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The S-matrix of the Ising Model can be obtained as particular limit of the roaming trajectories associated to of 
the S-matrix of the sinh-Gordon model. Using the form factors of the sinh-Gordon, we analyse the correspondence 
between the operators of the two theories. 

1. Introduction 

Given an elastic factorized S-matrix of a 2D system with a mass scale M, we can calculate its ground state 
energy Eo (R) - - t t '~ (MR) /6R  on an infinite strip of width R, by means of the Thermodynamical Bethe Ansatz 
(TBA) [ 1,2 ]. For those models where the S-matrix has a well-defined field theory correspondence [3-5 ], the 
scaling function ~((MR) has a smooth behaviour, monotonically decreasing from the limit value ~'(0) (where it 
coincides with the effective central charge of the CFT of the ultraviolet limit) to ~(o¢) = 0 (which corresponds 
to massive regime). However, since the TBA only employs an S-matrix without questioning its field theory 
interpretation, it can be also used to investigate the finite-size behaviour of any quantum theory axiomatically 
defined in terms of a scattering amplitude, provided it satisfies the usual constraints of  unitarity and crossing 
symmetry. From this point of view, Zamolodchikov proposed in ref. [6 ] a simple purely elastic scattering theory 
which under the TBA analysis reveals a remarkable finite-size behavior. Such theory contains a single particle 
bosonic state with mass M and two-particle scattering amplitude given by 

S(f l )  = sinhfl - icoshfl0 ( l . l )  
sinh fl + i cosh fl0 ' 

where fl0 is a real parameter. S (fl) has two simple poles in the unphysical sheet at positions fl = - ½itr + fl 0 which 
correspond to a resonance particle. The presence of a scale fl0 for real values of the rapidities drastically influences 
the finite-size behaviour of the model. In fact, solving numerically the TBA equations associated to the S-matrix 
( 1.1 ), for sufficient large values offl0, ~'(r) develops a "staircase" pattern with a series of plateaux at the discrete 
values c = l - 6/p (p + l ) (p = 3, 4 . . . .  ) which coincide with the central charges of unitary minimal models 
Alp [7,8 ]. Hence the Roaming Trajectory Model (RTM) is a one-parameter family of Renormalization Group 
flows interpolating between all the fixed points Alp: each trajectory starts from the limiting fixed point A4oo and 
then proceeds on the critical surface through the hopping A4p --. Alp_ 1 until it arrives in the neighborhood of 
the fixed point Al3. After this last step, it develops a finite correlation length and gives rise to the usual massive 
infrared behaviour. From the TBA analysis it also follows that the roaming trajectories spend approximately the 
same fraction fl0 of  the Renormalization Group "time" x = log MR~2 near each fixed point, therefore making 
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more pronounced the multiple crossover phenomena for large values of fl0. Although a local interpretation of the 
RTM has been pursued in terms of conformal perturbation of the models A4p visiting along the trajectories [ 10], 
it is worth to consider the RTM as special analytic continuation of the sinh-Gordon model in such a way to 
take advantage of the recent exact solution of this model [ 11,12 ]. Purpose of this letter is to show, as simplest 
application of this idea, how to relate the operator content of the sinh-Gordon model to that of the Ising model 
which is the first jump in the staircase series. 

2. The sinh-Gordon model 

2.1. Main features 

The sinh-Gordon Model (SGM) is a 2D Affine Toda Field Theory [ 13 ] with one bosonic field ~b (x) and bare 
action given by 

A = / d2x [½(Ou(~) 2 - -~-M2 coshggg(x)) . (2.1) 

The integrability of the model permits the determination of the factorizable elastic S-matrix which is given by 
[14] 

S(fl, B) = sinhfl - isin ½nB (2.2) 
sinhfl + isin ½riB ' 

where B(g) = 2g2/(8n + g2). For real values of the coupling constant g, the S-matrix has no poles in the 
physical sheet and consequently no bound states, but on the contrary it presents two zeroes at the crossing 
symmetric positions inB/2 and in ( 2 - B ) / 2 .  It is easy to see that in the analytical continuation B ~ 1 + (2i/rt)fl0 
the zeros move along a direction parallel to the real fl-axis and the S-matrix (2.2) exactly coincides with the 
scattering amplitude of the RTM [6]. This observation becomes useful in the light of the fact that the SGM has 
been recently solved by computing the matrix elements of local operators. 

