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1 Introduction

1.1 SYM4 and integrable spin chains

The problem of computing the conformal dimensions of local, gauge-invariant single-

trace composite operators in planar N = 4 supersymmetric Yang-Mills theory in (3+1)-

dimensions, SYM4, is integrable [1–3]. At 1-loop level, the mixing matrix Γ maps to the

Hamiltonian HPSU(2,2|4) of an integrable PSU(2, 2|4)-symmetric spin chain with nearest-

neighbor interactions and periodic boundary conditions, such that 1. The eigenstates {O}
of Γ are in one-to-one correspondence with the eigenstates {|O〉} of HPSU(2,2|4), and 2.

The eigenvalues {γ} of Γ, which are the anomalous dimensions of {O}, are equal to the

eigenvalues {E} of HPSU(2,2|4).
1 Since the eigenstates and eigenvalues of HPSU(2,2|4) can be

computed using Bethe ansatz methods, the problem is integrable.2 For a recent review,

see [4] and references therein.

1.2 SYM4 SU(2)-doublets and spin-1
2

chains

SYM4 contains a vector gauge field, four chiral and four anti-chiral spin-1
2 fermions, and

six real scalars that can be expressed as three complex scalars {X,Y, Z} and their charge-

conjugates {X̄, Ȳ , Z̄}. Any two complex scalars that are not charge conjugates, such as

{X,Z} or {X, Z̄}, mix only amongst themselves to form an SU(2)-doublet and an SU(2)-

invariant scalar subsector of SYM4. In the planar limit at 1-loop level, the single-trace

operators {O}, that are composed of a single SU(2) doublet, and that are eigenstates of Γ,

map to eigenstates {|O〉} of the Hamiltonian H 1
2

of a periodic XXX spin-1
2 chain.

1.3 QCD SU(2)-triplets and spin-1 chains

In [5], Ferretti, Heise and Zarembo noted that, at 1-loop level, operators composed of self-

dual components {f+, f0, f−} of the QCD field strength tensor mix only among themselves

to form an SU(2)-triplet. Using that observation, as well as the fact that QCD with no

matter fields is conformally invariant (the beta function vanishes) in the planar limit at

1-loop level, they showed that local single-trace operators {O} that are eigenstates of Γ

correspond to eigenstates of the Hamiltonian H1 of an integrable XXX spin-1 [6] chain.3

As in the spin-1
2 case, the spin-1 chain eigenstates and eigenvalues can be computed using

Bethe ansatz methods [7–10].

1In this note, O is a local gauge-invariant single-trace composite operator, in SYM4 or in QCD depending

on context, that is an eigenstate of the mixing matrix Γ, with anomalous dimension γ. For brevity, we

will refer to O from now on simply as “a single-trace operator”. |O〉 is the corresponding eigenstate of

the integrable spin chain Hamiltonian H, whose eigenvalue E = γ. The notation {O} stands for sets of

single-trace operators, etc.
2The situation at higher loops is more complicated: Spin chains with nearest-neighbor interaction are

replaced with spin chains with long range interactions, the algebraic Bethe ansatz is replaced with an

asymptotic Bethe ansatz, and finite-size effects must be accounted for. In this note, we restrict our attention

to 1-loop level and nearest-neighbor interacting spin chains.
3All spin chains mentioned in this note will be integrable (their R-matrices satisfy Yang-Baxter equa-

tions), of XXX type (their R-matrices are parametrized by rational functions in the rapidity variables), and

satisfy periodic boundary conditions, hence we need not repeat this from now on.

– 2 –
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1.4 SYM4 structure constants

Following [11–14], Escobedo, Gromov, Sever and Vieira [15] used the connection to spin-
1
2 chains to obtain a sum expression for the structure constants of 3-point functions of

single-trace operators {O} in SU(2) scalar subsectors of SYM4. They noted that the three

operators Oi, of lengths Li, i ∈ {1, 2, 3}, could be chosen to be non-BPS (their conformal

dimensions are unprotected by supersymmetry) and non-extremal (Li < Lj + Lk, for any

choice of distinct i, j and k).

In [16], the sum expression of Escobedo et al. was evaluated in determinant form.

This was made possible by the fact that, when expressed in spin chain terms, the essential

factor in the sum expression can be identified with (a special case of) the scalar product

of an eigenstate of H 1
2

and a generic state (not an eigenstate of H 1
2
).

1.5 QCD structure constants

In this note, we extend the results of [15, 16], from SYM4 and spin-1
2 chains to QCD and

spin-1 chains, to gain information about QCD operator product expansions, OPE’s, of the

operators {O} of Ferretti et al..4

We show that 1. In the general case where all three operators Oi, i ∈ {1, 2, 3} are

non-BPS-like (all three states map to eigenstates of H1 that are not spin-chain reference

states), the tree-level structure constants can be expressed in a sum form that is similar

to, but even less restricted than that of Escobedo et al.5 2. In the special case where

one operator, e.g. O3, is BPS-like (it maps to a spin-chain reference state), the tree-level

structure constants can be expressed in a determinant form that is similar to that in [16].

In other words, to express the tree-level structure constants in determinant form, (at

least) one of the three operators must be BPS-like. In the following subsection, we outline

why this is the case. More details are given in section 4.

1.6 SYM4 structure constants that can be evaluated as determinants

The SYM4 structure constants studied in [15, 16] involve four types of scalars, {X,Z, X̄, Z̄}.
The only non-vanishing Wick contractions (2-point functions) are those between charge-

conjugate pairs, that is 〈XX̄〉, 〈X̄X〉, 〈ZZ̄〉, or 〈Z̄Z〉. Each operator Oi, i ∈ {1, 2, 3},
consists of two types of non-conjugate scalars, that is {X,Z}, {X, Z̄}, {X̄, Z}, and {X̄, Z̄}.

IfO1 is {X,Z}-type (a composite operator of scalars of type {X,Z}), andO2 is {X̄, Z̄}-
type, there are non-zero Wick contractions of both types, 〈XX̄〉 and 〈ZZ̄〉, between O1

and O2. Now consider O3. There is no way to choose the scalar content of O3 such that

1. It has non-zero Wick contractions of both types with O1, 2. It has non-zero Wick

contractions of both types with O2, and 3. The 3-point function is non-extremal, which

4Our results are subject to the same restrictions as in [5], and are valid only in the planar limit (Nc →∞
and g → 0, with λ = g2Nc constant) and at one-loop level, so that the beta function vanishes, and the

theory is conformally invariant.
5The sum form of Escobedo et al. involves a summation over all partitions of one set of rapidity variables.

