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String solutions in AdS; x $3 x T* with NS-NS B-field
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We develop an approach for solving the string equations of motion and Virasoro constraints in any
background that has some (unfixed) number of commuting Killing vector fields. It is based on a specific
ansatz for the string embedding. We apply the above-mentioned approach for strings moving in AdS; x
§3 x T* with a 2-form NS-NS B-field. We succeeded to find solutions for a large class of string
configurations on this background. In particular, we derive dyonic giant magnon solutions in the R, x S°
subspace and obtain the leading finite-size correction to the dispersion relation.
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I. INTRODUCTION

A very important development in the field of string
theory has been achieved for the case of AdS/CFT duality
[1] between strings and conformal field theories in various
dimensions. The most developed case is the correspon-
dence between strings living in AdSs x §° and N =4
SYM in four dimensions. Another example is the duality
between strings on a AdS, x CP? background and N = 6
super Chern-Simons-matter theory in three space-time
dimensions. The main achievements in the above examples
are due to the discovery of integrable structures on both
sides of the correspondence. Many other cases have been
considered also [2].

Typically, classical string solutions provide dual CFT states
whose conformal dimensions are identified with energies
of the string configurations. (See a review by [3].) One of the
frequently studied string states in AdS/CFT duality is a giant
magnon that lives on a §? subspace of the string target
space [4]. This state is important because it corresponds to
fundamental excitations on the world sheet whose S matrix
is at the core of the nonperturbative integrability.

For the case of AdS;/CFT, duality [5-26], a large
coupling constant (large string tension) limit plays a
particularly important role since there are still not much
understanding on the CFT side. (For a recent revew, see
[27].) One interesting feature of this duality is the existence
of nontrivial B fields in the string action due to a NS-NS flux
and its effect on the classical string solutions. Here, we will
focus on the giant magnon solution for the relatively simpler
background geometry of AdS; x $3 x T* with the NS-NS B
fields. Our main result is to compute the finite-size correc-
tion for the giant magnon dispersion relation which can
provide a stringent test for the world-sheet S matrix.
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The paper is organized as follows. In Sec. II we present
our general approach to string dynamics in curved back-
grounds with the B-fields. In Sec. III we apply it to strings
moving in AdS; x §? x T* with the NS-NS B-field back-
ground. In Sec. IV we restrict ourselves to a giant magnon
solution and derive the dispersion relation, including the
leading finite-size effect on it. Section V is devoted to our
concluding remarks.

II. STRINGS IN CURVED BACKGROUNDS WITH
A B-FIELD: THE GENERAL APPROACH

Considering string dynamics in curved backgrounds
with a B-field, we develop an approach that will allow
us to obtain exact string solutions in sufficiently general
string theory target spaces.

A. Bosonic string action, equations
of motion and constraints

In our further considerations, we will use the Polyakov
type action for the bosonic string in a D-dimensional
curved space-time with metric tensor gy (x), interacting
with a background 2-form gauge field b,y (x) via a Wess-
Zumino term,

SP = /d2§£P,
1
‘CP - _z (T\/ _yym”Gmn - Qemann)?

g = (8.8 = (r,0),m,n=0,1,
where

Gmn = amXManXNgMNv
B,, = amXMan)(NbMNv

(9,, = 8/9E". M.N=0,1,....D—1)
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are the fields induced on the string world sheet, y is the
determinant of the auxiliary world-sheet metric y,,,, and
y™" is its inverse. The position of the string in the back-
ground space-time is given by xM = XM (&m); T = 1/2zd
and Q are the string tension and charge respectively. If we
consider the action S” as a bosonic part of a supersym-
metric one, we have to put Q = £7. In what follows,
Q=T.

