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1 Introduction

Integrable quantum field theories (QFTs) in two dimensions are valuable models for under-
standing various non-perturbative properties. Thanks to an infinite number of conserved
charges, multi-particle scattering processes are purely elastic so that the number and momenta
of the asymptotic particles are preserved and their amplitudes are factorized into a product of
two-particle S-matrices. These S-matrices are often determined completely by Yang-Baxter
equations (YBEs) along with unitarity and crossing symmetry, and other analytic bootstrap
constraints such as bound state poles in the physical strip if they exist.

Consider the sine-Gordon QFT as an example. Although it is defined by a Lagrangian of
a self-interacting scalar field, there is a regime of its coupling constant (the so-called repulsive
regime) where the asymptotic particles are not bosonic, but a doublet of a soliton-antisoliton
pair, whose S-matrices have been obtained in [1] by the bootstrap method and YBE. The
S-matrix is proportional to the R matrix of the quantum group Uq(su2) [2] where the soliton
pair belongs to a fundamental spin 1/2 representation and the deformation parameter q
is related to the coupling constant. The S-matrix satisfies the YBE as the R matrix does
by construction. An overall scalar function S0(θ), which cannot be fixed by the YBE, is
determined by unitarity, crossing symmetry, and additional analytic properties. Instead,
when the coupling constant is in the attractive regime, the overall scalar function should
have additional factors with poles in the physical strip 0 < ℑm θ < π which correspond to
“breathers”, the soliton-antisoliton bound states. Strictly speaking, the S-matrix bootstrap
method does not completely fix the scalar function since one can always multiply the so-called
“CDD factors” which satisfy all the S-matrix axioms but without new bound state poles
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in the physical strip. It is customary to adopt a “minimality” assumption, which amounts
to include no such CDD factors.

The S-matrices constructed in this way can provide computational tools for integrable
QFTs even when conventional Lagrangians are either not given or given in terms of scale-
dependent effective parameters. Although the S-matrices are on-shell quantities, they can be
used to compute finite-size effects using the Thermodynamic Bethe ansatz (TBA) [3] method
and even off-shell quantities like correlation functions in terms of the so-called form factor
expansions. The “inverse scattering program” is a philosophical framework in which the
exact S-matrices play a fundamental role. This point of view has been successfully applied
to many theories in 2D relativistic integrable QFTs such as the sausage model, a deformed
non-linear sigma model on an effective background metric [4], as well as higher dimensional
gauge theories related to AdS/CFT duality [5].

Notwithstanding, we want to raise a question on the inverse scattering program: can there
be a scale where the S-matrices are not valid anymore? In QFTs, it is not uncommon that the
fundamental degrees of freedom change depending on the scale. For example, quarks replace
color singlet hadrons as fundamental degrees of freedom when the temperature scale goes
beyond ΛQCD in the strong interactions, which is the so-called Hagedorn phase transition [6].
A similar transition is also predicted in string theories [7]. Even for integrable QFTs, it is
not excluded in principle that the particles may either change into others or even lose their
validity as asymptotic states at a certain energy scale. This possibility may conflict apparently
with the inverse scattering program and its tools such as TBA which assume the S-matrices
are valid at all scales. If this happens, such fundamental building blocks of integrability as
symmetry, asymptotic particle spectrum, and their S-matrices will all be in trouble.

Recent developments on TT deformations have addressed this question. If an integrable
QFT is deformed by irrelevant operators built from the energy-momentum tensor components
T and T̄ and their descendants, Ts and T̄s, the S-matrix gets extra CDD factors, which in
turn lead to Hagedorn-like singularity in the free energies [8–12]. In exceptional cases where
these TT deformations are fine-tuned, the deformed theories and their particle spectrum can
avoid the singularity and reach UV complete theories, which interpolate between UV and
IR conformal QFTs by exact RG flows [13]. But general irrelevant deformations should lead
to the singularity at a certain scale. Even though the TT deformations provide interesting
examples of Hagedorn singularity, one cannot exclude that other irrelevant operators may play
a central role in the singular behaviors of the Hagedorn-like singularity. It is not easy, within
our scattering framework, to identify inherent features of the original scattering theories
which trigger the singularity. To understand this, it will be useful to find QFTs that show
the singularity without any additional irrelevant deformations.

In this paper, we will address this question based on a new class of exact integrable
factorized scattering theories. The integrable QFTs we are considering here are a generalization
of the sine-Gordon and the sausage models to the higher spin representation of the quantum
Uq(su2) group. The deformation parameter q is related to a coupling constant. A rational
version of this scattering theory for q → 1 (zero coupling limit) has been explored before
in [14]. Similar R-matrix-related constructions for higher spin representations appear in the
context of statistical lattice models like the integrable XXZ higher spin chains introduced
by a fusion method in [15].
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In section 2, we derive exact S-matrices for spin s multiplets of quantum Uq(su2) group
and solve the S-matrix bootstrap conditions exactly. We emphasize that our S-matrices are
“minimal”, in the sense that they do not have any additional CDD factor, since it makes
the UV behavior more singular. As far as we know, these S-matrices are the first ones
for higher spin particles with non-trivial interactions. We will derive the TBA equations
rigorously in the form of a universal kernel and use them to study the free energy using the
S-matrices in section 3 and appendix A. The TBA systems are non-linear integral equations
that normally cannot be solved analytically except for the UV and IR limits. We need,
therefore in section 4, to rely on numerical analysis of the TBA to find the critical scale where
the Hagedorn singularities occur and numerically estimate the critical exponents. We find
that while the critical scales depend both on the values of spin and on the coupling constants,
the critical exponents are very close to 1/2 for all spins and couplings, which suggests a
universal behavior with square root singularity. We will summarize and discuss some open
questions in the concluding section 5. An attempt to understand the analytic mechanisms
underlying the Hagedorn-like singularity in the TBA systems is reported in appendix B, where
we analyze a simpler TBA system by using a toy kernel to find out exact critical temperature.