The sum form that we obtain in the general case of three non-BPS-like operators involves summations over

all partitions of three sets of rapidity variables with constraints between them.

– 3 –
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requires that O3 has non-zero Wick contractions with both O1 and O2. The only way to

have a non-extremal 3-point function is to choose O3 to be {X̄, Z}-type or {X, Z̄}-type.

Either way, the Wick contractions between O1 and O3 will be of one type only, and the

Wick contractions between O2 and O3 will also be of one type only, different from that

between O1 and O2. These constraints simplify the structure constant and allow one to

evaluate the sum form of Escobedo et al. in determinant form.

1.7 QCD structure constants that can be evaluated as determinants

The QCD structure constants studied in this note involve three types of “scalars”,

{f+, f0, f−}. The non-vanishing Wick contractions are those between spin-conjugate pairs,

that is 〈f+f−〉, 〈f−f+〉, and 〈f0f0〉.
Since the action of the Bethe creation operators on the spin-1 reference states gen-

erates all three scalars, each operator Oi, i ∈ {1, 2, 3}, will consist of all three scalars.

Consequently, there are no constraints on the Wick contractions, and the 3-point function

of non-BPS operators is more complicated than in the SYM4 case.6 This 3-point function

between three non-BPS-like operators can be expressed in sum form, as we will explain in

the sequel, but that sum form will be more complicated than that in [15], and less useful.

The aim of this note is to identify the structure constants that can be evaluated in single

determinant form using currently available methods of integrability.7 Our result is that, in

QCD and the spin-1 case, determinant expressions for the structure constants require that

one operator is BPS-like. In other words, that it maps to a spin chain reference state.

1.8 Outline of contents

In section 2, we review the construction of the single-trace composite operators from the

self-dual components of the field strength tensor, the 1-loop mixing matrix, operator prod-

uct expansions, and the “tailoring” approach of Escobedo et al. to the structure constants.

In section 3, we recall the algebraic Bethe ansatz solution for the eigenstates and eigenval-

ues of the mixing matrix. In section 4, we present our results for the structure constants

in terms of solutions of the Bethe equations. Section 5 contains a brief discussion. In

appendix A, we recall the coordinate Bethe ansatz and the F-conjugation of [15]. In

appendix B, we present the scalar products that appear in the expression for the struc-

ture constants.

6In particular, while integrable spin-1 chains are related to integrable spin- 1
2

chains by fusion, there is

no way that one can use fusion to obtain a 3-point function of non-BPS-like operators in the spin-1 case

from the corresponding spin- 1
2

result.
7What we have in mind is Slavnov’s determinant expression for the scalar product of an eigenstate of the

Hamiltonian and a generic state. This determinant expression is unique. It is conceivable that determinant

expressions for more general scalar products, that will allow us to evaluate more general structure constants,

will eventually be found, but this is obviously beyond the scope of this work.

– 4 –
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2 Composite operators, operator product expansions and structure con-

stants

2.1 Self-dual field-strength components as an SU(2)-triplet

Following [5], we decompose the QCD Yang-Mills field strength tensor Fµν = ∂µAν −
∂νAµ + ig [Aµ , Aν ] into self-dual, fαβ, and anti-self-dual, f̄α̇β̇, components,

Fµν = σ αβ
µν fαβ + σ̄ α̇β̇

µν f̄α̇β̇ , (2.1)

where

σµν =
i

4
σ2 (σµσ̄ν − σν σ̄µ) , σ̄µν = − i

4
(σ̄µσν − σ̄νσµ)σ2, σµ = (1, ~σ), σ̄µ = (1,−~σ) . (2.2)

We further define

fA = (σ2σA)αβ fαβ , f̄Ȧ =
(
σȦσ2

)α̇β̇
f̄α̇β̇ , (2.3)

where A, Ȧ = 1, 2, 3. The 2-point function of the field strength tensor has the structure

〈F a
µν b(x)F c

ρσ d(0)〉 = φ(x) (ηµρηνσ − ηµσηνρ) δadδcb , (2.4)

where a, b, c, d = 1, . . . , Nc are color indices, and φ(x) is a scalar function. Hence,

〈f a
A b(x)f c

B d(0)〉 = φ(x)δABδ
a
dδ
c
b , 〈f a

A b(x)f̄ c
Ḃ d

(0)〉 = 0 . (2.5)

Following [17], we write

f+ = f11 =
1

2
(f2 + if1) , f0 =

1√
2

(f12 + f21) = − i√
2
f3, f− = f22 =

1

2
(f2 − if1) .

(2.6)

From equation (2.5), 〈f±(x)f±(0)〉 = 〈f±(x)f0(0)〉 = 0, and the only nonzero Wick con-

tractions (2-point functions) are 〈f±f∓〉 and 〈f0f0〉. {f+, f0, f−} is an SU(2) triplet, and

transforms in the spin-1 representation of SU(2).

2.2 Single-trace operators from the self-dual components

We focus on the single-trace operators of length L that are composed of self-dual compo-

nents only

O(x) = tr (fA1(x) · · · fAL(x)) . (2.7)

Following [5], at 1-loop level, in the planar limit, these operators mix only among them-

selves, as in equation (2.5), and their mixing matrix is given by

Γ =
λ

48π2

L∑
l=1

(
7 + 3~Sl · ~Sl+1 − 3(~Sl · ~Sl+1)2

)
, (2.8)

– 5 –
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where λ = g2Nc, and ~Sl are SU(2) spin-1 generators,(
Sjf

)
A

= −iεjABfB . (2.9)

Note that {f+, f0, f−} are eigenstates of S3 with eigenvalues {+1, 0,−1}, respectively. Since

Γ commutes with ~S2 (where ~S =
∑L

l=1
~Sl is the total spin), and S3, all three operators

can be diagonalized simultaneously. An eigenstate of Γ is an operator of definite conformal

dimension ∆ = 2L+ γ, where γ is the corresponding eigenvalue.

2.3 Operator product expansion of single-trace operators

Following [15, 16], we normalize the operators of definite conformal dimension according to

〈Oi(xi) Ōj(xj)〉 ∼ (NiNj)
1
2

δij
|xij |∆i+∆j

(2.10)

for xij ≡ xi − xj → 0, where Ni will be specified below in equation (B.10). The OPE of a

pair of these operators O1(x) and O3(x) is given by

O1(x1)O3(x3) ∼
∑
O2

(
N1N3

N2

) 1
2 C132

|x13|∆1+∆3−∆2
O2(x) + . . . , x =

1

2
(x1 + x3) , (2.11)

for x13 → 0, where the ellipsis denotes subleading corrections involving conformal descen-

dants of O2 [18]. The structure constants C132 have a perturbative expansion in λ,

NcC132 = c
(0)
132 + λc

(1)
132 + . . . , (2.12)

In this note, we focus on the leading (tree-level) contribution c
(0)
132.