The equations of motion for X following from S are

= 9k [On (/=17 0,X5) 4+ /=17 Ty 0 XM 0, X"

1
= EHLMNE"’"GmXManXN, (21)
where (9, = 0/0xM),

1
Uy = 9oxlhiy = 5 (Omgne + Ongur — OLgmn)-

Hpyn = 0pbyy + Oybyr + Onbry

are the components of the symmetric connection corre-
sponding to the metric gy and the field strength of the
gauge field b,,y, respectively. The constraints are obtained
by varying the action S¥ with respect to 7,,,:

5, SF=0= (Mym —2pkmyimG, =0. (2.2)

B. Gauge choice and ansatz

In what follow we will use conformal gauge y™" =
" — diag(—1,1) in which the string Lagrangian, the
Virasoro constraints and the equations of motion take
the following form:
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L ——(Goo—Gn +2By,),

Gy + G =0, Gy =0,
9.k[(95 = O XK + Ty (9o XM 0 XN — 9, X0, XN))]

Now, let us suppose that there exists some number of
commuting Killing vector fields along part of the XY
coordinates and split X™ into two parts,

M = (X,M,Xa)’

where X*# are the isometric coordinates and X¢ are the
nonisometric ones. The existence of isometric coordinates
leads to the following conditions on the background fields:

8ﬂgMN = O, 8ﬂbMN =0. (24)
Then from the string action, we can compute the conserved
charges,

oL

o= | 5o

(2.5)

under the above conditions.
Next, we introduce the following ansatz for the string
embedding
Xt (z,0) =
X%(z,0)

Az + X*(ao + pr),

= X%(ao + pr), (2.6)
where A¥, a, f are arbitrary parameters. Further on, we will
use the notation £ = ao + fz. Applying this ansatz, one can
find that the equalities (2.3), (2.5) become

L= g —(a® = ") gun dféM djl(; + 20 (Bgun + ab, )ddX; + A ANg,, |, (2.7)

Goo + Gi1 = (& + ) gun dj;; d:;;/ +2pN g dng + AMAYg,, =0, (2.8)

= afgun dfl;M d:;(; MgﬂN d;fN =0, (2-9)

- (0'2 _ﬂz) 9Lk JCZ(ZK + T un dj: djl(;] +2pNT, MN dj; AA'T = = al Hp,n dj: (2.10)

T ax
Qll :;/dg[(ﬂgﬂN—Faby )—+Abg;w .

v N
i (2.11)

Our next task is to try to solve the equations of motion (2.10) for the isometric coordinates, i.e. for L = A. Due to the
conditions (2.4) imposed on the background fields, we obtain that
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1 1
F/l,ub = E (augh/l + abgaﬂ)’ F/l.;m = Eaagui F/l,,uy = 07

Hu, = 0yby, + Opbyy, Hju = 0,b)y, H;,, =0.
By using this, one can find the following first integrals for X+,

df(ﬂ 1 d}}va

— = W (C, —alNb AN — ¢ Gpg —— 2.12
df (12—,32[9 ( v a vp>+ﬂ ] g! Gva d.f ’ ( )
where C, are arbitrary integration constants. Therefore, according to our ansatz (2.6), the solutions for the string coordinates
X*# can be written as

Xt (t,0) = NVt + 1/ délg*(C, — alN’b,,) + pAF] - /g"”gmdf(“(é). (2.13)

a2 _ ﬂ2
Now, let us turn to the remaining equations of motion corresponding to L = a, where

1 1
Iﬂa,ﬂb = _5 (aagby - abgau)v Fa,/w = _Eaag/,w» Ha/w = aabﬂw Haﬂb = _aabbﬂ =+ abba/r

Taking this into account and replacing the first integrals for X* already found, one can write these equations in the form
(prime is used for d/d¢&)

(@ = ) [hap X" + 1", XVX] = 20,,A,X" - 9,U. (2.14)
where
1
hab = Yab — gaﬂgﬂygvb’ Fz,bc = E (abhca + achba - aazhbc) (215)
Ay = 99" (C, — alN’b,,) + aN'D,,, (2.16)
1/2 P v A 2AHAY
U = m (C,—aNb,, )¢ (C, —al'b,,;) + a* A A g, ]. (2.17)

One can show that the above equations for X* can be derived from the effective Lagrangian,

1 ~ )~ ~
Le(E) = 5 (@ =)y, X XY + A XY —U.
The corresponding effective Hamiltonian is
1 ~ L
Heff(é:) — E(QZ _ﬂZ)habXa Xb 4 U,

or in terms of the momenta p, conjugated to Xe,

H(E) =5 (o = B2)h* (p, — Ad)(py — Ap) + U.