2 Exact S-matrix for particles with an arbitrary spin

We first consider a completely factorized scattering theory between particles that belong
to spin s irreducible representation of the su2 algebra generated by J±, J3 obeying the
commutation relations

[J±, J3] = ±J± , [J+, J−] = 2J3 (2.1)

and having Casimir operator Q = J2 = (J+J− + J−J+)/2 + J2
3. The spin s are non-

negative integers or half-integers for finite-dimensional irreducible representations. The
on-shell particles can be denoted by Am(θ) where θ is the rapidity which parametrizes the
energy-momentum E = m cosh θ, p = m sinh θ and m is the magnetic quantum number of the
su2 algebra with m = s, s − 1, . . . , −s.1 If the scattering theory is integrable, multi-particle
scattering amplitudes are decomposed into two-particle elastic S-matrix element

S
m′

1m′
2

m1m2 (θ1 − θ2) : Am1(θ1)Am2(θ2) → Am′
2
(θ2)Am′

1
(θ1). (2.2)

This S-matrix satisfies the Yang-Baxter equations (θij ≡ θi − θj)

S12(θ12)S13(θ13)S23(θ23) = S23(θ23)S13(θ13)S12(θ12) (2.3)

along with unitarity ∑
n1,n2

Sn1,n2
m1m2(θ)Sm′

1m′
2

n1,n2 (−θ) = δ
m′

1
m1 δ

m′
2

m2 (2.4)

and crossing symmetry (2.22).
1Please note the difference between the symbol m (mass) and m, the magnetic su2 quantum number.
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We can decompose this two-particle S-matrix into projectors

S(θ) = P
2s∑

J=0
f [J ](θ) P[J ], (2.5)

where P is the permutation matrix and P[J ] the projector into the spin-J representation,

P[J ] =
J∑

M=−J

|J, M⟩⟨J, M |, (2.6)

which satisfies
2s∑

J=0
P[J ] = I, and

(
P[J ]

)2
= P[J ]. (2.7)

Their matrix elements are written in terms of the Clebsch-Gordan coefficients

P[J ]m
′
1m′

2
m1m2 =

J∑
M=−J

⟨s, m′
1; s, m′

2|J, M⟩⟨J, M |s, m1; s, m2⟩. (2.8)

The Yang-Baxter equation determines the scalar functions

f [J ](θ) =
J∏

k=1

iπk − θ

iπk + θ
, (2.9)

up to an overall function which can be fixed by unitarity and crossing symmetry. This
S-matrix has been studied in [14].

We extend this “rational” S-matrix to the “trigonometric” one S by introducing certain
interactions in terms of a coupling constant which is related to a deformation parameter
q ∈ C of the quantum group symmetry algebra Uq(su2), generated by J±, q±J3 such that

[J±, J3] = ±J± , [J+, J−] = [2J3] (2.10)

and with Casimir operator

Q = J+J− +
[
J3 − 1

2

]
= J−J+ +

[
J3 + 1

2

]
(2.11)

where
[λ] ≡ qλ/2 − q−λ/2

q1/2 − q−1/2 (2.12)

The asymptotic massive particles form a spin-s representation of Uq(su2).
This S-matrix can be expressed similarly as in (2.5),

S(θ) = σ

(
P

2s∑
J=0

f [J ]
q (θ) P[J ]

q

)
σ−1, (2.13)

but now with some trigonometric scalar functions f
[J ]
q (θ), q-deformed projectors P[J ]

q of
Uq(su2), and some gauge transformation σ. All these ingredients of the S-matrices will be
determined completely by imposing constraints such as the Yang-Baxter equation, unitarity,
and crossing symmetries.
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For a generic q, not a root of unity, the Lusztig-Rosso theorem states that the irreducible
representations of the Uq(su2) are in one to one correspondence to those of su2, and labelled
by integer or half-integer J [18]. The tensor products of two irreducible representations
are decomposed into a direct sum of other irreducible ones in the same way as the usual
addition of two angular momenta in su2. The coefficients of this decomposition are now
the quantum Clebsch-Gordan coefficients (qCGs), from which it is possible to construct
the quantum projectors:

P[J ]
q

m′
1m′

2
m1m2

=
J∑

M=−J

⟨s, m′
1; s, m′

2|J, M⟩q⟨J, M |s, m1; s, m2⟩q. (2.14)

Here, |J, M⟩ is an eigenvector of the Uq(su2) Casimir operator Q and of J3

Q|J, M⟩ =
[
J + 1

2

]
|J, M⟩ , J3|J, M⟩ = M |J, M⟩ . (2.15)

We need explicit expressions of the qCGs to write down concrete S-matrices. They are
given by [17, 19, 20]

⟨s,m1;s,m2|J,M⟩q =

f(J)·q(2s−J)(2s+J+1)/4+s(m2−m1)/2 (2.16)

×{[s+m1]![s−m1]![s+m2]![s−m2]![J +M ]![J −M ]!}1/2 ∑
ν≥0

(−1)ν q−ν(2s+J+1)/2

Dν
,

where

Dν = [ν]![2s − J − ν]![s − m1 − ν]![s + m2 − ν]![J − s + m1 + ν]![J − s − m2 + ν]!,

f(J) =
{

[2J + 1]([J ]!)2[2s − J ]!
[2s + J + 1]!

}1/2

. (2.17)

Here we use a convention of the q-factorial for a positive integer n

[n]! = [n][n − 1] · · · [1], [0]! = 1, [−n]! = ∞. (2.18)

The summation over ν is bounded above since Dν = ∞ if any argument of q-factorials in Dν

is negative. From these expressions, one can compute the q-projectors straightforwardly.
Notice that there may be problems in this qCG expression when q is a n-th root of unity:

q = q(r, n) = e2πir/n with n ∈ Z>0 and r = 1, . . . , n − 1. Then for any integer k multiple
of n the corresponding quantum number [k] = 0. This fact would create diverging factors
in the expressions (2.16) and (2.17). To avoid them, one has to resort to the more general
formulae illustrated in [19], where suitable finite expressions for the qCG coefficients are
recovered by a careful choice of normalization of the states and by a limiting procedure where
a generic (non-root of unity) value of q approaches a root of unity value q → q(r, n). By
this procedure, the root of unity cases leads to an expression for the quantum projectors
related to that of generic q by continuity. So the formulae below can be taken as valid for
any value of q on the unit circle, be it a root of unity or not.
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From the Yang-Baxter equation, the scalar functions f
[J ]
q (θ) in (2.13) are obtained as

f [J ]
q (θ) = S0(θ)

[
J∏

k=1

qk − qθ/2πi

qkqθ/2πi − 1

]
, J = 0, 1, · · · , 2s, (2.19)

where an overall function S0(θ) is still not fixed.
We define the charge conjugation C by

C(Am) = (−1)2s+mA−m, m = s, s − 1, · · · , −s (2.20)

which can be represented by the following matrix

C = (−1)s



0 0 · · · 0 1
0 0 · · · −1 0
...

... . . . ...
...