2.2. Form factors 

A complete knowledge of a QFT is encoded into the matrix elements of local operators Ok on the asymptotic 
states, the so-called Form Factors (FF) [ 15 ] 

Fnk( f l l  . . . . .  fin) = <01Ok(0)lfll . . . . .  fin)- (2.3) 

In the case of the SGM at real coupling constant, the FF of local scalar operators have been determined in [ 11,12 ]. 
We briefly recall their main properties, referring the reader to the original references for their detailed discussion. 
They can be parameterized as 

Fmin ( fl i j ) Fnk(fll .....  fin) = HkQk(xl .. . . .  xn)  H (Xi "l- X j ) '  (2.4) 
i<j 

where xi - e p~ and flij = fli - flj. Fmin(fl) is an analytic function given by 

Fmin(fl, B) = A/'(B) 3,(fl, B) ,  

[ f dx s inh (¼xB)s inh ( l x (1 -1B) )  ( x ~ ) ]  ~(fl ,  B) = exp 8 sinh½Xsin2 ~ -  , 
x sinh 2 x 

0 

(2.5) 
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A/'(B) = e x p [ - 4 f  d x s i n h ( ¼ x B ) s i n h ( ½ x ( l - ½ B ) ) x  sinh 2 x sinh ½x] 

0 

('fl = in - fl). Fmin(fl, B) has a simple zero at the threshold fl = 0 and no poles in the physical strip 0 ~< 
Im fl ~< n, with an asymptotic behaviour l i m p _ ~  Fmin(fl, B) = 1. In eq. (2.4) H k are normalization constants 
which depend on the operator one is considering. The functions Qk (xl . . . . .  x ,  ) are symmetric polynomials in the 
variables xi, solutions of  the recursion equations which link the n-particle and the (n + 2)-particle form factors 

--i l im( f l - -  #)F,k+2(fl + in, fl, f lbf la . . . .  fin) = -- 1 - I s ( f l -  fl ~B) F n~fl i . . . .  i l k .  (2.6) 
,8---*/$ i=1 

For FF of  spinless operators, the total degree of  Qk is equal to n (n - 1 ) /2 whereas their partial degree in each 
variable x~ depends on the operator Ok which is considered. It was shown in ref. [ 12 ] that a general solution for 
the Qn k can be written in terms of  the so-called elementary solutions Qn (P) given by #1 

Qn(P) = de tMi j (p ) ,  (2.7) 

where Mij(p)  is an (n - 1) × (n - 1) matrix with entries Mo(p)  = tr2i-j [i - j + p] (at are the elementary 
symmetric polynomials [16] and p an arbitrary integer). 

2.2.1. Form factors o f  ¢ ( x )  and O ( x )  
Important  operators of  the SGM are the elementary field ¢ (x) and the trace of  the stress-energy tensor O (x). 

They are odd and even operators respectively under the Z2 symmetry of  the model with normalizations given 
by (0 I ¢ (0 )  I fl) = 1 and (fl ] O(0)  I fl) = 2nM2, where M is the physical mass. The whole set of  FF of  the 
elementary field ¢ (x)  is given by 

( 4 sin (riB/2) ~ (n- 1)/2 Fmin (f l i j)  
EriC(fit . . . . .  fin) = ~ ~ ] Q n ( 0 )  1 - I  Xi "1- Xj (2.8 ) 

i<j 

They are automatically zero for even n (in agreement with the Z2 parity of  the model) whereas for odd n they 
vanish asymptotically when fl, ~ oo, as follows from the LSZ reduction formula. Concerning the FF of  O (x),  
F~+ 1 = 0 whereas F ~  are given by 

e 2riM 2 ( 4 s i n ( n B / 2 ) ~  "-1 Fmin(flij) 
Fin(ill . . . . .  fl2n) = ~ \ / . A / ' ( B )  Q2n(1) I I  xi + x---------~' (2.9) 