N —

The Virasoro constraints (2.8), (2.9) become

1 ey
E(oz2 ~ P XX +U =0,  aAC,=0. (2.18)
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Finally, let us write down the expressions for the conserved charges (2.11),

T a
Oy = a? — / dg |:'BC +al’g,, + b, g7 (C, - ah’ b,i) + (a? _ﬂz)( bug” g/m)X : (2.19)

III. STRINGS IN AdS; x S3 x T* WITH NS-NS B-FIELD

The background geometry of this target space can be written in the following form':

ds?xds = —(1 + r2)d* + (1 + r?)~'dr? + r?d¢?, b,y = qr’.
ds?, = d6” + sin’0d¢? + cos*0dgp3. by, 4, = —qcos?0,
ds?, = (dg')?, i=1,234

Now, we apply the formulation given in Sec. II. According to our notations,

= <t7¢v ¢17¢2’(pi) X = (r’ 9)’
<9mg¢¢ 9., 9¢2¢2,ng) Gab = (Grr+ 9o0)- Jan = 0, hab = Gav,

b”” - <bt¢’ b¢1¢2)’ =0,
- (3.1)
where
= ()" =1+, gy = (") =1 gy = (ghD)T = sin?,
o = (g7%2)7! = cos0, gij = (¢! = "
( ) (1 +r )_ S Joo = 1’
bn/» qr? by, p, = —qcos6. )

Since g,, = 0, the solutions (2.13) for the coordinates X* are simplified to

- 1

XH(z,0) = M1+ XH(&) = M1+ — 7 / dé[g*(C, — aN’b,,) + pA], (3.3)
a —

where ¢ and b,, must be replaced from above.

Now, we want to find the solutions for the nonisometric string coordinates X“. To this end we have to solve Eqs. (2.14),
which in the case at hand reduce to

(02 - ﬁz)[gabib” + Fa.bcib/j(c,] + aa Z Ub = 0’ (34)
b=r,0

where the scalar potential U in (2.17) is represented as a sum of two parts: U, = U,(r) for the AdS; subspace and

Uy = Uy(0) for the S* subspace of the background.
Taking into account that the metric g, is diagonal, one can find the following two first integrals of (3.4):

c,-2U,
Y@ )

It follows from here that

'"The common radius R of the three subspaces is set to 1, and ¢ is the parameter used in [25].

066010-4



STRING SOLUTIONS IN AdS; x S3 x T* ... PHYSICAL REVIEW D 90, 066010 (2014)

ge =X (3.6)

C,—2U,
(%) Gaa

So, we have two different expressions for d&, which obviously must coincide. This is a condition for self-consistency.
It leads to

(3.7)

dr do
fc,—u, [Co—2U,
Grr Yoo
which actually gives implicitly the “orbit” r(6), i.e. how the radial coordinate » on AdS; depends on the angle @ in S°.

Now, we have to check if the first integrals for X“(£) are compatible with the Virasoro constraints (2.18). Replacing X' “in
the first of them, one finds

C,+Cy=0.
Thus, we found all first integrals of the string equations of motion, compatible with the Virasoro constraints, which

reduce to algebraic relations between the embedding parameters and the integration constants.
Now, let us give the expressions for the conserved charges (2.19), corresponding to the isometric coordinates,

—Q,EES_aziﬁ2 [(aA’—éC,—qC¢>/dé—l—a(l—qz)A‘/dfrz], (3.8)
0y=5 = |(heyrac v qant) [der (=@t [der - e+ dart) [1E5] 69)
=T pl\a? qt: T4 q qC:+q 12 .
0 =J—L éc +aA? — gC, dé — (1 — g*)aAh 20d
o = l—az_ﬁz a(/1| a qC ¢, 5 ( q)a cos 6’
_ T |(k ’ 2) A 2 b dg
Q¢2=J2—m 5C¢2—Q(C¢l+q(ZA 2) d€+(1—q )(ZA 2 COS 9d§+q(C¢1—|—qu ~) m s
(3.10)
T B .
QiEJiT:az—ﬂz <aC,-+aA15,-j)/d§. (3.11)

Here we used the following notations: E; is the string energy, S is the spin in AdS3, J; and J, are the two angular momenta
in $3, while J7 are the four angular momenta on T*.

The explicit expressions for the string coordinates, the “orbit” (), and the conserved charges in this background are
given in the Appendix.