0 (−1)2s−1 · · · 0 0
(−1)2s 0 · · · 0 0


, C2 = 1. (2.21)

With this, the crossing symmetry is expressed as

St1(θ) = C1 · S(iπ − θ) · C1, C1 = C ⊗ 1, (2.22)

where t1 stands for the matrix transpose on the first vector space. To satisfy this relation,
we need the gauge transformation σ as noticed for the sine-Gordon model in [2]. In our
case, it is given by

σ = qJ3 θ1/2πi ⊗ qJ3 θ2/2πi, (2.23)

where θ1 and θ2 are defined in (2.2). In addition to the crossing symmetry, one can show that
this S-matrix is also invariant under the charge conjugation C, a parity P, and a time reversal T:

Scd
ab = Sc̄d̄

āb̄
= Sdc

ba = Sab
cd. (2.24)

Now we introduce a coupling constant γ by

q = e2πiγ . (2.25)

The scalar functions now can be expressed as

f [J ]
q (θ) = S0(θ)

J∏
k=1

sinh [γ(ikπ − θ)]
sinh [γ(ikπ + θ)] , J = 0, 1, · · · , 2s. (2.26)

Next, we fix the overall scalar function S0(θ) following a standard procedure. By requiring
unitarity and crossing symmetry, this function should satisfy

S0(θ)S0(−θ) = 1, S0(iπ − θ) =
2s∏

k=1

sinh [γ(i(k + 1)π − θ)]
sinh [γ(ikπ + θ)] S0(θ). (2.27)
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The standard procedure for fixing S0 is to express this as an infinite product of factors that
satisfy the crossing symmetry and unitarity alternatingly as follows:

S0(θ) = −
2s∏

k=1

[
sinh [γ(iπk + θ)]
sinh [γ(iπk − θ)]

( ∞∏
ℓ=1

sinh [γ(iπ(k + ℓ) − θ)] sinh [γ(iπ(k − ℓ) − θ)]
sinh [γ(iπ(k + ℓ) + θ)] sinh [γ(iπ(k − ℓ) + θ)]

)]
.

(2.28)
When s is an integer, i.e. even 2s, this infinite product is very much simplified to

S0(θ) = −
s∏

m=1

sinh [γ(i2mπ + θ)]
sinh [γ(i2mπ − θ)] . (2.29)

The S-matrix element Sss
ss describing scattering between As particles with J3 = s can be

read off from (2.26) since only the projector P[2s] contributes:

Sss
ss(θ) = −

s∏
m=1

sinh [γ(i(2m − 1)π − θ)]
sinh [γ(i(2m − 1)π + θ)] . (2.30)

This reproduces the S++
++ element of the sausage model for s = 1.

For a half-integer s, i.e. odd 2s, one can convert the infinite products of trigonometric
functions into products of Γ-functions

S0(θ) = −
2s∏

m=1

{
1
iπ

sinh [γ(θ + imπ)] Γ
[
1 − γ(m − 1) + iγθ

π

]
Γ
[
1 − γm − iγθ

π

]
×

×
∞∏

n=1

[
R

[s,m]
n (θ)R[s,m]

n (iπ − θ)
R

[s,m]
n (0)R[s,m]

n (iπ)

]}
, (2.31)

R[s,m]
n (θ) =

Γ
[
γ(4sn − 4s + 2m − 1) − iγθ

π

]
Γ
[
1 + γ(4sn − 2m + 1) − iγθ

π

]
Γ
[
γ(4sn − 2s + 2m − 1) − iγθ

π

]
Γ
[
1 + γ(4sn − 2s − 2m + 1) − iγθ

π

] . (2.32)

Again, the S-matrix element between As particles becomes

Sss
ss(θ) = −

2s∏
m=1

{
1
iπ

sinh [γ(θ − imπ)] Γ
[
1 − γ(m − 1) + iγθ

π

]
Γ
[
1 − γm − iγθ

π

]
×

× Γ[γm]
Γ[1 − γ(m − 1)]

∞∏
n=1

[
R

[s,m]
n (θ)R[s,m]

n (iπ − θ)
R

[s,m]
n (0)R[s,m]

n (iπ)

]}
. (2.33)

Although (2.30) for an integer s and (2.33) for a half-integer s look very different, it
turns out that both have the same integral representation for all s

Sss
ss(θ) = − exp

∫ ∞

−∞

dk

k

sinh(πks) sinh πk
(
s − 1

2γ

)
sinh πk

2γ sinh πk
eikθ. (2.34)

From this representation, one can notice that

Sss
ss(θ) = −1, when γ = 1

2s
. (2.35)
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This can be thought of as a kind of free point. For s = 1/2, this expression reduces to the
prefactor of the sine-Gordon S-matrix in [1].

In terms of this scalar factor, the S-matrix can be written as

S(θ) = Sss
ss(θ) ·Smat(θ), Smat(θ) ≡ σ

P
2s∑

J=0

 2s∏
k=J+1

sinh [γ(ikπ + θ)]
sinh [γ(ikπ − θ)]

P[J ]
q

σ−1. (2.36)

In the interval

0 ≤ γ ≤ 1
2s

(2.37)

the S-matrix does not present any pole in the physical strip 0 ≤ Imθ ≤ π for any s, i.e.
there are no bound states. We are in a repulsive regime. An analysis of these S-matrices
for the attractive regime (γ > 1/2s) should be very interesting, but it is out of the scope
of the present paper.

We present explicit expressions for the next simplest s = 3/2 S-matrix which has 4
particles Am, m = 3/2, 1/2, −1/2, −3/2 with Am = A−m. Denoting these particles with index
1, 2, 3, 4, hence 1̄ = 4, 2̄ = 3, non-vanishing S-matrix elements are given by the prefactor
in (2.34) multiplied by the following matrix elements:

S11
11 = 1, S12

12 = (0)
(3) , S21

12 = s3
(3) , S13

13 = (0)(−1)
(2)(3) , S22

13 = s2
√

s3/s1(0)
(2)(3) ,

S31
13 = (s1s4 + 2s2)(0)

(2)(3) , S22
22 = f1

(2)(3) , S14
14 = (0)(−1)(−2)

(1)(2)(3) , S23
14 = s3(0)(−1)

(1)(2)(3) ,

S32
14 = s2s3(0)

(1)(2)(3) , S41
14 = s1s2s3

(1)(2)(3) , S23
23 = (0)f1

(1)(2)(3) , S32
23 = s2f2

(1)(2)(3) , (2.38)

and those related by C, P, T transformations given in (2.24). We have used the short notation

(n) ≡ 2 sinh [γ(θ − iπn)] , sn ≡ 2 sinh(inπγ),

f1 = 2 cosh [γ(2θ − iπ)] + s10
s5

− 2s2
s1

, f2 = 2s2
s1

cosh [γ(2θ − iπ)] + s2
2 − 2s2

1 − 4.