2.4 “Tailoring” the structure constants

Following [15], we construct c
(0)
132 in four steps.

Step 1. We map the length-Li single-trace operator Oi to an eigenstate |Oi〉 of a length-

Li periodic spin-1 chain Hamiltonian H1.

Step 2. We “split” the spin chains into left and right subchains of lengths8

Li,l =
1

2
(Li + Lj − Lk) , Li,r =

1

2
(Li + Lk − Lj) , (2.13)

respectively, with (i, j, k) in cyclic order. We perform a corresponding split of the states,

|Oi〉 =
∑
a

|Oia〉l ⊗ |Oia〉r , (2.14)

where, roughly speaking, the sum is over all possible ways of distributing the component

fields into the left and right subchains. (A more precise definition of this splitting, as well

as a more accurate version of equation (2.14), will be given below after introducing the

Bethe ansatz.) Note that |Oia〉l and |Oia〉r are states of subchains with lengths Li,l and

Li,r, respectively.

8We restrict the discussion to the “non-extremal” case where all Li,l, Li,r > 0, for which there is no

mixing with double-trace operators [15].

– 6 –
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Step 3. We “flip” or F-conjugate the right kets into right bras

|Oi〉 =
∑
a

|Oia〉l ⊗ |Oia〉r →
∑
a

|Oia〉l ⊗ r〈Oia | . (2.15)

Given a pair of elementary fields A and B that are associated with the kets |Ψi〉r and

|Ψi+1〉l, respectively, the flipped state r〈Ψi| is defined such that

〈AB〉 ∼ r〈Ψi|Ψi+1〉l . (2.16)

In view of the fact that the only non-zero 2-point functions are between f+ and f−, and

between two f0 fields, the prescription (2.16) implies that

|f±〉r → r〈f∓|, |f0〉r → r〈f0| . (2.17)

Our convention is that 〈f±|f±〉 = 1, 〈f0|f0〉 = 1, while all other 2-point functions are zero.

Step 4. We construct the structure constants by taking scalar products of bra and ket

states [15, 16], to obtain

c
(0)
132 = N132

∑
a,b,c

r〈O2b |O1a〉l r〈O1a |O3c〉l r〈O3c |O2b〉l , (2.18)

where

N132 =

(
L1L2L3

〈O1|O1〉〈O2|O2〉〈O3|O3〉

) 1
2

. (2.19)

This is represented graphically in figure 1. In order to further evaluate the expression (2.18)

for the structure constants, it is necessary to have a more explicit construction of the states

with definite conformal dimensions. To this end, we now turn to the Bethe ansatz.

3 Algebraic Bethe ansatz

3.1 Diagonalizing the Hamiltonian H1

The 1-loop QCD mixing matrix Γ (2.8) is identical to the Hamiltonian H1 of an anti-

ferromagnetic spin-1 chain, with periodic boundary conditions, that is integrable [6], and

therefore can be diagonalized using the algebraic Bethe ansatz [7–10]. The basic strategy

to diagonalize H1 is to diagonalize a transfer matrix t(
1
2

)(u) that is constructed from a mon-

odromy matrix with a 2-dimensional (that is, spin-1
2) auxiliary space. Although t(

1
2

)(u)

does not generate H1 (2.8), it is related by the fusion procedure to another transfer matrix

t(1)(u) that is constructed from a monodromy matrix with a 3-dimensional (that is, spin-

1) auxiliary space and that contains H1 [8–10]. By diagonalizing t(
1
2

)(u), we diagonalize

t(1)(u), H1 and Γ, all in one go.

– 7 –
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Figure 1. A configuration of 3-point functions with contractions among the self-dual Yang-Mills

fields (a solid line is 〈f+f−〉 and a dotted line is 〈f0f0〉). O3 is chosen to consist of f+ fields

only, so it maps to a spin-chain reference state. This will be the case that can be evaluated in

determinant form.

3.2 The R- and the monodromy matrices

The transfer matrix t(
1
2

)(u) can be constructed using the 6×6 R-matrix

R( 1
2
,1)(u, v) =

1

(u− v − η)



u− v + η

u− v
√

2η

u− v − η
√

2η√
2η u− v − η√

2η u− v
u− v + η


,

(3.1)

where eventually we shall set η = i. The matrix elements that are zero are left empty. We

regard R( 1
2
,1)(u, v) as an operator acting on C2 ⊗ C3. This R-matrix can be obtained by

fusion [7, 8] from R( 1
2
, 1
2

)(u, v) = u−v+ηP, where P is the permutation matrix on C2⊗C2,

together with a “gauge” transformation that makes the matrix symmetric.

The (inhomogeneous) monodromy matrix is constructed from the R-matrix as9

T
( 1

2
)

0 [u; {z}L] = R
( 1

2
,1)

01 (u, z1) . . . R
( 1

2
,1)

0L (u, zL) , (3.2)

where we have introduced the inhomogeneities {z}L = {z1, . . . , zL} for later convenience.

The auxiliary space (labeled 0) is 2-dimensional, while each of the quantum spaces (la-

beled 1, . . . , L) are 3-dimensional. By tracing over the auxiliary space, we arrive at the

9In the sequel, we use different brackets to indicate the type of enclosed arguments. We write f(x, y)

when neither x nor y is a set of variables, f{x, y} when both x and y are sets of variables, and f [x, {y}]
when x is not a set of variables, but y is.

– 8 –
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(inhomogeneous) transfer matrix

t(
1
2

)[u; {z}L] = tr0 T
( 1

2
)

0 [u; {z}L] . (3.3)

It has the commutativity property[
t(

1
2

)[u; {z}L] , t(
1
2

)[v; {z}L]
]

= 0 , (3.4)

by virtue of the fact that the R-matrix obeys the Yang-Baxter equation.