IV. GIANT MAGNON SOLUTION

The giant magnon string solution was found in [4]. It is a specific string configuration, living in the R, x S? subspace of
AdSs x $3 with an angular momentum J, which goes to co. A similar configuration, the dyonic giant magnon, has been
obtained in [28] which moves in R, x S® subspace with two angular momenta J,J, with J; — co. These classical
configurations have played an important role in understanding exact, quantum aspects of the AdS/CFT correspondence. In
particular, corrections due to a large but finite J; obtained in [29] and [30] can provide a nontrivial check for the exact
world-sheet S matrix.

In this section we provide similar string solutions in AdS; x S x T* with NS-NS B-field for a large but finite J;. A giant
magnon solution with infinite angular momentum has been constructed in a recent paper [25] with a dispersion relation,’

“The terms proportional to ¢ are due to the nonzero B-field on 3.
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E,—-J = \/(Jg — qTAQ,)? +4T*(1 — ¢*)sin® % (4.1)

This relation is already quite different from those for the ordinary (dyonic) giant magnons. We will show that there exist
even bigger differences for the finite-size corrections.

A. Exact results

In order to consider dyonic giant magnon solutions, we restrict our general ansatz (2.6) in the following way:

X' =t=xr, ie. A =k, X'(&) =0,
X'=¢=0, ie. A?=0, X?(¢&)=0
X' =r=X(&=0,
XM = ¢, = w7+ X (&), ie. AY =,
X% =gy = wyr 4+ XP(8), ie. A = w,,
X0 =0=X%¢), X =¢' =0.

As a result, we can claim that
Ct = ﬂK’

. vi
which comes from ddig =0.

Now, we can rewrite the first integrals for X* on S as

axh 1
TR |:(C¢1 + gaw,) = + po; — (]awz] .
dx?: 1 [Cy,
dé :az_ﬂz < )(_ +ﬂw2—qaa}1>, (42)

where y = cos? 6.
The first Virasoro constraint, which in the case under consideration is the first integral of the equation of motion for 6,

reduces to

(@ - )

— (w3 — 0} )y — o %] . (4.3)

(%Y = 2t + oy - Cor ol (Com o)
2

dé -y X

Also, the second Virasoro constraint becomes
(1)1C¢1 + w2C¢2 +ﬂK2 = O (44)

Taking (4.4) into account, we can rewrite (4.3) as

(;%)2:4(1‘qz)%ﬁmw)(){—m)(ﬂr—xn% (4.5)

where
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—(VPW+ (W+u? =2+ ¢*) + 2q(uvW + K(1 — u?))

Xp T Xm tXn = (1_q2)(1_u2) ’
_ (AWK — (oW —uK)’ — 1 +2gK
XpXm +)(p)(n T Xmdn = (l_qZ)(l_uz) ’
K2
ok 4.6
XpXmXn (1_q2)(1_u2) ( )

and we introduced the notations,

v:_g’ :@’ W:(L)z’ K_C¢z
(04 (O] (] awg
This leads to
a 1—2? dy
dé = . (4.7)

20)1\/1— 1—I/t \/(Zp ()( )(m)()( )(n)

Integrating (4.7) and inverting &(y) to y(&) = cos?[0(&)], one finds the following explicit solution,

1-¢*)(1—u? “An -
V=) (1 =), x)wl(g_m),u o (4.8)

1_1)2 Xp —Xn

x = (xp —xn)DN?

where DN is one of the Jacobi elliptic functions.
Next, we integrate (4.2), and according to our ansatz, obtain that the solutions for the isometric angles on S° are given by

2 W-K = — Xm Xp—m
¢ = o T+ [v ut qMH(arcsin Ap X ,—)(p A 7)(1) “ >
VU= =), - b 17 Vitp =dtn =0 2y =20
—(v+ qu)F(arcsin = Yo~ X Xp Zm)] (4.9)
Xp —Xm Xp —Xn

2 K =
L{—H(arcsin A 1,1 Lm )(p Zm)
VA== 1)z, =7, W O

—(uv + q)F<arcsin \ /; ; j{(p f{mﬂ (4.10)
m Ap n

where F and IT are the incomplete elliptic integrals of the first and third kind.
By using (4.7), one can find also the conserved quantities, namely, the string energy E, and the two angular momenta
Ji, Jo,

) = 0T+

(1 - )vW
V=) (1 =), - 7)