3 Thermodynamic Bethe ansatz

At a finite temperature, a large number of asymptotic particles can be created from the heat
bath, carrying all possible momenta and J3 quantum numbers. During elastic scattering
processes, these particles will reach a thermal equilibrium where the momenta are distributed in
such a way that the free energy of the system is minimized. This condition for the equilibrium
is the thermodynamic Bethe ansatz (TBA) equation. The main technical difficulty arises
from the fact that the S-matrix is nondiagonal. Many different “magnons” can appear in
diagonalizing transfer matrices. To simplify the analysis, we consider, in this paper, 1/γ to
be integers only, i.e. we are at values of q corresponding to primitive roots of unity. The more
generic case should be approached by an adaptation of the Takahashi Suzuki decomposition
methods [21], on which we intend to return in the future.

– 8 –
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3.1 Bethe-Yang equation

If a number N of on-shell particles are created at a finite temperature T , each of the momenta
carried by these particles should satisfy a periodic boundary condition, sometimes called the
Bethe-Yang equation. When the S-matrix is nondiagonal, this equation is given by a large
tensor product of N S-matrices, called in [22] “color” transfer matrix T, formally equivalent
to the “inhomogeneous” transfer matrix of an XXZ integrable spin chain with higher spins [15]

eiLm sinh θj T(θj |{θi}) = 1, (3.1)

T(θj |{θi})m′
1,··· ,m′

N
m1,··· ,mN =

∑
n1,··· ,nN

Sn2m′
1

n1m1(θ1 − θj)Sn3m′
2

n2m2(θ2 − θj) · · · Sn1m′
N

nN mN (θN − θj). (3.2)

Here L is the volume of (infinite) one-dimensional space and we will eventually take the
L → ∞ limit.

As shown in (2.36), the color transfer matrix is factorized into a product of scalar
functions Sss

ss and a matrix part Smat. The matrix part has been diagonalized by analytic
Bethe ansatz in [15, 16] for the spin s XXZ chain and its generalization to the inhomogeneous
case is straightforward. The resulting Bethe-Yang equation for the eigenvalues of T is given by

eiLm sinh θj

N∏
k=1,k ̸=j

Sss
ss(θj − θk)

M∏
ℓ=1

e2s(θj − λℓ) = 1, (3.3)

where we denote M as the number of Bethe roots and use short notations

en(θ) ≡ sinh γ(θ + iπn/2)
sinh γ(θ − iπn/2) , gn(θ) ≡ cosh γ(θ + iπn/2)

cosh γ(θ − iπn/2) . (3.4)

The parameters (Bethe roots) λℓ, often called “magnonic rapidities” in this context, must
satisfy the Bethe ansatz equations (BAEs)

N∏
j=1

e2s(λℓ − θj) =
M∏

k=1,k ̸=ℓ

e2(λℓ − λk). (3.5)

In the thermodynamic limit where we take L → ∞ and N , M → ∞, the Bethe roots
organize into “strings” of length n, where the n rapidities have the same real part but
different imaginary values as

λ
(n)
j,α = λ

(n)
j + iπ

2 (n + 1 − 2α), α = 1, 2, · · · , n, (3.6)

with the “center” of the string λ
(n)
j to be real. If the deformation parameter γ is irrational,

there is no limit on the length n, hence we need to consider infinitely many different lengths
of strings. This makes the analysis of TBA equations very complicated.

For simplicity, we will restrict our considerations in this paper to

γ = 1
N

, N ∈ Z, N ≥ 2s + 1, (3.7)

which make the functions in (3.5) periodic in the imaginary direction with period πN/2.
Following [21], two types of strings are allowed, defined as follows:
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• Type I: λ
(n)
j,α as in (3.6) with n = 1, 2, · · · , N − 1

• Type II: λ
(N)
j = λj + iπN/2.

The M Bethe roots can be reorganized into a Mn number of type I strings of length
n = 1, 2, · · · , N − 1 and a MN number of type II strings. The formation of strings rearranges
the Bethe-Yang equation (3.3) as

eiLm sinh θj

N∏
k=1,k ̸=j

S00(θj − θk)
N−1∏
n=1

[Mn∏
ℓ=1

S0n(θj − λ
(n)
ℓ )

] MN∏
k=1

S0N (θj − λ
(N)
k ) = 1, (3.8)

where

S00(θ) = Sss
ss(θ), (3.9)

S0n(θ) = Sn0(θ) =
n∏

α=1
e2s

(
θ − iπ

2 (n + 1 − 2α)
)

=
min(n,2s)∏

j=1
e|n−2s|+2j−1(θ), (3.10)

S0N (θ) = SN0(θ) = g2s(θ). (3.11)

The BAEs in (3.5) should be also rearranged in terms of the strings in a similar way
N∏

k=1
Sn0(λ(n)

j − θk)
N−1∏
m=1

 Mm∏
i=1,i ̸=j

Snm(λ(n)
j − λ

(m)
i )

 MN∏
ℓ=1

SnN (λ(n)
j − λ

(N)
ℓ ) = 1, (3.12)

N∏
k=1

SN0(λ(N)
j − θk)

N−1∏
n=1

[Mm∏
i=1

SNn(λ(N)
j − λ

(n)
i )

] MN∏
ℓ=1,ℓ ̸=j

SNN (λ(N)
j − λ

(N)
ℓ ) = 1, (3.13)

where (n, m = 1, · · · , N − 1)

Snm(θ) = Smn(θ) =

e|n−m|(θ)en+m(θ)
min(n,m)−1∏

j=1
e|n−m|+2j−1(θ)2

−1

, (3.14)

SnN (θ) = SNn(θ) = [gn−1(θ)gn+1(θ)]−1 , (3.15)

SNN (θ) = e−2(θ). (3.16)

Eqs. (3.8), (3.12) and (3.13) can be interpreted as diagonal Bethe-Yang equations in terms
of the original asymptotic massive particles and N species of magnons, that do not transport
any energy or momentum, but only internal degrees of freedom (colors) of the multiplets
of asymptotic particles, whose effective “diagonalized” S-matrices are given by (3.9)–(3.11)
and (3.14)–(3.16).