i<j 

and they go to a constant when fli ~ oo 

2.2.2. Kernel solutions 
The general structure of  the FF of  the SGM is that of  a sequence of  finite linear spaces whose dimensions 

grow linearly as n increasing the number 2n - 1 or 2n of  external particles. In fact, at each level of  the recursive 
process the space of  the FF is enlarged by including the kernel solutions of  the recursive equation (2.6), i.e. 
Q, ( - x ,  x, xl . . . . .  x , -2  ) = 0. With the constraint that the total order of  the polynomials is ½n (n - 1 ), the kernel 
is unique and given by Zn (xl . . . . .  x .  ) = det G2i-j. This solution gives rise to the half-infinite chain under the 
recursive pinching xl = -x2  = x 

. . .  n ( n )  ~ (n)  
----r ~n+4  ~ ~n+2  ~ Q(n n) = ~,n ~ 0 ( 2 . 10 )  

#1 We have suppressed the dependence of Q(p) from the variables xi. 
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and therefore the whole space of  FF presents the foliation structure #2 

• .-,0) /3(I) 
---' ~n+4 ---' ~ . + 2  ---' Q~') ---, Q(1) ~0) . . .  n_2- -* . . . - -+  ~3 --~ 1 
---, n(3) -~ n(3) Q~3) Q(3) Y~3 

" ' "  ~ ¢ n + 4  ~ n + 2  ~ ~ n - 2  ~ " ' "  --+ 

(2.11) 
/ , ) ( n - 2 )  n ( n - 2 )  - -~  Qtn n-2) ~'n-2 

" ' "  ~ ~ - - n + 4  ~ ~ ¢ n + 2  

- ' +  n ( n )  ¢ 3 ( n )  ~ n  
' ' "  ~ n + 4  ~ ~-~n+2 

( } ( n + 2 )  ~ n + 2  
• "" ~ ~ n + 4  -----r 

The explicit expressions of  such solutions can be found by determining the linear combination of  Q, (k) which 
reduces to ~'n at the level n. 

3. Violation of the c-theorem sum rule in the R T M  

Since the RTM may be seen as the SGM at B = 1 ± (2i/n)fl0, it is natural to study the behaviour of  the FF of  
the latter model under this analytic continuation. As we show, the presence of  a scale fl0 in the rapidity axes may 
induce a non-uniform convergence in series expansions obtained in the original sinh-Gordon model. Consider 
for instance the total variation of  the central charge Ac = Cuv - Cir going from the short to the large distances. For 
both the SGM and the RTM, Ac = 1. Let us try to express it as a sum-rule fulfilled by the two-point function 
of  the trace O(x) [9,17] 

o c  

3 [ r 2 (0 (r)O (0)) d2r = E Ac(2n) Ac = ~-~ , (3.1) 
d 

n = l  

where Ac t2n) is the contribution to the variation of  the central charge coming from the 2n-intermediate states. 
In the original SGM with real coupling constant, the convergence of  the series to the value Ac = 1 is extremely 
fast and almost saturated by the two-particle contribution Ac t2) [ 11 ]. This has to be expected, given the massive 
behaviour of  the model and the threshold suppression phenomena analyzed in [18]. Similar behaviour has 
been also observed in supersymmetric models [ 19 ]. However, in the RTM the situation is drastically different. 
Consider initially the two-particle contribution to the c-theorem sum rule 

o o  

3 / 13. (2p, #o)l 2 
AC(2) (fl0) = ~ dfl c°sb 4 fl (3.2) 

0 

The plot of  such a quantity (fig. 1 ) shows that Ac (2) (fl0) monotonically decreases from the value very close to 
1 at ,80 = 0 (corresponding to the sinh-Gordon self-dual point) to 1/2 for fl0 --+ oo. The asymptotic value 1/2 
can be easily obtained analytically by noticing that 

~(f l ,~0)  = sinh h(fl, flo), h(fl, flo) ~- 2 ' 
- i ,  fl < fl0 

and therefore for fl0 ~ ~ the integral (3.2) simply reduces to 
o o  

Ac(2)(lfl0l ~ oc) = dfl cosh4#  - 2" 
0 

#2 This is the structure for FF of odd operators. Analogous structure arises for the FF of even operators. 
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Fig. 1. Plot of Ac (2) as function of #0. 