3.3 Constructing the eigenstates

The eigenstates of this transfer matrix can be readily obtained by algebraic Bethe ansatz:

we define the operators A,B,C,D by

T
( 1

2
)

0 [u; {z}L] =

(
A[u; {z}L] B[u; {z}L]

C[u; {z}L] D[u; {z}L]

)
. (3.5)

We also introduce the reference states with all spins up or all spins down,

|0〉± = |f±〉⊗L ≡ |fL±〉 . (3.6)

These states are eigenstate of both A[u; {z}L] and D[u; {z}L],

A[u; {z}L]|0〉+ =

(
L∏
l=1

u− zl + η

u− zl − η

)
|0〉+ , D[u; {z}L]|0〉+ = |0〉+ , (3.7)

A[u; {z}L]|0〉− = |0〉− , D[u; {z}L]|0〉− =

(
L∏
l=1

u− zl + η

u− zl − η

)
|0〉− .

We note that

B[u; {z}L]† = −

(
L∏
l=1

u∗ − z∗l − η
u∗ − z∗l + η

)
C[u∗; {z∗}L] , (3.8)

where we have used η = i, and ∗ denotes complex conjugation. Choosing |0〉+ as the

reference state, one finds that the states

|{u}N 〉+ =

 N∏
j=1

B[uj ; {z}L]

 |0〉+ (3.9)

are eigenstates of the transfer matrix t(
1
2

)[u; {z}L] provided that {u}N = {u1, . . . , uN} are

distinct and satisfy the spin-1 Bethe equations

L∏
l=1

uj − zl + η

uj − zl − η
=

N∏
k=1
k 6=j

uj − uk + η

uj − uk − η
. (3.10)

– 9 –
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In the homogeneous limit zl = 0, these states are eigenstates of H1 (2.8) with eigenvalues

(anomalous dimensions) [5]

γ =
λ

48π2

(
7L−

N∑
k=1

12

u2
k + 1

)
. (3.11)

The conformal dimensions are therefore given by ∆ = 2L+ γ. The Bethe eigenstates (3.9)

are SU(2) highest-weight states, with spin

s = s3 = L−N , (3.12)

and therefore N ≤ L. If we choose |0〉− as the reference state, then the Bethe states are

given by

|{u}N 〉− =

 N∏
j=1

C[uj ; {z}L]

 |0〉− , (3.13)

which are lowest-weight states, with s = −s3 = L−N , so again N ≤ L.

In order to properly define the splitting of states (2.14), we follow [15] and split the

monodromy matrix (3.2),

T
( 1

2
)

0 [u; {z}L] = T
( 1

2
)

0,l [u; {z}Ll ]T
( 1

2
)

0,r [u; {z}Lr ] , (3.14)

where

T
( 1

2
)

0,l [u; {z}Ll ] = R
( 1

2
,1)

01 (u, z1) . . . R
( 1

2
,1)

0Ll
(u, zLl) ,

T
( 1

2
)

0,r [u; {z}Lr ] = R
( 1

2
,1)

0,Ll+1(u, zLl+1) . . . R
( 1

2
,1)

0L (u, zL) , (3.15)

and {z}Ll = {z1, . . . , zLl}, {z}Lr = {zLl+1, . . . , zL}. Correspondingly,(
A[u; {z}L] B[u; {z}L]

C[u; {z}L] D[u; {z}L]

)
=

(
Al[u; {z}Ll ] Bl[u; {z}Ll ]
Cl[u; {z}Ll ] Dl[u; {z}Ll ]

)(
Ar[u; {z}Lr ] Br[u; {z}Lr ]
Cr[u; {z}Lr ] Dr[u; {z}Lr ]

)
.

(3.16)

In particular,

B[u; {z}L] = Al[u; {z}Ll ]Br[u; {z}Lr ] +Bl[u; {z}Ll ]Dr[u; {z}Lr ] ,
C[u; {z}L] = Cl[u; {z}Ll ]Ar[u; {z}Lr ] +Dl[u; {z}Ll ]Cr[u; {z}Lr ] . (3.17)

The F-conjugation (A.13) implies that

Br[u; {z}Lr ]|fLr+ 〉r → r〈fLr− |Br[u; {z}Lr ] ,
Cr[u; {z}Lr ]|fLr− 〉r → r〈fLr+ |Cr[u; {z}Lr ] . (3.18)
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4 Evaluating the structure constants

4.1 3-point functions with three non-BPS-like operators in sum form

We start with the general case where all three composite operators Oi, i ∈ {1, 2, 3} are

non-BPS-like (they are not of highest or lowest conformal dimension), so they map to

Bethe eigenstates |Oi〉 that are not spin-chain reference states, and that can be split into

left and right parts as

|Oi〉=
Ni∏
j=1

(
Al[ui,j , {zLi,l}]Br[ui,j , {zLi,r}]+Dr[ui,j , {zLi,r}]Bl[ui,j , {zLi,l}]

)
|fLi,l+ 〉l ⊗ |f

Li,r
+ 〉r

=
∑

αi∪ᾱi={ui}Ni

Hi{αi, ᾱi}|Oi,αi〉l ⊗ |Oi,ᾱi〉r (4.1)

where

|Oi,αi〉l =

∏
j∈αi

Bl[ui,j , {z}Li,l ]

 |fLi,l+ 〉l, |Oi,ᾱi〉r =

∏
j∈ᾱi

Br[ui,j , {z}Li,r ]

 |fLi,r+ 〉r,

(4.2)

the coefficients Hi{αi, ᾱi} are computed from equation (3.7) to be

Hi{αi, ᾱi} =
∏

ui,j∈αi

∏
zk∈{z}Li,l

ui,j − zk + η

ui,j − zk − η
, (4.3)

and {ui}Ni satisfy the Bethe equations (3.10) with L = Li. Under F-conjugation, this

operator becomes

|Oi〉 →
∑

αi∪ᾱi={ui}Ni

Hi{αi, ᾱi}|Oi,αi〉l ⊗ r〈Oi,ᾱi | , (4.4)

where

r〈Oi,ᾱi | = r〈f
Li,r
− |

∏
j∈ᾱi

Br[ui,j , {z}Li,r ]

 . (4.5)

Substituting the above expressions into equation (2.18), we obtain the following sum

expression for the structure constant of the 3-point function with three non-BPS-like op-

erators

c132 = lim
zl→0
N132

∑
αi∪ᾱi={ui}Ni

(
3∏
i=1

Hi{αi, ᾱi}

)
r〈O2,ᾱ2 |O1,α1〉l r〈O1,ᾱ1 |O3,α3〉l r〈O3,ᾱ3 |O2,α2〉l ,

(4.6)

where each of the three factors of type r〈Oi+1,ᾱi+1 |Oi,αi〉l in the summand is a generic

scalar product as in equation (B.3), subject to the conditions in equations (B.5), (B.6).
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4.2 The structure of the sum form in equation (4.6)

The non-BPS-like operator Oi, i ∈ {1, 2, 3}, is composed of the operators {f+, f0, f−} with

multiplicities {ni,+, ni,0, ni,−}, such that ni,++ni,0+ni,−=Li and 2ni,−+ni,0 = Ni. Splitting

Oi into a left-part Oi,l of length Li,l, and a right-part Oi,r of length Li,r, Li,l + Li,r = Li,

the operators {f+, f0, f−} can be on either part, such that

nli,+ + nri,+ = ni,+, nli,0 + nri,0 = ni,0, nli,− + nri,− = ni,−, (4.7)

where nli,+ is the number of f+-operators on the left-part of |Oi〉, etc.