Ji= = (1= W + K(uv - g)JK(1 —¢)

V=1 =), - 2)
(1= ) K1 =€) + (1, =z )E(1 = )]}, (4.12)

E, =2T K(l—e), (4.11)
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), = 2 {0-@ulnk1-0)+ 6, =180 - )
V=)=, = 1)
— [Kv + q(vW — Ku) + q*u]K(1 — ¢) +qu;£<)b;+qMH<_)(lp:;(n (1-e),1 —e> }, (4.13)

where K, E and II are the complete elliptic integrals of the first, second and third kind, and ¢ is defined as

o —AXm " Xn (4.14)

Xp —Xn
We will need also the expression for the angular difference A¢;, which is found to be

2 oW — Ku + qu Xp = Xn
Adr = IT{ — l—e€),1—¢)—(v+quK(l-¢)l. 4.15
N TR S (Feru-a-e)-Crama-al. @

The expressions (4.11), (4.12), (4.13), (4.15) are for the finite-size dyonic strings living in the R, x S° subspace
of AdS; x §3 x T*.

B. Leading finite-size effect on the dispersion relation

In order to find the leading finite-size effect on the dispersion relation, we have to consider the limit € — 0, since € = 0
corresponds to the infinite-size case. In this subsection we restrict ourselves to the particular case when y,, = K = 0.” Then
the third equation in (4.6) is satisfied identically, while the other two simplify to

N 2—(1+ )W —u? = 2q(uvW +9)
X Am = )
! (1-¢*)(1-u?)

(1= W)(1 - *W)

XpXm = - (1—) (4.16)
and € becomes
¢ :%. (4.17)
The relevant expansions of the parameters are
Xp =xpo + p1 Tapplogle))e,  W=1+We,
v = vy + (v; + vylog(e))e, u = uy+ (u; + uylog(e))e. (4.18)

Replacing (4.17), (4.18) into (4.16), one finds the following solutions in the small e limit,

As we will see later on, this choice allows us to reproduce the dispersion relation in the infinite volume limit [25].
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P 1 — v} — uf —2q(ugvy +19)
70 (1=¢*)(1 = ug) ’

Vo + qug ) q 3 2 2 2
= - 1 —ov5—uj—2 = 1+ 3v5) — vo(1 —2ug —2
Xpi (1= @21 - D)1 -2 [( Vg — Uy Q(”o”o + 2))(1’0 + quo(1 + 3v5) — vo( uy —24°))

201 (1 =) (1 — )y + (stor + q>u1>]

2(wo + quo) (1 = ug) vy + (oo + q)uy)
(1-¢*)(1 - up)
(1 = g — ug — 2q(ugvg +3))°
(1=¢*)(1 = ug)(1 = v5)

The coefficients in the expansions of v and u will be obtained by imposing the conditions that J, and A¢; do not depend
on €, as in the cases without the B-field (AdSs x S° and AdS, x CP?) and their TsT deformations, where the B-field is
nonzero but its contribution is different.

Expanding (4.13) and (4.15) to the leading order in € (now y,, = K = 0), one finds that on the solutions (4.19),

)(pZZ_

W, = - (4.19)

uoy/ 1 = ug — v5 = 2q(uovy +%) 1 =ud = v =2q(ugvy +9)
Jy, =2T \/ - +q arcsin 01_02 2 =B (4.20)
uy (1=¢%)( up)
1=uy2—12-2 q
Ay = 2aresin [ 1740 = 0 = 24uov +3) (4.21)
(=) - )
1 —ug — vg — 2q(ugvy +9)
= 1 —log 16 — v3(1 4 log 16)) — 2qv, log 16)], 4.22
U 4(1 —qz)(l —M%) [u()( 0og 1}0( + 0og )) qvo 108 )] ( )
1 —ul - 1}(2)—2q(u0110+%)
v, = [o((1 —4g%)(1 —1og 16) — u3(5 — log 4096))
LAl =) (1-0f) ’
—v3(1 —1og 16 — u3(1 + log 16)) — 4quy(1 —log4 + v3(1 —log 64))], (4.23)
uo(1 4+ v3) + 2qve) (1 — ug — v} — 2q(ugvy + 2
u2:( o o) Zo)( _ 0 g q(ugvo 2))7 (4.24)
-1 - %)
1 —ud — v3 —2q(ugvy + 2
vy = L0~ Vo = 2q(toto +5) [wo(1 = 03 — ud(3 + 03)) — 2q(uo(1 + 303) + 2qup)]. (4.25)