3.2 Derivation of thermodynamic Bethe ansatz equations

We can simplify the Bethe Yang equations (3.8), (3.12) and (3.13) by treating type I and
II strings in a unified way as follows:

eimL sinh θj

N∏
k=1,k ̸=j

S00(θj − θk)
N∏

n=1

[Mn∏
ℓ=1

S0n(θj − λ
(n)
ℓ )

]
= 1, (3.17)

N∏
k=1

Sn0(λ(n)
j − θk)

N∏
m=1

 Mm∏
i=1,i ̸=j

Snm(λ(n)
j − λ

(m)
i )

 = 1, n = 1, · · · , N. (3.18)
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In L → ∞ limit, the densities of the particles and magnons are defined by

σn(θ) = 1
L

dnn

dθ
, n = 0, 1, · · · , N, (3.19)

where dnn is the number of the massive particles (n = 0) or the magnons of type I and II
which carry the rapidities between θ and θ + dθ.

In terms of these densities, we can rewrite the Bethe-Yang equations by taking logarithms
on both sides,

σn(θ) + σ̃n(θ) = δn0m cosh θ − νn

N∑
m=0

Knm ⋆ σn(θ), n = 0, 1, · · · , N, (3.20)

where we used a short notation

νn =

1, n = 0, N

−1, n = 1, · · · , N − 1
(3.21)

and a standard convolution notation (⋆)

f ⋆ g(θ) =
∫ ∞

−∞
f(θ′)g(θ − θ′)dθ′, (3.22)

along with the kernels defined by

Knm(θ) = 1
2πi

d

dθ
ln Snm(θ). (3.23)

The densities of “holes” σ̃n are defined similarly as (3.19) for “unoccupied” states.
The system of equations (3.20) can be simplified further by taking into consideration

certain identities on the Fourier transforms of the kernels. The explicit expressions of these
kernels and the technical details of the derivation of the relations among them can be found
in appendix A. The result is a set of simplified Bethe-Yang equations, expressed by a single
“universal” kernel with a simple structure of couplings among densities.

The TBA equations can be derived in a standard procedure by minimizing the free energy
for a finite temerature T = 1/R with the universal Bethe-Yang equations (A.27)–(A.31) as
constraints. We will use the Fermi-Dirac statistics in our derivation since Sss

ss(0) = −1. They
are given by coupled nonlinear integral equations for pseudo-energies ϵn

ϵn(θ) = δn,0mR cosh θ −
N∑

m=0
Inm p ⋆ log

(
1 + e−ϵm

)
(θ), n = 0, 1, · · · , N, (3.24)

where we have introduced the pseudo-energies

ϵ0(θ) = log σ̃0
σ0

, ϵn(θ) = log σn

σ̃n
, n = 1, . . . , N − 1, ϵN (θ) = log σ̃N

σN
, (3.25)

and the universal kernel

p(θ) = 1
2π cosh θ

. (3.26)

Here Inm are the matrix elements of the incidence matrix2 of the graphs in figures 1 and 2
when 2s < N − 1 and 2s = N − 1, respectively.

2It is the matrix whose element m, n is 1 when the nodes n and m are connected, 0 otherwise.
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1 2 2s − 1

0

2s 2s + 1

N − 3
N − 2

N − 1

N

Figure 1. Dynkin-like structure of the TBA equations for 2s < N − 1. Note that the graph is a
proper DN+1 Dynkin diagram only for 2s = 1 and an extended one D̂N+1 for 2s = 2.

1 2

N − 3
0

N − 2

N − 1

N

Figure 2. Structure of the TBA equations of 2s = N − 1.

At finite temperature T , the free energy per unit length is obtained by the pseudo-energy ϵ0
using

f(T )
T

= −
∫ ∞

−∞

m
2π

cosh θ ln
(
1 + e−ϵ0(θ)

)
dθ. (3.27)

We want to emphasize that this universal TBA is possible thanks to a remarkable
relation (A.22) between the minimal scalar factor S0 and other scattering amplitudes of
the magnons. If a CDD factor is added, this relation is not valid, therefore TBA cannot
be written in the universal way.

4 Numerical analysis

The TBA is based on the idea that there are two equivalent ways to quantize the theory
along different channels. This allows us to identify the free energy per unit length of (3.27)
with the Casimir energy of the mirror theory,

E0(T ) = f(T )
T

. (4.1)

It is customary to parameterize the vacuum energy as E0(T ) = −c̃(r)Tπ/6, by introducing
the so-called scaling function c̃(r), with r = mR being a dimensionless parameter. From
eq. (3.27) one finds

c̃(r) = 3
π2

∫ ∞

−∞
r cosh(θ)L0(θ)dθ (4.2)

where L0(θ) = log(1 + e−ϵ0(θ)). In the limit r → 0, the ultraviolet (UV) limit, this function
encodes all the relevant data of the underlying conformal field theory, since

lim
r→0

c̃(r) = c − 24∆min, (4.3)

where c is the central charge and ∆min is the lowest eigenvalue of the zero-th
Virasoro generator.
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Figure 3. The functions L0(θ) for spin s = 1/2 (left) and s = 1 (right) with γ = 1/7, for different
values of r. One can see that for smaller values of r the plateau starts to form.
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Figure 4. Scaling functions for spin s = 1/2 (left) and s = 1 (right).

The TBA equations (3.24) are a system of non-linear integral equations which is in
general very difficult to find an analytical closed solution. Sometimes, however, it is possible
to do so. For example, in the UV limit r → 0, it is well known that for some theories
it is possible to express the TBA in terms of simple algebraic equations whose explicit
solutions can be used to derive the central charge c in terms of sums of Rogers dilogarithms.3
The fundamental property shared by these theories is the fact that as r approaches 0, the
functions log(1 + e−ϵ(θ)), develop a plateau of width ∼ 2 log(2/r), as first noticed by Al.
Zamolodchikov [3]. In the family of scattering theories we have introduced above, we have
two well-known examples of this behavior: the sine-Gordon model, corresponding to spin
s = 1/2, and the sausage model for s = 1. In these cases, the plateaus start to form for
small values of r, see e.g. figure 3, and therefore one can explicitly compute the value of the
central charge using dilogarithms obtaining c = 1 and c = 2, respectively, independently
from the value of γ = 1/N .

