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We derive the 3-point correlation function between two giant magnons heavy string states and the 
light dilaton operator with zero momentum in the η-deformed AdS5 × S5 valid for any J1 and η in 
the semiclassical limit. We show that this result satisfies a consistency relation between the 3-point 
correlation function and the conformal dimension of the giant magnon. We also provide a leading finite 
J1 correction explicitly.
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1. Introduction

The AdS/CFT duality [1] between string theories on curved space–times with anti-de Sitter subspaces and conformal field theories in 
different dimensions has been actively investigated in the last years. A lot of impressive progress has been made in this field of research 
based mainly on the integrability structures discovered on both sides of the correspondence (for recent review on the AdS/CFT duality, 
see [2]). For the most studied case of the N = 4 super Yang–Mills theory, the anomalous dimensions of gauge-invariant single-trace 
operators match non-perturbatively with the string energies in the curved AdS5 × S5 background. Integrability provides tools to solve the 
finite-volume spectral problem exactly.

After these successes, one direction of interesting development is to generalize the duality to larger theories which include the original 
AdS/CFT as a special case and the other is to go beyond the spectral problem by computing general correlation functions, in particular, the 
three-point functions, or the structure constants.

An interesting development for the former direction is to study the string theory on the η-deformed AdS5 × S5 background [3]. The 
bosonic part of the superstring sigma model Lagrangian on this η-deformed background and perturbative worldsheet S-matrix were 
obtained in [4]. The TBA for spectrum and explicit dispersion relation for giant magnon [5] have been derived in [6]. Finite-size effect 
on the giant magnon spectrum has been computed in [7]. For three-point correlation functions, quite a lot of interesting results on both 
strong and weak coupling regions were accumulated although non-perturbative results are much more difficult than the spectral problem.

In this letter, we compute the three-point correlation function of two giant magnon heavy operators with finite-size J1 and a single 
dilaton light operator of the string theory with the η-deformed AdS5 × S5 background [3]. Then, we show that this result is consistent 
with the dispersion relation of the finite-size giant magnon solution obtained in [7] using Mathematica code.

The paper is organized as follows. In Section 2, we derive the exact semiclassical structure constant valid for any J1 and η and prove its 
consistency. In Section 3, we expand it for the case of J1 � T (T is the tension of string) and obtain explicit expression. A brief conclusion 
is in Section 4 and a short Mathematica code for the consistency condition is provided in Appendix A.

2. Exact semiclassical structure constant

According to [8], the three-point functions of two “heavy” operators and a “light” operator can be approximated by a supergravity 
vertex operator evaluated at the “heavy” classical string configuration:

〈V H (x1)V H (x2)V L(x3)〉 = V L(x3)classical.
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For |x1| = |x2| = 1, x3 = 0, the correlation function reduces to

〈V H (x1)V H (x2)V L(0)〉 = C123

|x1 − x2|2�H
.

Then, the normalized structure constant

C3 = C123

C12

can be found from

C3 = c�V L(0)classical, (2.1)

where c� is the normalized constant of the “light” vertex operator. Actually, we are going to compute the normalized structure constant 
(2.1). For the case under consideration, the “light” state is represented by the dilaton with zero momentum.

According to [9], C3 for the infinite-size giant magnons and dilaton with zero momentum in the undeformed AdS5 × S5 is given by

C3 = cd
�

+∞∫
−∞

dτe

cosh4(κτe)

+∞∫
−∞

dσ
(
κ2 + ∂ XK ∂̄ XK

)
= 4cd

�

3κ

+∞∫
−∞

dσ
(
κ2 + ∂ XK ∂̄ XK

)
, (2.2)

where t = κτe is the Euclidean AdS time and the term ∂ XK ∂̄ XK is proportional to the string Lagrangian on S2 computed on the giant 
magnon solution living in the Rt × S2 subspace.

Since here we are interested in finite-size giant magnons, we have to replace

+∞∫
−∞

dσ →
+L∫

−L

dσ = 2

θmax∫
θmin

dθ

θ ′ ,

where L gives the size of the giant magnon and θ is the non-isometric angle on the two-sphere [11].
Going to the η-deformed AdS5 × S5 case, we have to compute the term ∂ XK ∂̄ XK for this background, which is proportional to the 

string Lagrangian on S2
η for finite-size giant magnons:

LS2
η

= − T

2
∂ XK ∂̄ XK ,

where XK = (φ1, θ) are the isometric and non-isometric string coordinates on S2
η correspondingly.