41 = g*)(1 = ug)(1 = vg)

Now, let us turn to the energy-charge relation. Expanding (4.11) and (4.12) in e and taking into account the solutions
(4.19), (4.22)-(4.25), we obtain

\/l—ué—vé—Zq(uovo—l-g) =2 —12 -2 q
E,—J, =2T - 2 (1 _THT% q2(u0v0 *+32) e). (4.26)
1 —u} 4(1-q°)
The expression for € can be found from the expansion of J;. To the leading order, it is given by
2 _ .2 q
J\/l—uo—”o—ZQ(”000+‘) 1 — u — 03— 2q(ugvy + 2
e =16exp |- 2L 2 1ot = v~ 29(uove T3] (4.27)
T I =5 (I =) (1 = u5)

Next, we would like to express the right-hand side of (4.26) in terms of J, and A¢,. To this end, we solve (4.20), (4.21)
with respect to ug, vg. The result is
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Uy =

T(1 - q?)sin Ay — q(J — qTAg)

\/(J2 — qTAP,)? +4(1 — g*)Tsin? 24

(4.28)

Vg =

(4.29)

Replacing (4.28), (4.29) into (4.26), (4.27), one finds

\/(Jz —qTAP)?> +4(1 — qz)TQSinZAT‘/'I

E,—J, = \/(Jz — qTAQp,)? + 4(1 — ¢*)T?sin?

where

Ag, (1 B (1 —¢g*)T?sin* 24

>, (4.30)

€
(Jo — qTAP,)* +4(1 — ¢*)T?sin> 2

2(J +\/(12—qTAdz| )2 +4(1—¢2)T2sin

A A A
’#) \/ (Ja—qTAG))2+4(1 -qZ)TZS;nZ%sM%

€= 16e

A
(Jo—qTAd))? +4T25i|14%+2q7' sin Agy (Jo—qTAd )+;l7 sinAgy)

(4.31)

Our result matches with that of [25] in (4.1) when we take the ¢ — 0 limit by sending J; — oo. This dispersion relation is

different from the ordinary giant magnon.

The dispersion relation for the ordinary giant magnon with one nonzero angular momentum cam be obtained by setting
J, = 1 and taking the limit 7 — oo. To take into account the leading finite-size effect only, we restrict ourselves to the case

when J—T‘ >> 1. The result is the following:

1 —g?)sin*2
Ev =y = Ty 02 + 401 = @) sin2 21 = —— 2 , 432
K 1 \/P q + ( q )Sm 2 pzqz +4(1 _qz) sinzge ( )
where
€ = 16exp 2 ﬁ—i— \/pzq2 +4(1 - c12)s.in2£ \/pzq2 +4(1 - qz)sinzesin2£ )
¢*(p —sin p)? +4sin* £\ T 2 27 2

V. CONCLUDING REMARKS

Here we presented an approach to string dynamics in
curved backgrounds with a nonzero 2-form B-field, which
allows us to find the first integrals for the string coordinates
along the isometric directions of the background and the
corresponding conserved charges. This leads to dimensional
reduction of the problem. It remains to solve the equations of
motion for the nonisometric string coordinates and the
Virasoro constraints. This can be done for fixed background
fields. As an example we have considered string dynamics
on AdS; x §3 x T*. We succeeded to find all solutions of the
string equations of motion for this case, and to reduce the
Virasoro constraints to algebraic relations among the embed-
ding parameters and the integration constants. The resulting
family of string configurations may have very different
properties for different values of the parameters involved.
That is why, we concentrated on the finite-size dyonic giant

4Equations (4.30) and (4.31) have been confirmed by an
independent analysis based on the algebraic curve method [24]
after our result appeared.

magnon solutions in this background. We have shown that
the finite-size dispersion relation of (dyonic) giant magnon
solution in this background is different from the analogous

ones in AdSs x 3, AdS, x CP? and their y deformations.