Let us consider one type of these operators, for example f+, to be a reference state

operator, in the sense that if all elementary operators in a single-trace operator O are of

type f+, then O maps to a spin-chain reference state. In that case, the other two operators,

f0 and f−, become “excitations”.10 Since the total number of elementary operators in Oi,
i ∈ {1, 2, 3} is fixed, one can think of single-trace operators that are not eigenstates of the

mixing matrix Γ, but whose weighted sum is a single-trace Oi that is an eigenstate, as

labeled by the positions of the excitations in the trace.

The crucial point is that, while the lengths of the left- and right-parts are fixed once

and for all,11 the distribution of the excitations on the left and the right parts of Oi is

not fixed. This means that the sum in equation (4.6) is over all possible distributions of

excitations in Oi, i ∈ {1, 2, 3} over its left and right parts, subject to the conditions

ni,+ = ni+1,−, ni,− = ni+1,+, ni,0 = ni+1,0, i+ 3 ≡ i . (4.8)

In spin-chain terms, the action of the Bethe operators on a reference state, that consists

of one type of operators, generates excitations of both types. Thus every state Oi, i ∈
{1, 2, 3} that is not BPS-like will consist of all three types {f+, f0, f−}, and we need to

sum over all possible positions of {f+, f0, f−} in Oi. The result is that 1. The sum over

partitions in equation (4.6) is computationally non-trivial, particularly when the number

of Bethe roots involved is not small; and as mentioned above, 2. Each of the three factors

of type r〈Oi+1,ᾱi+1 |Oi,αi〉l in the summand is a generic scalar product as in equation (B.3),

subject to the conditions in equation (B.5). This is a complicated expression.

To reduce the complexity of the sum form in equation (4.6) and obtain a computation-

ally tractable expression, which in our case is a determinant, we choose one of the operators

to be BPS-like so that it maps to a spin-chain reference state. We will choose O3 to be

BPS-like.

4.3 3-point functions with one BPS-like state in determinant form

Choosing O3 to consist of f+-operators only, the corresponding state is

|O3〉 = |fL3
+ 〉 = |fL3,l

+ 〉l ⊗ |f
L3,r

+ 〉r → |f
L3,l

+ 〉l ⊗ r〈f
L3,r

− | , (4.9)

10Either f+ or f− can be chosen as a reference state operator, as we will see in the sequel.
11This follows from the fact that the lengths Li, i ∈ {1, 2, 3} are fixed as initial conditions, and the lengths

of the left and right parts are fixed from equation (2.13).
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where L3,l and L3,r are given by (2.13). Evidently, since there is only one way to split this

state, no summation is necessary. We write the algebraic Bethe state for operator O1 as

in (4.1) with i = 1, and we define the corresponding parameters uj ≡ u1,j , which satisfy

the Bethe equations (3.10) with L = L1. Under F-conjugation, this state becomes (4.4)

with i = 1.

However, we write the state corresponding to the operator O2 instead as

|O2〉 →
∑

β∪β̄={v}N2

H2{β, β̄}|O2,β〉l ⊗ r〈O2,β̄| , (4.10)

with

|O2,β〉l =

∏
j∈β

Cl[vj ; {z}L2,l
]

 |fL2,l
− 〉l , r〈O2,β̄| = r〈f

L2,r

+ |

∏
j∈β̄

Cr[vj ; {z}L2,r ]

 ,

(4.11)

where {v}N2 satisfy the Bethe equations (3.10) with L = L2. Having chosen to construct

the Bethe states for O1 with the reference state |0〉+, it is necessary to construct the Bethe

states for O2 with the reference state |0〉−. We now insert these results into equation (2.18)

to get

c132 = lim
zl→0
N132

∑
β∪β̄={v}N2
α∪ᾱ={u}N1

H1{α, ᾱ}H2{β, β̄} r〈O2,β̄|O1,α〉l r〈O1,ᾱ|f
L3,l

+ 〉l r〈f
L3,r

− |O2,β〉l

= lim
zl→0
N132H2{∅, {v}N2}

∑
α∪ᾱ={u}N1

H1{α, ᾱ} r〈O2|O1,α〉l r〈O1,ᾱ|f
L3,l

+ 〉l r〈f
L3,r

− |fL2,l

− 〉l .

(4.12)

In passing to the second line, we have made use of the fact that the expression vanishes

unless the set β contains no Bethe roots, and we defined

r〈O2| ≡ 〈f
L2,r

+ |

N2∏
j=1

Cr[vj ; {z}L2,r ]

 . (4.13)

With the help of equation (3.7), we see that

H2{∅, {v}N2} =

N2∏
j=1

L2,l∏
l=1

vj − zl + η

vj − zl − η
(4.14)

becomes equal to 1 in the homogeneous limit, zl = 0, by virtue of the zero-

momentum constraint

N2∏
j=1

vj + η

vj − η
= 1 , (4.15)
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which arises from the cyclicity of the trace in O2.12 The remaining sum over partitions in

equation (4.12) can be performed by using r〈O1,ᾱ|f
L3,l

+ 〉l = l〈f
L3,l

− |O1,ᾱ〉r. Noting also that

r〈f
L3,r

− |fL2,l

− 〉l = 1, we obtain

c132 = lim
zl→0
N132

∑
α∪ᾱ={u}N1

H1{α, ᾱ} r〈O2|O1,α〉l l〈f
L3,l

− |O1,ᾱ〉r

= lim
zl→0
N132 l〈f

L3,l

− | ⊗ r〈O2|O1〉. (4.16)

We observe that this expression vanishes unless

L2 −N2 = L1 + L3 −N1 ≥ 0 . (4.17)

Indeed, the factor r〈O2|O1,α〉l in the first line of equation (4.16) vanishes unless |α| (the

number of Bethe roots in α) is given by |α| = N2. It follows that |ᾱ| = N1−N2. Moreover,

the two states in the factor l〈f
L3,l

− |O1,ᾱ〉r should have the same S3 eigenvalue; hence,

L1,r − |ᾱ| = −L3,l , (4.18)

which then implies equation (4.17). The sum over O2 in equation (2.11) can therefore be

understood as the sum over all L2 and N2 satisfying the constraint (4.17). The scalar

product in the second line of equation (4.16) is a restricted Slavnov scalar product

c
(0)
132 = N hom

132 Shom({u}N1 , {v}N2) , (4.19)

where {u}N1 , {v}N2 are the Bethe roots corresponding to operators O1,O2, respectively.