Working in conformal gauge and applying the ansatz

φ1(τ ,σ ) = τ + F1(ξ), θ(τ ,σ ) = θ(ξ), ξ = ασ + βτ , α,β − constants,

one finds

LS2
η

= − T

2

{
(α2 − β2)

θ ′ 2

1 + η̃2(1 − χ)
+ (1 − χ)

[
(α2 − β2)(F ′

1)
2 − 2β F ′

1 − 1
]}

, (2.3)

where η̃ is related to the deformation parameter η according to [4]

η̃ = 2η

1 − η2
, (2.4)

and a new variable χ is defined by

χ = cos2 θ.

The prime here and below is a derivative d/dξ . The string tension T for the η deformed case is related to the coupling constant g by

T = g
√

1 + η̃2. (2.5)

The first integrals of the equations of motion F ′
1 and θ ′ can be written as

F ′
1 = β

α2 − β2

(
− κ2

1 − χ
+ 1

)
, (2.6)

θ ′ 2 = 1 + η̃2(1 − χ)

(α2 − β2)2

[
(α2 + β2)κ2 − β2κ4

1 − χ
− α2(1 − χ)

]
. (2.7)

Inserting (2.6), (2.7) into (2.3), we obtain:

LS2
η

= − T β2κ2 + α2(κ2 − 2(1 − χ))

2 2
. (2.8)
2 α − β
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Now we introduce the new parameters

v = −β

α
, W = κ2,

which leads to

LS2
η

= − T

2

(1 + v2)W − 2(1 − χ)

1 − v2
. (2.9)

Therefore, for the case at hand, the normalized structure constant takes the form

C η̃
3 = 8cd

�

3
√

W

χp∫
χm

dχ

χ ′

[
W + (1 + v2)W − 2(1 − χ)

1 − v2

]
, (2.10)

where

χm = χmin, χp = χmax.

One can rewrite Eq. (2.7) as

χ ′ = 2η̃

1 − v2

√
(χη − χ)(χp − χ)(χ − χm)χ, (2.11)

where [7]

χm = 1 − W , χp = 1 − v2W , χη = 1 + 1

η̃2
. (2.12)

Using this, we can express all the results in terms of χp, χm by eliminating v , W .

Replacing (2.11) in (2.10) and using (2.12), we can express C η̃
3 by

C η̃
3 = 8cd

�

3η̃
√

1 − χm

χp∫
χm

√
χ − χm

(χη − χ)(χp − χ)χ
dχ. (2.13)

The integral can be easily expressed by K and �, the complete elliptic integrals of the first and the third kind, respectively, are as follows:

C η̃
3 = 16cd

�

3η̃

χm√
χp(1 − χm)(χη − χm)

[
�

(
1 − χm

χp
,1 − ε

)
− K (1 − ε)

]
, (2.14)

where we introduced a short notation ε by

ε = χm(χη − χp)

χp(χη − χm)
. (2.15)

Eq. (2.14) is the main result of this paper, which is an exact semiclassical result for the normalized structure constant C η̃
3 valid for any 

value of η̃ and J1. Here, χp and χm are determined by the angular momentum J1 and world-sheet momentum p from the following 
equations1:

J1 = 2T

η̃

1√
χp(χη − χm)

[
χpK (1 − ε) − χm�

(
1 − χm

χp
,1 − ε

)]
, (2.16)

p = 2χm

η̃

√
1 − χp

χp(1 − χm)(χη − χm)

[
K (1 − ε) − �

(
χp − χm

χp(1 − χm)
,1 − ε

)]
. (2.17)

The world-sheet energy of the giant magnon is given by

E = 2T

η̃

χp − χm√
χp(1 − χm)(χη − χm)

K (1 − ε) . (2.18)

One of nontrivial checks is that the g derivative of � = E − J1 should be proportional to the normalized structure constant C η̃
3 since 

the g derivative of the two-point function inserts the dilaton (Lagrangian) operator into the two-point function of the heavy operators 
[10]. This can be expressed by

C η̃
3 = 8cd

�

3
√

1 + η̃2

∂�

∂ g
. (2.19)

1 We express J1 and p in terms of different but equivalent combinations of elliptic functions compared to Eqs. (3.23) and (3.25) in [7].
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To check that Eqs. (2.14), (2.16), and (2.18) satisfy Eq. (2.19), we use the fact that

∂ J1

∂ g
= ∂ p

∂ g
= 0 (2.20)

as noticed in [11] for the case of undeformed giant magnon. From these, we can obtain the expressions for ∂χp/∂ g and ∂χm/∂ g which 
can be inserted into ∂�/∂ g . The η-deformed case involves much more complicated expressions which can be dealt with Mathematica. 
In Appendix A, we provide our Mathematica code which confirms that the structure constant C η̃

3 in Eq. (2.14) do satisfy the consistency 
condition (2.19) exactly.