As pointed out above, it is usually difficult to find a closed solution for generic r: for this
reason, it becomes very useful to perform numerical analysis to study the behavior of these

3CDD factors may change these equations in such a way that no more real solutions are allowed.
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Figure 5. Left: the vacuum energy E0(r) as it approaches the singular point r∗ = 0.21628(2); right:
the kernel L0(θ) at different values of r. Both were obtained for s = 5/2 and N = 12.

theories. The method that has proven to be more effective is by solving the system of equations
via successive iterations. The idea is to start from the initial guess ϵ

(0)
n = (r cosh θ, 0, . . . , 0)

for n = 0, . . . , N and then define the k-th iterative solution, with k ≥ 0, as

ϵ(k+1)
n (θ) = δn,0r cosh(θ) −

N∑
m=0

Inm(p ∗ L(k)
m )(θ), n = 0, 1, . . . , N, (4.4)

where L
(k)
n (θ) = log(1 + e−ϵ

(k)
m (θ)). In general, this process is not guaranteed to converge,

but if it does, one is then able to find with arbitrarily high accuracy the values of the
pseudo-energies and the corresponding Ln(θ) (an extensive study of this convergence problem
has been done in [23]).

This allows us to compute numerically the integral (4.2) at different values of r, finding the
value of the scaling function and, possibly, of the central charge of the underlying conformal
theory. The cases of s = 1/2 and s = 1 are shown in figure 4.

4.1 Higher spins and Hagedorn-like singularity

Having a natural generalization of the S-matrix for higher values of the spin, s ≥ 3
2 , and of

the corresponding TBA equations, it is natural to ask what kind of theories they describe.
Performing the same iterative procedure as above, we observe an unexpected behavior as the
ground state energy E0(r) diverges at a positive finite value r∗ and, correspondingly, that
the functions Ln(θ) do not develop a plateau, but rather become more peaked around θ = 0
as they approach the singular value, as shown in figure 5.

Extending the numerical analysis to different values of the spin and of the coupling
constant, we see that the critical value r∗ is a function of both s and N = 1/γ. Some
values of r∗ are listed in table 1.

Moreover, as can be seen from figure 6, the critical values r∗ seem to converge to non-zero
values even for vanishing coupling constant γ = 1/N → 0 for s ≥ 3/2. This means that the
singularity does occur also at the su(2) symmetric points and the UV limit does not exist
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s = 3/2 s = 2 s = 5/2 s = 3
N = 4 0.06024(4) - - -
N = 5 0.01683(2) 0.22505(9) - -
N = 6 0.00722(5) 0.09996(5) 0.40380(3) -
N = 7 0.00392(8) 0.05976(6) 0.21628(2) 0.57301(7)
N = 8 0.00248(7) 0.04195(5) 0.14665(8) 0.34110(6)
N = 9 0.00174(9) 0.03255(2) 0.11269(7) 0.24773(3)
N = 10 0.00132(7) 0.02699(9) 0.09349(6) 0.19958(2)
N = 11 0.00106(6) 0.0234(5) 0.08157(4) 0.17123(0)
N = 12 0.00089(4) 0.02106(7) 0.07367(8) 0.15307(2)

Table 1. Some values of the critical scale r∗ for different values of s and γ = 1/N .

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

Figure 6. Value of the singular point r∗, for different values of spin and coupling constant γ = 1/N .
The values are computed with precision to the 6th decimal digit. The r∗-axis is log-scaled.

even in those cases.4 It is interesting to notice that a Hagedorn transition of N = 4 SYM at
finite temperature exists in the limit where the coupling constant vanishes, as shown by [24].

A similar behavior has been recently studied in TT -deformed theories with detailed
numerical analysis [26]. In this case, the vacuum energy develops a square root singularity

E0(r) ∼r→r∗ c0 + c1/2
√

r − r∗. (4.5)

In this setting, the singularity ultimately appears as a consequence of the presence of a
CDD factor and it has been regarded as the appearance of a Hagedorn-like phase transition.
Remarkably, it has been shown that by finely tuning the parameters of the deformation, one
can ultimately remove the singularity, as described in [13].

4In [14] this computation has been performed by taking first the UV limit for a finite N and then the
N → ∞ limit. Since there is no UV limit for finite N , this limiting procedure is inconsistent.
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Figure 7. Examples of fitting for s = 3/2 and N = 4 (left) and N = 5 (right).

N

4 5 6 7 8 9 10 11 12 13 14 15
s = 3/2 0.495 0.501 0.498 0.497 0.492 0.487 0.486 0.497 0.486 0.485 0.488 0.482
s = 2 | 0.504 0.502 0.501 0.501 0.491 0.499 0.504 0.509 0.508 0.497 0.500

s = 5/2 | | 0.507 0.507 0.500 0.502 0.499 0.499 0.497 0.493 0.494 0.508
s = 3 | | | 0.489 0.498 0.491 0.504 0.499 0.493 0.495 0.508 0.501

Table 2. Values of the fitted exponent a, for different values of the spin and N = 4, 5, . . . , 15.

The theories we have introduced in this work present some similar aspects, but they are
crucially different. Indeed, the S-matrices we consider are not obtained as a deformation
of some known theory but are genuinely obtained by imposing the defining properties of a
scattering theory in two dimensions, as explained in section 2. As a result, this singularity is
in a sense more “fundamental”, as it cannot be removed by a fine-tuning of the parameters.
We analyzed the behavior of these models close to the singularity, for different values of the
spin, at different values of the coupling constant. More explicitly, we have generated several
points in a close neighborhood of width ∼ 1% of the singular points of table 1. We then used
these data and fitted the curves, as shown in figure 7 with a fitting function given by

Efit
0 (r) = b(r − r∗)a + c0. (4.6)

In table 2 we present the results of the critical exponent a obtained from the numerical
analysis, and in figure 8 we show a fit of these points. The main source of error in the
exponent a is from a sensitive dependence on the initial guesses used in the fitting algorithm.
We performed the fit for different initial guesses to estimate the average value of a and the
associated error which is around 2%.

Remarkably, we observe that it becomes independent of the value of the coupling constant
and the spin, approaching a universal value of ∼ 1/2, compatible with a square root behavior.

Similarly, in table 3 we present the fitted values of the parameters b and c0, only for
the case s = 3.
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(c) s = 5/2.
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(d) s = 3.

Figure 8. Fitted value of the exponent a, for different values of the spin.

N

4 5 6 7 8 9 10 11 12 13 14 15
b | | | 17.81 44.09 82.45 127.59 167.71 219.89 264.01 298.47 341.50
c0 | | | -7.58 -15.57 -24.23 -32.92 -41.24 -48.94 -55.95 -62.25 -67.85

Table 3. Values of the fitted parameters b and c0, for spin s = 3 and N = 7, 8, . . . , 15.