In appendix B we obtain an expression (B.25) for the restricted Slavnov scalar product,

which in the homogeneous limit zl → 0 becomes

Shom({u}N1 , {v}N2) =

N2∏
k=1

(
vk + η

vk − η

)(
2L1−N1+N2

2

)
N1∏
j>k

1

uj − uk

N2∏
j>k

1

vj − vk

N2∏
k=1

1

((vk − η)vk)
(N1−N2)/2

× det

 Mij 1 ≤ i ≤ N2 , 1 ≤ j ≤ N1

Ψ(i−1)(uj , 0) 1 ≤ i ≤ (N1 −N2)/2 , 1 ≤ j ≤ N1

Ψ(i−1)(uj + η, 0) 1 ≤ i ≤ (N1 −N2)/2 , 1 ≤ j ≤ N1

 , (4.20)

where

Mij =
η

(uj − vi)

 N1∏
m=1
m 6=j

(vi − um − η)−
(
vi − η
vi + η

)L1 N1∏
m=1
m 6=j

(vi − um + η)

 ,

Ψ(u, z) = − 1

(u− z)(u− z − η)

N1∏
j=1

(z − uj) , Ψ(j)(u, z) =
1

j!

∂j

∂zj
Ψ(u, z) . (4.21)

12Note that this argument can be used only when all Bethe roots of an original unsplit eigenstate belong

to the same part after splitting. This is the case for the eigenstate |O2〉 in the 3-point function with one

BPS-like state. In particular, the same argument cannot be used to simplify the Hi coefficients, i ∈ {1, 2, 3},
in equation (4.6). This is because in the 3-point function with three non-BPS-like states, each state is split

into a right part and a left part, and the Bethe roots can appear on either part. But neither part satisfies

cyclicity on its own and the zero-momentum constraint cannot be used.
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Moreover, N132 in equation (2.19) is given by

N132 =

(
L1L2L3

N1N2N3

) 1
2

, (4.22)

where Ni are given by equation (B.10). Indeed,

〈O1|O1〉 = +〈0|
N1∏
j=1

B[uj , {z}L1 ]†
N1∏
j=1

B[uj , {z}L1 ]|0〉+

=

N1∏
j=1

L1∏
l=1

u∗j − z∗l − η
u∗j − z∗l + η

+〈0|
N1∏
j=1

C[u∗j , {z∗}L1 ]

N1∏
j=1

B[uj , {z}L1 ]|0〉+ , (4.23)

where we have used equation (3.8). The prefactor becomes 1 in the homogeneous limit due

to the zero-momentum constraint. Furthermore, the set of all Bethe roots {u}N1 transforms

into itself under complex conjugation. Hence,

〈O1|O1〉hom = lim
zl→0

+〈0|
N1∏
j=1

C[uj , {z}L1 ]

N1∏
j=1

B[uj , {z}L1 ]|0〉+ = N hom
1 . (4.24)

Similar considerations apply to 〈O2|O2〉. Finally, we note that N3 = 1.

5 Discussion

We have obtained a determinant expression for the tree-level OPE structure constants in

planar QCD for operators of the type (2.7), where one of them is BPS-like, see equa-

tion (4.9). Indeed, given (L1, N1) and L3, the possible values of (L2, N2) are determined

by equation (4.17); then the corresponding Bethe equations (3.10) can be solved, and the

structure constants c
(0)
132 can be efficiently computed using equation (4.19).

In the QCD literature, operators of the form (2.7) would be classified as “chiral

odd”. While chiral-odd operators involving quark fields play an important role in cer-

tain hadronic scattering processes [19], the purely gluonic chiral-odd operators that we

have considered here (with no covariant derivatives) do not seem to have direct relevance

to QCD phenomenology.

It would be interesting to generalize this work to operators with covariant derivatives,

which are more relevant to phenomenology. Such operators comprise the largest sector of

QCD that is known to be integrable at one loop [17, 20–23]. Another challenge is to go to

higher loops (see e.g. [24, 25]).
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A Coordinate Bethe ansatz and F-conjugation

In order to properly formulate F-conjugation in the algebraic Bethe ansatz formalism, it

is necessary to first formulate it in the coordinate Bethe ansatz formalism.

We begin by reviewing the coordinate Bethe ansatz for spin-1, which has been discussed

in [26, 27]. For simplicity, we consider the homogeneous case zl = 0, and restrict to states

with just two excitations, which are given by

|{u1, u2}〉co =
∑

1≤n1≤n2≤L

(
ei(p1n1+p2n2) + S(p2, p1) ei(p2n1+p1n2)

)
|n1, n2〉 . (A.1)

Here |n1, n2〉 is given by [27]

|n1, n2〉 = e−n1
e−n2
|fL+〉 , e− =

 0 0 0

21/2 0 0

0 2−1/2 0

 , (A.2)

and

S(p2, p1) =
u2 − u1 + i

u2 − u1 − i
, eipj =

uj + i

uj − i
. (A.3)

The expression (A.1) is almost the same as for the spin-1
2 case [15], the main difference is

that now the summation includes n1 = n2.

