; gives

2 (jl + \/j22 + 4sin2(p/2)> \/j22 + 4sin?(p/2) sin?(p/2)

=16
e T3 + dsin'(p/2)

Accordingly, to the leading order again, the equation for § reads
-2
VA 1 j1+\/j22+451n (p/2)
21 | ng — + sin(p) = A®. 4.5
i < 2= Vo N 0 2 i) ») (4.5)
Finally, the dispersion relation, including the leading finite-size correction, takes the form

16 sin*(p/2)
\/.722 + 4 sin? (p/2)
2 (4[5 4 Asin/2) ) V[ + 4sin(/2) s (/2
J5 + 4sin’(p/2)

£ =Ty =\ T2+ 4sin(p/2) - cos(®) (4.6)

exp

For Jo = 0, (4.6) reduces to the result found in [12].

-8 —



5 Concluding remarks

In this paper we considered giant magnons with two angular momenta, or dyonic giant
magnons, propagating on ~y-deformed AdSs X Sg, obtained from AdSs x S by means of a
chain of TsT transformations. In the framework of the approach used in [12], instead of
considering strings on the y-deformed background AdSs x S?/, we considered strings on the
original AdS5 x S° space, but with twisted boundary conditions. Restricting ourselves to
the R; x S? subspace, we determined the leading finite-size effect on the dispersion relation.
The obtained dispersion relation is a generalization of the previously known one for the
giant magnons with one angular momentum, found by Bykov and Frolov in [12].

It would be interesting to reproduce the energy-charge relation (4.6) by using the
Liischer’s approach [16]. To this end, we need a generalization of the Liischer’s formulas
for the case of nontrivial twisted boundary conditions.
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A Elliptic integrals, e-expansions and solutions for the parameters

The elliptic integrals appearing in the main text are given by

Xmax dX B
xemin v/ (Xmax — X) (X = Xmin) (X — Xn)
2
K(1—¢),
\/Xmax — Xn ( )

/Xmax XdX _
Xmin \/(Xmax - X) (X - Xmin)(X - Xn)

2xn
K(l—¢€)+42 x — XnE(1 —€),
\/Xmax—Xn ( ) \/Xma Xn ( )

/Xmax dX B
Xmin X\/(Xmax - X)(X - Xmln)(X - Xn)
2 min
I (1 _ Xmingg e> ,
Xmax\/Xmax — Xn Xmax
/Xmax dX B
xmin (1= %) v/ (Xmax = X)(X = Xmin) (X — Xn)

2 max — Xmin
H <_X a X |1 o E> ,
(1 = Xmax) v Xmax — Xn 1 — Xmax
where

_ Xmin — Xn

€ .
Xmax — Xn



We use the following expansions for the elliptic integrals [17]
1 € 9 1 9
K(1-¢) = -, log(¢) (1+4+O(e ))+log(4)—4 (1—log(4)) e+0(e2),
1
E(l-¢) =1—¢ (4—10g(2)> (1—|—O(e))—ilog(e) (1+0(e)),

oo = (5 (- o2} o)

Vv/nlog (}f:;g) —log(16) - V/nlog (}f\\%) —(n+1)log(4)+1

* n—1 2(n—1)>2

e+0(e?)

By using the equality [18]
M(v}m) = T |m) -

where

vy —m
V= < 0m<rv<l,
I/1—1

and the above expansion for II(n|l — €), one can find the following expansion

arctan(\/;—1>
II(1 — |l —¢) =
\/;—1(16
+1 . 2arctan<\/;—1> : (6)
4 \/1_1 %6 \16
(7

4a2\/é — larctan <\/é - 1) +(1—a)2(14+a)+ (1+2a)log (f5))
- $(1 - a) e+ 0(e?),

where 0 < a < 1.
We use the following expansions for the parameters

v = vy + vi€ + voelog(e) Vo + U1€ + Ugelog(e),w = 1 4 wye,

;0=
v = vy + 1€ + voelog(e), As = Asgi€, Xn = Xnl€.