These features, however, need a more careful analysis since it is extremely difficult and
computationally challenging to study the data in the close vicinity of the critical value
r∗, as the iterative procedure becomes extremely slow. The best way to overcome this
problem is to find clever ways to solve the TBA equations (3.24) analytically, to have a
more quantitative analysis of these models. A first attempt in this direction is provided
in appendix B, with a simpler toy model.
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5 Conclusions

Following the inverse scattering program, we have constructed exact S-matrices of particles
belonging to spin s multiplets of quantum Uq(su2) group for any half and integer spins. The
scalar factors in front of the S-matrices are derived exactly to satisfy the unitarity and
crossing-symmetry in (2.34). The first two simple cases s = 1/2 and 1 match exactly with
known results of the quantum sine-Gordon and the sausage models. We have found many
new S-matrices in this way. For example, explicit expressions of new S-matrix elements
for s = 3/2 are given in (2.38).

We have derived the TBA equations which can be associated with graphs similar to but
different from Dynkin diagrams. Except for s = 1/2, 1, these graphs are different from those
of classical Lie algebras of finite or affine types. In our opinion, it is not a coincidence that
the Hagedorn-like singularity occurs for non-Dynkin graphs for spin s ≥ 3/2 and this fact
deserves, with no doubt, further investigations. We have shown how the pseudo-energies
and the free energies become complex if the temperature scale becomes larger than the
critical ones. Although these exact results are based on a TBA with the same non-Dynkin
graphs as shown in figures 1 and 2 and a simplified toy kernel, we believe that the origin
of the singularity should not be the kernel but the graphs which are of non-Dynkin types.
This is supported by the numerical analysis in which both the toy TBA and the TBA for
s ≥ 3/2 show qualitatively the same singularities. Understanding this from mathematical
considerations such as cluster algebras and hyperbolic algebras will be interesting. In the
context of integrable QFTs, the fact that the pseudo-energies become complex implies that the
minimization of the free energy leading to the TBA equations fails and signals the presence
of singularity. Unfortunately, we have no theoretical tools beyond the critical scales.

The numerical data suggest an interesting universality in which the critical exponents
are quite close to 0.5 independently of the spin s and the coupling constant γ = 1/N . If
it is interpreted as 1/2, the singular behavior is similar to a particular deformation by the
energy-momentum T T̄ where the free energy can be computed using the Burgers equations.
However, we want to point out that our results are qualitatively different from this T T̄

deformation since the phase shifts from (2.34) are regular for all values of s in the asymptotic
limit θ → ∞ while that of the T T̄ is singular.5

There are several unanswered questions, both conceptual and technical, which suggest
some future investigations. Considering that our S-matrices are based on the spin s represen-
tations of Uq(su2), we should understand why cases of s = 1/2, 1 are so special to have UV
completeness while other values of s cannot. Also, we can ask if exact S-matrices based on
other symmetry algebras than su2 can show similar singularity. Another interesting question
is to study this singularity in the limit of s → ∞ in the context of certain condensed matter
problems like Haldane conjecture where the large spin limit plays a significant role [25]. On
the numerical side, a deeper understanding of the scaling function behavior in the vicinity
of the critical point r∗, maybe using the techniques suggested in [26] for the numerical
integration of TBA, could shed more light on the phenomena appearing there.

5Deformations by higher conserved charges (T T̄ )(s) which give CDD factors of the “pole” type can also
lead to the Hagedorn singularity even though the phase shifts are regular as pointed out in [26].
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A Explicit derivation of Bethe-Yang equations

It is important to find explicit expressions of the kernels of TBA equations. For this purpose,
we introduce another set of functions

an(θ) ≡ i

2π

d

dθ
ln en(θ) = γ

π

sin nπγ

cosh 2γθ − cos nπγ
, (A.1)

bn(θ) ≡ i

2π

d

dθ
ln gn(θ) = −γ

π

sin nπγ

cosh 2γθ + cos nπγ
. (A.2)

In terms of these functions, the kernels can be derived from (3.9)–(3.11) and (3.14)–(3.16)
(n, m = 1, · · · , N − 1)

K0n = Kn0 = −
min(n,2s)−1∑

i=1
a|n−2s|+2i−1, (A.3)

K0N = KN0 = −b2s, (A.4)

Knm = Kmn = a|n−m| + an+m + 2
min(n,m)−1∑

i=1
a|n−m|+2i, (A.5)

KnN = KNn = bn−1 + bn+1. (A.6)

It is more convenient to take Fourier transforms of the kernels. With the convention

f̂(ω) =
∫ ∞

−∞
eiωθf(θ)dθ, f(θ) =

∫ ∞

−∞
e−iωθf̂(ω)dω

2π
, (A.7)

the Fourier transforms of an(θ) and bn(θ), with γ = 1/N , are given by

ân(ω) =
sinh

(
π N−n

2 ω
)

sinh
(
π N

2 ω
) , b̂n(ω) = −

sinh
(
π n

2 ω
)

sinh
(
π N

2 ω
) . (A.8)

From these, we can obtain the Fourier transforms of the kernels as follows:

K̂00 =
sinh

(
N−2s

2 πω
)

sinh(sπω)

sinh(πω) sinh
(

N
2 πω

) , (A.9)

K̂NN =
sinh

(
N−2

2 πω
)

sinh
(

N
2 πω

) , (A.10)
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K̂0N = K̂N0 = sinh(sπω)
sinh

(
N
2 πω

) , (A.11)

K̂N−1,N = K̂N,N−1 = −
sinh

(
N−2

2 πω
)

sinh
(

N
2 πω

) , (A.12)

K̂0n = K̂n0 = −
sinh

(
n
2 πω

)
sinh

(
N−2s

2 πω
)

sinh
(

N
2 πω

)
sinh

(
1
2πω

) , 1 ≤ n < 2s, (A.13)

K̂0n = K̂n0 = −
sinh(sπω)sinh

(
N−n

2 πω
)

sinh
(

N
2 πω

)
sinh

(
1
2πω

) , 2s ≤ n ≤ N −2, (A.14)

K̂nN = K̂Nn = −
2sinh

(
n
2 πω

)
cosh

(
1
2πω

)
sinh

(
N
2 πω

) , 1 ≤ n ≤ N −2, (A.15)

K̂nm = K̂mn =
sinh

(
N−n

2 πω
)

sinh
(

m
2 πω

)
sinhω

sinh2
(

1
2πω

)
sinh

(
N
2 πω

) −δnm, 1 ≤ m ≤ n ≤ N −1. (A.16)

The kernel K̂00 can be obtained from (2.34). By defining the following kernels,

p̂(ω) ≡ 1
2 cosh

(
1
2πω

) , (A.17)

K̂nm(ω) ≡ K̂nm(ω) + δnm, (A.18)

one can easily check that the following functional relations are satisfied for all 1 ≤ m ≤ N ,

K̂nm = δnm + p̂(ηn1K̂n−1,m + ηn,N−1K̂n+1,m) − p̂δn,N−2δmN , 1 ≤ n ≤ N − 1, (A.19)
K̂0m = −p̂K̂2s,m + p̂δ2s,N−1δmN , (A.20)

K̂Nm = δNm − p̂K̂N−2,m, (A.21)
K̂00 = 1 + p̂2K̂2s,2s, (A.22)

where we have used the short notation ηnm = 1 − δnm, i.e.