We define F-conjugation by

F ◦ |n1, n2〉 = 〈L+ 1− n2, L+ 1− n1| Ĉ⊗L , (A.4)

where

Ĉ =

 0 0 1

0 1 0

1 0 0

 = Ĉ† , (A.5)

which has the properties

Ĉ|f±〉 = |f∓〉, Ĉ|f0〉 = |f0〉, Ĉ2 = 1, Ĉ⊗LB(u) Ĉ⊗L = C(u) . (A.6)

The definition (A.4) is consistent with equation (2.17), and is a generalization of the defi-

nition for the spin-1
2 case [15]. It follows, as in the spin-1

2 case, that F-conjugation of the

coordinate Bethe ansatz state (A.1) is given by

F ◦ |{u1, u2}〉co = ei(L+1)(p1+p2)S(p2, p1) co〈{u∗1, u∗2}|Ĉ⊗L , (A.7)

where co〈{u1, u2}| ≡ (|{u1, u2}〉co)†.
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We now proceed to translate this result to the algebraic Bethe ansatz. One can show

that the algebraic and coordinate Bethe ansatz states are related (in our normalization) by

|{u1, u2}〉al = − (u1 − u2 + i)

(u1 + i)(u2 + i)(u1 − u2)
|{u1, u2}〉co , (A.8)

generalizing the known spin-1
2 result [15, 28]. The corresponding hermitian-conjugate re-

sult is

al〈{u1, u2}| ≡
(
|{u1, u2}〉al

)†
= − (u∗1 − u∗2 − i)

(u∗1 − i)(u∗2 − i)(u∗1 − u∗2)
co〈{u1, u2}| , (A.9)

and therefore

co〈{u∗1, u∗2}| = −
(u1 − i)(u2 − i)(u1 − u2)

(u1 − u2 − i)
al〈{u∗1, u∗2}| . (A.10)

Using equations (A.8), (A.7), (A.10) and (A.3), we obtain

F ◦ |{u1, u2}〉al =

2∏
j=1

(
uj + i

uj − i

)L
al〈{u∗1, u∗2}|Ĉ⊗L . (A.11)

Since |{u1, u2}〉al = B(u1)B(u2)|fL+〉, with the help of equation (3.8) we see that

al〈{u∗1, u∗2}| =
2∏
j=1

(
uj − i
uj + i

)L
〈fL+|C(u1)C(u2) . (A.12)

We conclude that F-conjugation of an algebraic Bethe ansatz state is given by

F ◦
(
B(u1)B(u2)|fL+〉

)
= 〈fL+|C(u1)C(u2)Ĉ⊗L = 〈fL−|B(u1)B(u2) . (A.13)

B Scalar products

B.1 Izergin’s determinant

To define the scalar product of two spin-chain states that are not eigenstates of the Hamil-

tonian, we need Izergin’s determinant expression [29] for Korepin’s “domain wall partition

function” [30]. For two sets of variables {x} and {y} of cardinality |x| = |y| = `, Izergin’s

determinant expression Z{x, y} is

Z{x, y} =

∏`
i,j=1(xi − yj + η)∏

16i<j6`(xj − xi)(yi − yj)
det

(
1

(xi − yj + η)(xi − yj)

)
16i,j6`

, (B.1)

where η = i
2 .
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B.2 The generic scalar product in an XXX spin-1
2

chain

For a length-L periodic XXX spin-1
2 chain, we consider 1. Two non-BPS-like states in

the space of states of the spin chain, |Oi{u}〉 and |Oj{v}〉, |u| = |v| = N 6 L/2, that

are not Bethe eigenstates of the Hamiltonian H 1
2
, that is, {u} and {v} do not satisfy

Bethe equations, and 2. The set of all possible partitions of each of {u} and {v} into two

disjoint subsets

{u} = {u1} ∪ {u2}, {v} = {v1} ∪ {v2}, 0 6 |u1| = |v1| 6 N, 0 6 |u2| = |v2| 6 N ,

(B.2)

where {u1} = {u1,1, u1,2, · · · , u1,|u1|}, etc. Following [30, 31], the scalar product

〈Oj{v}|Oi{u}〉, is

〈Oj{v}|Oi{u}〉 =
∑

{u1}∪{u2},{v1}∪{v2}

∏
{u1}

a
1
2 [u1, {z}L]

∏
{v2}

a
1
2 [v2, {z}L]

 (B.3)

×

|v1|∏
i=1

|v2|∏
j=1

f(v1,i, v2,j)

|u2|∏
i=1

|u1|∏
j=1

f(u2,i, u1,j)

Z{v1, u1}Z{u2, v2} ,

where the sum is over all partitions of {u} and {v} into two disjoint subsets, and

a
1
2 [x, {z}L] =

L∏
i=1

x− zi + η

x− zi
, f(xi, yj) =

xi − yj + η

xi − yj
. (B.4)

B.3 The generic scalar product in an XXX spin-1 chain

In the case of a length-L XXX spin-1 chain case, the generic scalar product has the same

form as in equation (B.3), but with the following extra conditions. 1. We start from a

spin-1
2 chain with 2L sites. 2. We set the inhomogeneities

z2i+2 = z2i+1 + η, i ∈ {0, 1, · · · , (L− 1)} , (B.5)

as required by fusion. 3. We take the inhomogeneities wi, i ∈ {1, 2, · · · , L} of the L-sites of

the spin-1 chain to be those of the odd-indexed sites of the original spin-1
2 chain, wi = z2i−1.

4. We change a
1
2 [x, {z}L] to a1[x, {w}L] defined by

a1[x, {w}L] =

L∏
i=1

x− wi + η

x− wi − η
, η =

i

2
. (B.6)

while all other factors remain unchanged as they have no dependence on the inhomo-

geneities. The result is the generic scalar product for the spin-1 chain.

B.4 The Slavnov scalar product

Let us first consider the matrix element

SN ({u}N , {v}N , {z}L) = 〈0|
N∏
j=1

C[vj ; {z}L]

N∏
k=1

B[uk; {z}L]|0〉 , (B.7)
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Figure 2. 2D lattice configuration for the Slavnov determinant. Double vertical lines denote spin-

1 quantum spaces with double up-arrows for the f+ state. Horizontal lines with incoming spin- 12
arrows denote B operators, while those with outgoing arrows denote C operators. If we impose

ui = vi (i = 1, . . . , N1), then this configuration depicts the Gaudin norm.

where {u}N = {u1, . . . , uN} (but not necessarily {v}N = {v1, . . . , vN}) satisfy the Bethe

equations (3.10), and |0〉 ≡ |0〉+. In the 2-dimensional vertex-model description, this scalar

product is represented by figure 2. It follows from Slavnov [32] that this matrix element is

given by13

SN ({u}N , {v}N , {z}L) =

 N∏
j>i

1

vj − vi
1

ui − uj

 detMlk , (B.8)

where the N ×N matrix Mlk is given by

Mlk =
η

uk − vl

 N∏
m=1
m 6=k

(vl − um − η)
L∏
j=1

vl − zj + η

vl − zj − η
−

N∏
m=1
m 6=k

(vl − um + η)

 . (B.9)

B.5 Gaudin norm

For the special case that {vi} coincide with {ui}, the scalar product (B.7) reduces to the

Gaudin norm [30, 33, 34]

N ({u}N , {z}L) = 〈0|
N∏
j=1

C[uj ; {z}L]