Our results on the leading finite-size correction to the
dispersion relation can provide an important check for the
exact integrability conjecture and S-matrix elements based
on it. We will report on this soon. Another possible
direction of further investigation is to consider strings
moving in AdS; x §* x §3 x S' which has smaller set of
isometric coordinates, hence, needs to solve more non-
trivial equations of motion.
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APPENDIX: EXPLICIT EXACT SOLUTIONS IN AdS; x $3 x T* WITH NS-NS B-FIELD

Let us start with the solutions for the string coordinates in AdS; subspace. By using (2.17), (3.1) and (3.2), one can find
that the scalar potential U, in (3.4) is given by

1 Cy+qal'r?)?*  (C,— qah?r?)?
2= <06A"5)2r2—(ozA’)z(1+r2)+< . ff )y S 1Cfr2 ) (A1)

Ur(r) =

After introducing the variable
y=r, (A2)
and replacing (A1) into (3.6), one can rewrite it in the following form,

o — dy

B 2a0/(1 = ) [(A?)? = (A =0 = yn) = ya) )

d¢

where
0<yu<y<yp Yo <0,

and y,, y,,, y, satisfy the relations

1 t 1 t
Vot Vm Y= 20— DA = )] [C (a2 = %) — a(a(A?)? = 2a(A")?) + 2¢(C4A" + C,A?) + g2a(A)?],
1
ypym +ypyn +ymyn = _(12(1 _ qz)[(A¢)2 _ (A’)Z] [Cr(a2 _ﬂQ) + Ctz - Cé + aQ(AY)Z — 2qaC¢Af]’
S
TP T AT - (A A
Integrating (A3) and inverting
2 _ @ — -
E(y) = il F <arcsin BRI ,yym>
/(1= @) (APF = (AP = 30) Vo =om 3o =30
to y(&), one finds the following solution,
a /(1= AP = (API0p =) 5y
y(af):(yp—yn)DNz[ v e }+ " (AS)
a” = ﬂ yp Yn

where F is the incomplete elliptic integral of the first kind and DN is one of the Jacobi elliptic functions.
Next, we will compute X'(¢) and X?(&) entering (3.3). Integrating

dax' 1 1
= _|BA! A — (C APy ——|,
df az_ﬁz |:ﬁ +qa ( T qa )1+y:|
ax?

1 C
@ (pAr aA’+—¢>,
i -5 (ﬁ 1 y

and using (A5), we obtain the following solutions for the string coordinates ¢, ¢, in accordance with our ansatz:
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i(v.0) = A'r+ : {(ﬂA’ + qu¢)F(arcsin (e =Y YT y’")
ay /(1= (AP = (A (3 = ) Yp=In Ip =
@ = — -
_Ct+qu H(arcsin \/—y_p-—y\’yp ym’yp ym):| (A6)
1+yp Yp = Vm 1+yp Yp = Vn
¢(z,0) = A7+ ! [(ﬁA‘f’ + gaA")F <arcsin p 7Y Yo ym)
ay /(1= (AP = (AP, = 3) V3p = 3p =3

C) - —Vm —Vm
+—'/H(arcsin1/ p y’y,, Y ,yp > )] (A7)
yp yp_ym yp yp_yn

where IT is the incomplete elliptic integral of the third kind.
Let us compute now the string energy and spin on the solutions found. Starting from (3.8), (3.9), we obtain

o Ja- q2>[<A¢>22 i (AP](vp = ¥0) KA i C¢>K<1 _H)

R ) |

S:Wl—q2>[<A¢>22i<Af>21<yp—y,,)Kfc"”” v ) <1_H>

S 2\ —

— + g A -

+(1 _ qZ)A(/; <ynK<] Ym — yn) + (yp _yn)E<] _ym yn>>_q o q H(.yp Ym ,1 _ym yn>:|’ (Ag)
yp_yn yp_yn 1+y17 1+yp yp_yn

where K, E and IT are the complete elliptic integrals of the first, second and third kind.
Now we turn to the S3 subspace. By using (2.17), (3.1) and (3.2), one can show that the scalar potential U, in (3.6) can be
written as