In the limit η̃ → 0 with η̃2χη → 1, Eq. (2.14) becomes

C0
3 = 16cd

�

3

√
χp

1 − χm
[E (1 − ε) − εK (1 − ε)] , ε = χm

χp
(2.21)

where we used the identity (1 − a)�(a, a) = E(a). This is the structure constant of the undeformed theory derived in [11].

3. Leading finite-size effect on C η̃
3

It is straightforward to compute a leading finite-size effect on C η̃
3 for J1 � g by the limit ε → 0 in (2.14).

First we expand the parameters χp , W and v for small ε as follows:

χp = χp0 + (χp1 + χp2 logε)ε,

W = 1 + W1ε,

v = v0 + (v1 + v2 logε)ε. (3.1)

Inserting into Eq. (2.14), we obtain

C η̃
3 ≈ 16cd

�

3η̃2

√(
1 + 1

η̃2

)
χp0

{√
(1 + η̃2)χp0 arctanh

η̃
√

χp0√
1 + η̃2

−
[

W1

2

√
(1 + η̃2)χp0 arctanh

η̃
√

χp0√
1 + η̃2

+ η̃

4
(
1 + η̃2(1 − χp0)

)
×
(
(1 + η̃2)(χp0 − 2χp1) − 4

(
(1 + η̃2)χp0 + 2W1

(
1 + η̃2(1 − χp0)

))
log 2

)]
ε

− η̃

4
(
1 + η̃2(1 − χp0)

) (((1 + η̃2)(χp0 − 2χp2) + 2W1

(
1 + η̃2(1 − χp0)

)))
ε logε

}
. (3.2)

In view of Eqs. (2.12) and (2.15), we can express all the auxiliary parameters in terms of v (or its coefficients v0, v1, and v2):

χp0 = 1 − v2
0, χp1 = 1 − v2

0 − 2v0v1 − (1 − v2
0)

2

1 + η̃2 v2
0

, χp2 = −2v0 v2, W1 = − (1 + η̃2)(1 − v2
0)

1 + η̃2 v2
0

. (3.3)

This leads to

C η̃
3 ≈ 16cd

�

3η̃

{
arctanh

η̃
√

1 − v2
0√

1 + η̃2
+ 1

4
√

(1 + η̃2)(1 − v2
0)
(
1 + η̃2 v2

0

)2

×
[
(1 + η̃2)

⎛
⎜⎝(1 − v2

0)
(

1 + η̃2 v2
0

)⎛⎜⎝2
√(

1 + η̃2
)
((1 − v2

0)arctanh
η̃
√

1 − v2
0√

1 + η̃2
− η̃ log 16

⎞
⎟⎠

− η̃
(

1 − v0(3v0 − 2v3
0 − 4v1 + v0(1 − v2

0 − 4v0 v1)η̃
2)
))]

ε

+ η̃(1 + η̃2)(1 − v2
0 − 4v0v2)

4
√

(1 + η̃2)(1 − v2
0)(1 + η̃2 v2

0)

ε logε

}
. (3.4)

To fix v0, v1, and v2, one can use the small ε expansion of the angular difference

�φ1 = φ1(τ , L) − φ1(τ ,−L) ≡ p,
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where we identified the angular difference �φ1 with the magnon momentum p on the worldsheet. The result is [7]

v0 = cot p
2√

η̃2 + csc2 p
2

, (3.5)

and

v1 = v0(1 − v2
0)
[
1 − log 16 + η̃2

(
2 − v2

0(1 + log 16)
)]

4(1 + η̃2 v2
0)

, v2 = 1

4
v0(1 − v2

0). (3.6)

By using (3.5), (3.6) in (3.4), one finds

C η̃
3 ≈ 16cd

�

3η̃

{
arcsinh

(
η̃ sin

p

2

)
+ (1 + η̃2) sin2 p

2

4
√

η̃2 + csc2 p
2

×
[(

2

√
η̃2 + csc2 p

2
arcsinh

(
η̃ sin

p

2

)
− η̃(1 + log 16)

)
ε + η̃ε logε

]}
. (3.7)