N∏
k=1

B[uk; {z}L]|0〉 = ηN

∏
j 6=k

uj − uk − η
uj − uk

 det Φ′ ,

(B.10)

where Φ′ is an N ×N matrix given by

Φ′jk =
∂

∂uk
log

 L∏
l=1

uj − zl + η

uj − zl − η
∏
m6=j

uj − um − η
uj − um + η

 . (B.11)

13 We identify −ic in [32] with η.
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B.6 Restricted Slavnov scalar product

We now show how to restrict the Slavnov scalar product (B.7)–(B.9) (with N = N1 and

L = L1) to obtain equation (B.25). The basic trick [16, 35, 36] is to set the “extra”

v-variables equal to inhomogeneities:

vN1−2j+1 = zj , vN1−2j+2 = zj + η, j = 1, . . . ,
1

2
(N1 −N2), N2 < N1 . (B.12)

However, since the expression (B.9) for Mlk then becomes singular, it is convenient to first

change normalization. Using a tilde to denote quantities in the new normalization, we

see that

R̃( 1
2
,1)(u, v) = α(u, v)R( 1

2
,1)(u, v) (B.13)

implies that

B̃[u; {z}L] =

L∏
l=1

α(u, zl)B[u; {z}L] , C̃[u; {z}L] =

L∏
l=1

α(u, zl)C[u; {z}L] . (B.14)

Hence,

S̃N1 ≡ 〈0|
N1∏
j=1

C̃[vj ; {z}L1 ]

N1∏
k=1

B̃[uk; {z}L1 ]|0〉 =

N1∏
j=1

L1∏
l=1

α(uj , zl)α(vj , zl)

SN1 . (B.15)

We choose the normalization factor

α(u, v) =
u− v − η
u− v + η

, (B.16)

which will avoid the singularity. Then

S̃N1 =

N1∏
j=1

L1∏
l=1

uj − zl − η
uj − zl + η

N1∏
j>i

1

vj − vi
1

ui − uj

 det M̃lk , (B.17)

where

M̃lk =
η

(uk − vl)

 N1∏
m=1
m 6=k

(vl − um − η)−
L1∏
j=1

vl − zj − η
vl − zj + η

N1∏
m=1
m 6=k

(vl − um + η)

 . (B.18)

We are now ready to “freeze”, or “restrict”, the scalar product S̃N1 by setting

{vN2+1,. . . ,vN1} to the values in equation (B.12), to obtain S̃restricted, which is (see figure 3)

S̃restricted =

N1∏
j=1

L1∏
l=1

uj − zl − η
uj − zl + η

∏
N1≥j>k≥1

1

uj − uk

∏
N2≥j>k≥1

1

vj − vk

×
∏

1
2

(N1−N2)≥j>k≥1

1

(zj − zk)2(zj − zk − η)(zj − zk + η)

×

1
2

(N1−N2)∏
j=1

N2∏
k=1

1

(zj − vk + η)(zj − vk)
detMlk , (B.19)
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Figure 3. On the left, we “freeze” the two bottom rows of figure 2 by imposing equation (B.12).

These two frozen rows are then eliminated. By repeating this procedure, we freeze out and eliminate

the N1 −N2 bottom rows, thereby obtaining the figure on the right. The spins in the bottom-left

part of the remaining lattice are in fact completely fixed. After also removing this part, we obtain

the restricted Slavnov determinant in figure 4.

where Mlk is an N1 ×N1 matrix, which for l ≤ N2 is the same as (B.18), namely

Mlk =
η

(uk − vl)

 N1∏
m=1
m 6=k

(vl − um − η)−
N1∏
m=1
m 6=k

(vl − um + η)

L1∏
j=1

vl − zj − η
vl − zj + η

 , l ≤ N2 ;

(B.20)

and for l > N2,

MN2+2j−1,k =
1

(uk − zj)

 N1∏
n=1
n6=k

(zj − un − η)−
L1∏
l=1

zj − zl − η
zj − zl + η

N1∏
n=1
n 6=k

(zj − un + η)

 ,

MN2+2j,k =
1

(uk − zj − η)

N1∏
n=1
n 6=k

(zj − un) , j = 1, . . . ,
1

2
(N1 −N2) . (B.21)

We now observe that detMlk does not change if we add toMN2+2j−1,k any k-independent

factor timesMN2+2j,k. The second term ofMN2+2j−1,k can therefore be dropped, since it

can be written as

− 1

(uk − zj)(zj − uk + η)

L1∏
l=1

zj − zl − η
zj − zl + η

N1∏
n=1

(zj − un + η) ,

which is a k-independent factor times MN2+2j,k. In short, for l > N2, Mlk is given by

MN2+2j−1,k =
1

(uk − zj)

N1∏
n=1
n 6=k

(zj − un − η) , (B.22)

MN2+2j,k =
1

(uk − zj − η)

N1∏
n=1
n 6=k

(zj − un) , j = 1, . . . ,
1

2
(N1 −N2) . (B.23)
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Figure 4. 2D lattice representation of the restricted Slavnov determinant, which is a scalar product

between |O1〉 (where the B operators with arguments {u}N1 act on all the quantum spaces 1 . . . , L1

) and r〈O2| (where the C operators with arguments {v}N2 act only on the quantum spaces 1 +

L1,r, . . . , L1).

With the help of the vertex-model correspondence, we can make the identification

S̃restricted = 〈1, . . . , 1

2
(N1 −N2)|

N1∏
j=1

C̃[vj ; {z}L1 ]

N1∏
k=1

B̃[uk; {z}L1 ]|0〉 , (B.24)

where |1, . . . , 1
2(N1 −N2)〉 is the state with down-spins at the sites 1, . . . , 1

2(N1 −N2) and

up-spins at the remaining L1 − 1
2(N1 − N2) sites. See figure 4. Finally, returning to the

original normalization using equation (B.14), we obtain

S[{u}N1 , {v}N2 , {z}L1 ]

= 〈1, . . . , 1

2
(N1 −N2)|

N2∏
j=1

C[vj ; {z}L1 ]

N1∏
k=1

B[uk; {z}L1 ]|0〉

=

 L1∏
l= 1

2
(N1−N2)+1

N2∏
k=1

vk − zl + η

vk − zl − η

 ∏
N1≥j>k≥1

1

uj − uk

∏
N2≥j>k≥1

1

vj − vk

×
∏

1
2

(N1−N2)≥j>k≥1

1

(zj − zk)2(zj − zk − η)(zj − zk + η)

×

1
2

(N1−N2)∏
j=1

N2∏
k=1

1

(zj − vk + η)(zj − vk)
detMlk . (B.25)
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