Uy(0) = 2(a21—ﬂ2) [(Cqﬁz - j](aA¢1)()2 N (Cy, tq_c;;\CI’z)()Z L2 (A%)2y + 2 (AP)(1 _)()]’ (A10)
where we introduced the notation
x = cos? 6. (A11)
Replacing (A10) in (3.6), one can see that it can be written in the form
@ -f 4 (A12)
20 /(1= AP = APty =0 =) =)
where
O<ym<xy<uxp,<l, In <0,
and
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STRING SOLUTIONS IN AdS; x §3 x T* ...
1
Zp Fdm + 2 = [—Cola® = ) = (aA")? + (2 = ¢*) (ahh)?
! (1= g*)((A)? = (A%)?)
—2qa(Cy, A" + Cy A?2)],
1
_ ¢1\2 2 _ M _ 2 _ @2\ _ ¢
)(p)(m +)(p)(n +)(an_az(l_qz)((A¢l)2_(A¢2)2) [(GA 1) +Cl/’| C‘/’z Cg(a ﬂ ) 2qaC¢2A 1],
(Cy,)?

XpXmXn = _az(l — @) (A1) — (A%2)?)

Integrating (A12), one finds the following solution for y:

/(1= YA = (A=), =) )~
)((f) = ()(p _)(n)DN 5 > g, +Xn- (A13)
a —ﬂ p~ An
Now we are ready to find the “orbit” r = r(x). Written in terms of y and y, it is given by
Yp = Vm (A14)

((A?)* = (A)) (v = ) = -
\/ d F(arcsin ./ Yp "X ,Xp Xm), ] + V.
) Xp —Xm Xp —Xn Yp = Vn

y = (yp = ya)DN?[
V(A9 = (A% P)(, - 1,

Next, we compute X (€) and 5("52(5). Replacing the results in our ansatz, we derive the following solutions for the

isometric coordinates on S°,
1 — —
[(W _ anz)F(arCSm /uu)
_(A¢2)2)()(p _)(n) Xp —Xm Xp —Xn

¢ = A+
ay /(1= ) (A% )2
+C¢‘+7WH<arcsin‘/1p X AT Hm L _Xmﬂ (A15)
I_Xp Xp —Xm I_Xp Xp —Xn
1 - “Am
[(Wz _ quqal)F(arCSm /uu)

_(A¢2)2)()(p _)(n) Xp —Xm Xp —Xn

(A16)

by = A+
ay /(1= ) (A% )2
+%H<arcsin KXy _Km Xy K _)(m)}
Xp ~—Xm Xp Xp —Xn

Xp
Based on (3.10) and the solutions for the string coordinates on S° we found, we can write down the explicit expressions

for the conserved angular momenta J; and J, computed on the solutions. The result is

2T b “An
Kﬁzc,,)l + A —qi)K(l ——X>
(04 a Xp —Xn
(A17)

J, =
V(= @) (A = (A%)) (1, 1)
e8)emen( )

—(1=g*) A" (;(K(l -
Xp —Xn
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_ 21 s
" A=) (A9 = (A7) (z, - 1) K“
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C
c¢2—q<i+qA¢z>>K(1 Lm = ””)
a Xp—Xn

+1—2A¢z<,,K<1 Lm = >+ —nE<1—X’”—_“>>
(1—g")A”(x s (p = 2n) P

P

Am

+ 71_

C
q(%+q/\"’2)n<_xp —Xm
-y, L=y,

Xp —Xn

)

Now, let us go to the 7* subspace. Since in terms of ¢’ coordinates the metric is flat and there is no B-field, the solutions

for the string coordinates are simple and given by

1 .
¢'(r.0) =N+ ——0p — g (Gt AN)E. (A19)
The conserved charges (3.11) can be computed to be
2ral (p
JI= Ci+al). A20
TR ( i ) (A20)

If we impose the periodicity conditions,

¢'(z,0)

= ¢'(tr,0 +2L) + 2zn;,

n; (S Zi,

the integration constants C; are fixed in terms of the embedding parameters. Namely,

ﬂni i
C; =@ = ) = B (A21)
Replacing (A21) into (A19) and (A20), one finally finds
9t = ( +ﬂ7m> +”Tn"a,
ﬁ zn;
JI =2zT A22
ar (w4 22 (A22)

Let us finally point out that the Virasoro constraints impose the following two conditions on the embedding parameters

and integrations constants in the solutions found:

Cr+C9:0,

NC, + M Cy+ A Cyy + A2Cy, — A (ﬁAf (@? = ) ”"’) —0. (A23)
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