• i 

2 O  

Concerning the higher particles contributions AC (2n), all of  them vanish in the limit fl0 --* oc. In fact, the 2n- 
particle FF entering the formula (3.1) for AC (2n) is given by eq. (2.9) and after the analytic continuation they 
may be written as 

2 J (3.4) F2, ( i l l , - . . ,  fin) = 21tm2g2n(flo)  Q2n(1 ) H sinh !fli. h (flij, 1~0) 
Xi + Xj i<j 

where g2,(,80) = (4coshflo)"-lA/'2n(n-f)(flo). Analogously to the two-particle case, the flo-dependence com- 
ing from h (fl~j) is strongly suppressed in the integration over rapidities and the asymptotic behaviour in flo 
o f  Ac (2") is only determined by the exponential factors contained in g2, and Q2n (1) .  In the large fl0 limit, 
Af(flo) ,,~ exp (-½1#01) and then g2n(flo) "-' exp { -  (n - l)2lfld }. On the other hand, for flo---* 00 Q2n(1) "~ 

exp{(n  - l ) ( n  - 2) l#ol}P(xi )  where 79(xi) is a symmetric polynomial. So, for n > 1 Ac<2")([#0[ ~ o¢) ---, 0 
as exp { - ( n  - 1 )fl0}. Therefore the result o f  the series (3.1) is Ac = 1/2 instead of  Ac = 1, i.e. a violation of  
the c-theorem sum rule. 

Although striking, the non-uniform convergence of  the series has a natural interpretation once the nontrivial 
interplay between the two scales fl and fl0 of  the problem is correctly taken into account. In fact, since the n- 
particle contribution in (3.1) behaves as e -"(mr), given any length scale r there is always an integer Nr such 
that the states with a number o f  particles n /> N, give a negligible contribution to the series (3.1). This means 

N (2m) r r c he v tl n that any partial sum Ac2v = ~ - - i  Ac only ep odu es t aria "0 of  the c-function from the infrared limit 
r = oo up to a certain scale r ?~7). In usual situations, when c(r) is a smooth function in the deep ultraviolet 
region, the first few AC (2n) are  sufficient to give the correct value of  Ac, with high level o f  precision. But for the 
RTM this is not the case. Consider a scale rl such that c(rhflo = 0) > 1/2 (fig. 2). According to the results of  
the TBA analysis, after the first jump from 0 to 1/2, the function c(r, flo) stays constant at 1/2 until a value r2 
proportional to exp{-I]/01/2} is reached and, only at this point the second jump takes place. The other jumps 
occur at rn ,,~ exp{-[#0 [ (n - 1 ) /2)  and for fl0 --' oo, they accumulate to the origin. Truncating the series (3.1) 
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Fig. 2. Roaming trajectories for/~0 < / ~  (a) and/~0 > / ~  
(b). For/~0 >/~,  ACN measured at the scale r (N) is always 
1/2. 

to any N, there is always a value #~ such that c(r~ ~), I#01 > I#~l) = 1/2, i.e. the point of the second jump is 
always ahead of the corresponding length scale r~ N), however small r~ u) may be, and therefore 

lim lim ACN(/~0) l = ~. (3.5) 
N--c~ I#01"*oo 

4. Collapse of the sinh-Gordon model to the Ising model 

Taking the limit P0 ---' oo (keeping p fixed), the S-matrix of the SGM goes to S = - 1, i.e. to the S-matrix 
of the thermal perturbed Ising model. Together with (3.6), these results naturally suggest that for P0 --' o¢ the 
Hilbert space of the original SGM collapses to that of the Ising model, spanned in the local sector only by three 
independent families of fields, those of identity { 1 }, magnetization {a} and energy {e } operators. It is therefore 
interesting to find the mapping between the operator content of the two models. 