ηnm =

0, n = m

1, n ̸= m.
(A.23)

Inserting (A.19) into (3.20) for n = 1, · · · , N − 1, we can find

σ̂n + ˆ̃σn = p̂
(
ηn1 ˆ̃σn−1 + ηn,N−1 ˆ̃σn+1 + δn,N−2σ̂N + δn,2sσ̂0

)
(A.24)

From (A.21) for n = N , we get

σ̂N + ˆ̃σN = p̂ˆ̃σN−2 + δN−1,2sp̂σ̂0, (A.25)

and from (A.20) and (A.22), we get

σ̂0 + ˆ̃σ0 = q̂ + p̂(ˆ̃σ2s − δ2s,N−2σ̂N ), (A.26)
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where q̂ is the formal Fourier transform of m cosh θ. Taking inverse Fourier transforms on
these equations, we get

σ1(θ) + σ̃1(θ) = p ⋆ σ̃2(θ) + δ1,2sp ⋆ σ0(θ), (A.27)
σn(θ) + σ̃n(θ) = p ⋆ σ̃n−1(θ) + p ⋆ σ̃n+1(θ)+

+ δn,N−2p ⋆ σN (θ) + δn,2sp ⋆ σ0(θ), n = 2, . . . , N − 2, (A.28)
σN−1(θ) + σ̃N−1(θ) = p ⋆ σ̃N−2(θ) + δN−1,2sp ⋆ σ0(θ), (A.29)

σN (θ) + σ̃N (θ) = p ⋆ σ̃N−2(θ) + δN−1,2sp ⋆ σ0(θ), (A.30)
σ0(θ) + σ̃0(θ) = m cosh θ + p ⋆ σ̃2s(θ) − δ2s,N−2p ⋆ σN (θ). (A.31)

Here we have used the universal kernel p(θ), defined in eq. (3.26). By minimizing the free
energy with these constraints, we can express the TBA equations in terms of incidence
matrix elements as eq. (3.24).

B Simplified TBA equations with a toy kernel

The TBA system (3.24) is not solvable analytically and it is difficult to understand how the
TBA develops the singularity. To get an insight on this at a technical level, we consider
the toy kernel6

p(θ) = 1
2δ(θ). (B.1)

The TBA equations become very simple, namely

ϵn(θ) = δn,0r cosh θ − 1
2

N∑
m=0

Inm log
[
1 + e−ϵm(θ)

]
, n = 0, 1, · · · , N, (B.2)

and can be expressed as a set of algebraic equations

xn(θ) = e−r cosh θδn,0
N∏

m=0
[1 + xm(θ)]Inm/2 , xn(θ) ≡ e−ϵn(θ), r ≡ mR , (B.3)

for each value of θ. Since these are not integral equations anymore, we can analyze them
analytically.

These TBA equations whose graph is shown above in figure 2 are exactly solvable by
Mathematica for N = 2s + 1 with 2s = 3, 4,7 in terms of a = e−r cosh θ,

x
[2s=3]
0 = −5

2 + 1
2a2 − a − (1 + a)2

2a2
√

1 − 4a, (B.4)

x
[2s=4]
0 = −3

2 + 1
2a

− a − (1 + a)
2a

√
1 − 8a. (B.5)

All other exact expressions for xn’s are also found but we will not put them here since they
are much more complicated and not relevant in further discussions.

6The normalization is chosen to match that of the integrated universal kernel from the previous sections.
7Exact solutions for higher values of s are beyond the capacity of our Mathematica code.
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k = 2s N r∗

1 ≥ 4 0
2 ≥ 5 < 10−4

3 4 log 4 = 1.38629436 . . .

3 5 1.38629436
3 6 1.38629436
3 7 1.38629436
3 8 1.38629436
4 5 log 8 = 2.07944154 . . .

4 6 2.07944154
4 7 2.07944154
4 8 2.07944154
5 7 2.57478171
5 8 2.57478171

Table 4. r∗ for various s and N . We observe that r∗ depends only on s and is independent of N .
For s = 1/2, 1, r∗ is zero, meaning that there is no singularity.

These results show that the pseudo-energies can be real if

e−r cosh θ ≤ 1
4 for 2s = 3; e−r cosh θ ≤ 1

8 for 2s = 4, (B.6)

for any value of θ. Therefore, the critical values r∗, which are the maximum values of r for
them to remain all real, are found by considering θ = 0, namely,

r∗ =

log 4, for 2s = 3
log 8, for 2s = 4.

(B.7)

For other values of s and N , we can solve only numerically to find r∗. We list them for
different values of N in table 4. It is interesting to notice that the critical values r∗ where
the solutions turn into complex numbers, depend only on the spin s and not on the coupling
constant N = 1/γ. We do not understand this analytically but it is definitely due to the
exceptionally simplified kernel. For s = 1/2, 1 where no singularity occurs, we observe that
the solutions are real for all r as expected.

The above exact solutions of the simplified TBA can be used to analyze the free energy
using (3.27). For 2s = 3, one finds

f(T )
T

= −
∫ ∞

0

m
π

coshθ ln
[
−3

2 + 1
2a2 −a− (1+a)2

2a2
√

1−4a

]
dθ, a = e−r coshθ. (B.8)

Although this expression is given in terms of relatively simple integrals, it can not be expressed
analytically. Instead, we perform this numerically and plot the free energy as a function of r

near r∗ in figure 9 which show qualitatively similar behaviors as figure 7.
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Figure 9. Toy TBA with s = 3/2, N = 4 (left) and s = 2, N = 5 (right).
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