The explicit solutions for the coefficients above are given by

vy = sin(p) , o = cos(p/2), 1y = J2 ,
\/«722 + 4sin®(p/2) \/j22 + 4sin?(p/2)
1 1 . .
U 4(73 + asin' (p/2) { (T2 + 4sin®(p/2))*/? [cos(®) sin(p) sin*(p/2)

x (T3 (log(256) — 4) — 16(log(16) — 1) sin*(p/2) + 873 log(2) sin®(p)

,10,



. . 1
 dsin®(p/2) (7F(08(16) =) + (o(16) ~ Vst p)] = 1y Lo
x [2AT; (4 (T35 + 4sin®(p/2)) (log(4) — 1) sin®(p/2) + sin®(p) (J5 (1 — log(16))
+sin?(p) — log(16) cos(p)(1 — cos(p)))) sin(®)]}
sin?(p/2) )
vy = _8 (j22 N 4sin2(p/2))§(.722 n 4sin4(p/2)) {\/722 + 4sin%(p/2) [4‘724 +6J2—10
+ (15 - 4j22) cos(p) — 2 (3 + j22) cos(2p) + COS(3p)] sin(p) cos(®)
+ 2A 75 [(4j24 + 17j22 + 34) cos(p) — 4 (2 + j22) cos(2p)
— (24 J5) cos(3p) + cos(4p) — 1275 — 25] sin(®) }
~ sin(p/2) 2 2
= J5 + 4sin®(p/2)
8\/j22 + 4sin2(p/2) (j22 + 4sin4(p/2)) {\/ ’
x [(4 (j22 —2) log(2) cos(®) — J$ — 2) sin(p) + (1 + log(16) cos(®))
x (sin®(p)+sin(2p)) ] +8AT> (4 cos(p)+cos(2p) —2J5 —5) log(2) sin?(p/2) sin(®) } ,
~ sin(p/2) 2 -2
= J5 + 4sin”(p/2)
16\/j22 + 4sin?(p/2) (J# + 4sin(p/2)) [\/ ’ !
x (3 =275 — 4cos(p) + cos(2p)) sin(p) cos(P)
—4 AT (4 cos(p)+cos(2p)—2j22+—5) sin?(p/2) sin(®)] ,

2sin(p/2) AJ; sin(p) sin(P) )

w =
1T 72 4 dsind(p/2 T2+ 4sin(p/2)

) (sin2 (p/2) cos(®) +

b — sin?(p/2) 1 .
1 2 (J3 + 4sin*(p/2)) {(jz + dsin (p/2))3/2 [J2 cos(D)

x (9 —2cos(p) (6 + J5 — 8log(2)) — 20log(2) — 475 (log(4) — 1)
(

Asin(p) sin(®)
+ cos(2p) (log(16) + 3)) sin®(p/2)] + J3 + 4sin®(p/2)

— J? (log(256) — 2) — 2 cos(p) (j22 + 10g(256))]} ,

1
275 sin*(p/2) cos(®
4 (\722 + 4sin2(p/2))3/2 (‘722 I 4Sin4(p/2)) { 2 (p/2) (P)

4A sin®(p/2) cos(p/2) sin(®)
T2+ 4sin?(p/2)
X [272‘1 +J3 — 10+ 15c0s(p) — (T3 + 6) cos(2p) + cos(3p)] },
Ag; = —Asin?(p/2) tan(p/2) sin(®),
Xn1 = —sin?(p/2) sin?($/2).

Let us give some details about the derivation of As; and x,1, which are zero for the

[61og(4) + 21og(4) cos(2p)

Vo =

x (54275 — 4cos(p) — cos(2p)) +

undeformed case. In our third condition on p. 8

2\/1—2}2—1/2 (1—1)8—1/3)3/2
E-T = 0, 0 - 21— 12) cos(P)e

— 11 —



we introduced the angle ® to describe in a simple way the change of the finite-size correction
to the dispersion relation due to the y-deformation. However, ® is not an independent new
variable. Solving the equations for our parameters, we found

=g =1 . o L2 L2

Xni == 7 , " sin (®/2) = —sin®(p/2) sin*(P/2), (A1)

— M
i.e. we use ® instead of x,,1.

There is alternative way to obtain the above relation between y,; and ®. After ex-

panding in €, the leading order of the equation for the angle § is given by

5 — As1vg —Xnl —Xnl
= ) 5 2 arctan 2
Xn1V/1 =05 =15\ 1 - 1 T Xm1 1= +xm
120 €
+ lo ( > . A2
2y/1— 02— 12 " \16 (4.2)

Let us point out that the second term in (A.2) is zero for the one-spin case, since vy = 0
means Jo = 0. If we introduce the angle ® as

—Xnl

= arctan N
1— % + Xn1
1-12 n

)

this gives (A.1), and the first term in (A.2) takes the form

A 1— 12
21vo(l = 15) ® csc P. (A.3)
2 2)3/2
(1 — Uy — Vo)

If we impose the natural condition (A.3) to be an angle proportional to the angle ®,
this gives

(1o - )

Ao = —A
2 vo(l — 1/3)

sin(®) = —Asin?(p/2) tan(p/2) sin(P),
where A does not depend on .
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