It is easy to see that the elementary field ~b (x) of the SGM is mapped onto the magnetization operator a (x) of 
the Ising model. In fact, analytically continuing the FF (2.8) and taking the limit P0 ---, c¢, the P0 dependences 
coming from different terms of the original expression compensate each other and we obtain the following finite 
result 

, - ,  

i" . F:~n+! (#1 . . . . .  ,O2.+l) ---} H tanh 
i<j 

(4.1) 

These are precisely the FF of the magnetization operator a (x) of the thermal perturbed Ising model [ 20,21 ]. This 
field belongs to the interacting sector of the theory and its correlation functions satisfy non-trivial differential 
equations [22,23]. Notice that in this limit the boundary conditions of the field ~b have been modified: in the 
original SGM its FF vanish for large values offli whereas in the resulting expression (4.1) they go to a constant. 

On the other hand, taking the limit flo ~ oo for the analytic continuation of the FF of O (2.9), all of  them 
vanish but F2 = 2nm2sinhfl/2. Hence the operator O ( x )  of the original SGM is mapped onto the energy 
operator e (x) of the Ising model. This is a free field (a result which is manifest by the absence of higher FF) 
and its correlators can be easily expressed in terms of Bessel functions. Also in this case the boundary condition 
of the field O has been changed, since originally F ° goes to a constant for large values of fl,- whereas after taking 
the limit//0 ~ c¢ it diverges at infinity. 

It is also interesting to analyze the behaviour for fl0 ---' c¢ of the kernel solutions. In this limit the recursive 
equations (2.6) become 

Qn+2(-x,x ,  xl . . . .  ,Xn) = --Xn+tan Qn(xl . . . . .  Xn), n = odd, 
Qn+2(-x,x ,  xl . . . . .  x . ) ,  = 0 n = even. 

(4.2) 
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The kernel solutions of the Z2 even operators of the original SGM are therefore mapped onto the free sectors of 
the Ising model, i.e. those given by the identity and energy operators. Indeed, their FF are different from zero 
only at a given level n in the number of external particles (where they coincide with Z, defined in section 2.2.2) 
and, due to the second equation in (4.2), they decouple from the rest of the recursive chain. Correlators of the 
operators defined by such FF can be also expressed in terms of Bessel functions. 

Such a decoupling in the recursive chain does not occur, on the contrary, for the kernel solutions of the odd 
operators of the original SGM. Their explicit expressions may be written as determinants of minors of the matrix 

r~t,) (n odd and m = 1,2 . . . .  ) satisfying the first equation Z,. In fact, consider the half-infinite chain of FF ,,Z.n+2 m 

in (4.2), with the initial condition 

Q(") -xn+llTn~.. (4.3) 
n + 2  

,a(.) 
It is easy to see that #3 ~.{,+2 --~ [~"n+2]((n+l)/2,.-l) and in general 

Q(") [ ] . (4.4) n+2m -~ ['"[~'n+2ml((n+2m--l)/2'n+2m--l)"']((n+3)/2'n+3) { ( n + l ) / 2 . n + l )  

Such FF define matrix elements of operators belonging to the magnetization sector. For instance Q U) defines the 
FF of the magnetization operator itself whereas Q~3) those of the operator O (3) = ( a ( x ) + 1/M 2 0 2 ~ ( x ) ) etc. In 
general such operators have the distinguishing property that their two-point correlation function ( O (~) (r) O (") (0)) 
decreases at infinity as exp [ - n M r ] .  

5. Conclusions 

The thermal perturbed Ising model is the first model in the staircase series defined by the RTM. Using the 
analytic continuation which links the sinh-Gordon Model to the RTM, we have seen that in the limit fl0 l_, oo the 
elementary field of the SGM becomes the magnetization operator t7 of the Ising model. This is still an interacting 
field with non-trivial form factors. On the other hand, the field O and other even operators of the SGM are 
mapped into the free sectors of the Ising model. 

It would be interesting to extend the analysis of this paper to the higher models of the RTM and to find the 
correlation functions of the QFT associated to the corresponding massless Renormalization Group flows. 
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