The expansion parameter ε in the leading order is given by [7]

ε = 16 exp

⎡
⎣−

(
J1

g
+ 2

√
1 + η̃2

η̃
arcsinh

(
η̃ sin

p

2

))√√√√ 1 + η̃2 sin2 p
2(

1 + η̃2
)

sin2 p
2

⎤
⎦ . (3.8)

Here we used Eq. (2.5) for the string tension T .
The final expression for the normalized structure costant is given by

C η̃
3 ≈ 16cd

�

3η̃

{
arcsinh

(
η̃ sin

p

2

)
− 4

η̃(1 + η̃2) sin3 p
2√

1 + η̃2 sin2 p
2

[
1 + J1

g

√
η̃2 + csc2 p

2

1 + η̃2

]

× exp

⎡
⎣−

(
J1

g
+ 2

√
1 + η̃2

η̃
arcsinh

(
η̃ sin

p

2

))√√√√ 1 + η̃2 sin2 p
2(

1 + η̃2
)

sin2 p
2

⎤
⎦}. (3.9)

Let us point out that in the limit η̃ → 0, (3.9) reduces to

C3 ≈ 16

3
cd
� sin

p

2

[
1 − 4 sin

p

2

(
sin

p

2
+ J1

g

)
exp

(
− J1

g sin p
2

− 2

)]
,

which reproduces the result for the undeformed case found in [11]. Another check is that this satisfies Eq. (2.19) with � computed in [7]

� ≡ E − J1 ≈ 2g
√

1 + η̃2

{
1

η̃
arcsinh

(
η̃ sin

p

2

)
− 4

(1 + η̃2) sin3 p
2√

1 + η̃2 sin2 p
2

× exp

⎡
⎣−

(
J1

g
+ 2

√
1 + η̃2

η̃
arcsinh

(
η̃ sin

p

2

))√√√√ 1 + η̃2 sin2 p
2(

1 + η̃2
)

sin2 p
2

⎤
⎦
}

. (3.10)

4. Concluding remarks

Here we obtained the exact semiclassical 3-point correlation function between two finite-size giant magnons “heavy” string states and 
the “light” dilaton operator with zero momentum in the η-deformed AdS5 × S5. It is given in terms of the complete elliptic integrals of 
the first and third kind. We proved the consistency of our result by taking a derivative of the conformal dimension w.r.t. the coupling 
constant. We also provided the leading finite-size effect expansion of the structure constant.

It will be interesting to compute other three-point correlation functions of the η-deformed background such as HHH to which our 
result may be useful.
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Appendix A. The Mathematica code for the consistency check (Eq. (2.19))

J [g−] := 2T

η
√

(xn − xm[g])xp[g](
xp[g]EllipticK

[
(xp[g] − xm[g])xn

(xn − xm[g])xp[g]
]

− xm[g]EllipticPi

[
1 − xm[g]

xp[g] ,
(xp[g] − xm[g])xn

(xn − xm[g])xp[g]
])

;

p[g−] := 2xm[g]
η

√
1 − xp[g]

(1 − xm[g])(xn − xm[g])xp[g](
EllipticK

[
(xp[g] − xm[g])xn

(xn − xm[g])xp[g]
]

− EllipticPi

[
xp[g] − xm[g]

(1 − xm[g])xp[g] ,
(xp[g] − xm[g])xn

(xn − xm[g])xp[g]
])

;

En[g−] := 2T (xp[g] − xm[g])
η
√

(1 − xm[g])(xn − xm[g])xp[g] EllipticK

[
(xp[g] − xm[g])xn

(xn − xm[g])xp[g]
]

;

T =
√

1 + η2 g;

Eq1 = D[ J [g], g] == 0;
Eq2 = D[p[g], g] == 0;
sol = Solve[{Eq1,Eq2}, {D[xm[g], g], D[xp[g], g]}];

xpd = D[xp[g], g]/.sol[[1]];
xmd = D[xm[g], g]/.sol[[1]];

threept = 8c

3
√

1 + η2
FullSimplify[D[En[g] − J [g], g]/.{D[xp[g], g] → xpd, D[xm[g], g] → xmd}]

16c
(
−EllipticK

[
xn(−xm[g]+xp[g])
(xn−xm[g])xp[g]

]
+ EllipticPi

[
1 − xm[g]

xp[g] ,
xn(−xm[g]+xp[g])
(xn−xm[g])xp[g]

])
xm[g]

3η
√

(−1 + xm[g])(−xn + xm[g])xp[g]
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