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We consider renormalization group flow applied to the cosmological dynamical equations. A consistency
condition arising from energy-momentum conservation links the flow parameters to the cosmological
evolution, restricting possible behaviors. Three classes of cosmological fixed points for dark energy plus
a barotropic fluid are found: a dark energy dominated universe, which can be either accelerating or
decelerating depending on the RG flow parameters, a barotropic dominated universe where dark energy
fades away, and solutions where the gravitational and potential couplings cease to flow. If the IR fixed
point coincides with the asymptotically safe UV fixed point then the dark energy pressure vanishes in the
first class, while (only) in the de Sitter limit of the third class the RG cutoff scale becomes the Hubble

scale.
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1. Introduction

Cosmic acceleration may be due to a scalar field arising from
high energy physics. This creates two puzzles: if the physics is set
at the Planck scale, or similarly high energy, why is the magnitude
of the energy density, basically the amplitude of the scalar field
potential, of order (10~3 eV)* today, and why doesn’t the potential
amplitude and shape receive strong corrections from couplings in
the high energy universe?

A useful and efficient way of analyzing quantum effects on the
low energy scale physics is the renormalization group (RG) [1]. An
effective theory is obtained by integrating out the quantum fluc-
tuations with higher energy scales than a certain cutoff scale. It
contains a number of parameters that run along with the cutoff
scale, called the RG flows. One can then incorporate the quantum
effects using classical equations of motion from the effective ac-
tion. The main problem in applying the RG approach to cosmology
is that we do not know the complete quantum gravity theory that
governs the UV (Planck) scale physics. Asymptotically safe grav-
ity [2] is an idea that the quantum gravity is described by a finite
number of parameters which approach nontrivial fixed points in
the UV scale limit. This provides a conceptual framework to link
the UV physics with the low energy effective theory that describes
physics at much later time scale.

We explore here the cosmological late time effects from renor-
malization group flow. This differs from the application of asymp-
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totic safety criteria in the UV (see [3] for a review) in that we focus
on the IR behavior of the field and its effects on dark energy and
the cosmological expansion. We look for cosmological fixed points
to the coupled dynamical equations including RG effects, which
may or may not correspond to fixed points of the RG flow.

The low energy effective action can, in principle, be obtained
from the RG equation. This is however a highly nontrivial func-
tional differential equation with respect to the RG scale k [4] that
is virtually impossible to solve exactly. As a simple approxima-
tion, we (in agreement with much of the literature) shall adopt
the Einstein-Hilbert truncation [5] in the gravity part by neglect-
ing higher derivative terms. In the matter part, the kinetic term
of the scalar field is taken to be canonical (i.e. no running since
there is no coupling parameter) while the potential is allowed to
vary as the RG scale k changes. In this approximation, the prac-
tical effect of RG flow is then an evolution of the gravitational
coupling Gy (generalizing Newton’s constant) and the scalar field
potential Vi(¢). In particular the equations of motion will take the
same form as the classical ones.

In the application of the RG to cosmology, the RG evolution
governed by the RG cutoff k is then related to the cosmologi-
cal evolution in time t. In the literature the cutoff k is usually
assumed to be proportional to 1/t on the physical ground that
fluctuations smaller than 1/t do not play any role, thus providing
the IR cutoff [6,7]. Another choice would be for example k ~ H(t),
the Hubble parameter at t. Note that H ~ 1/t in general so this is
quite similar. See [8-10] and references therein for this and other
cutoffs, some inspired by holography, applied to cosmology.

However, the truncation of the low energy effective action to
the Einstein-Hilbert form already restricts the type of influence of
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the cutoff scale on the cosmology. We will see that a constraint
among RG parameters emerges for consistency of the approxima-
tion. The constraint has been discussed in previous works with a
perfect fluid [6,7]. In this Letter we will consider the gravity with
barotropic fluids and a scalar field and derive the constraint and
its consequences.

In deriving the modifications of the Einstein field equations
from the Einstein-Hilbert action with non-constant couplings,
three approaches can be taken, depending on the interpretation
used. One method [11] is to treat the evolution of the couplings as
due to a dynamical variable, say a field ¢. This is basically equiva-
lent to a treatment like F(¢)R in the case of gravitational coupling,
and leads to an extended quintessence type of scalar-tensor the-
ory [12-16], with similarities to induced gravity [17-19].

A second method is to keep the couplings as nondynamical dur-
ing the variation of the action with respect to the metric, and fur-
ther assume that continuity equation for each energy-momentum
component individually is unaffected. That is, require the part of
the covariant derivatives with respect to spacetime coordinates and
that part coming from a partial derivative of the renormalization
scale k with respect to spacetime coordinates to vanish separately.
This was the approach recently taken by [20] (also see [21]). Third,
one can keep the couplings nondynamical in the action and re-
quire only the Bianchi identity to hold with respect to the total
covariant derivatives, simultaneously accounting for the spacetime
dependence and the flow of the couplings under the renormaliza-
tion group. This is the approach we take here, and its results, for
example that the flow converges in de Sitter space, indicate that it
is of interest in its physical consequences.

In Section 2 we derive the effective dark energy contributions
to the Friedmann equations and continuity equations, and the nec-
essary consistency condition between them. We evaluate the sys-
tem of dynamical equations in Section 3, finding the cosmological
fixed points. The relation of the RG cutoff scale to cosmology is
addressed in Section 4 and we conclude in Section 5.

2. Cosmology with RG flow

We assume that the universe is described by Einstein gravity
with matter (or other barotropic fluids) and a canonical, minimally
coupled scalar field. In order to incorporate the quantum effects,
we consider the truncated RG flow leading to the Einstein-Hilbert
action as explained above. The couplings, including the gravita-
tional coupling and the scalar field potential, will be assumed to
run with scale. Because the field equations arise from variation
of the action with respect to the metric, and there is no explicit
dependence of the couplings on the metric, the form of the field
equations will be unaltered. In particular, for a homogeneous and
isotropic universe the standard form of the Friedmann equations
for the expansion rate H and the acceleration & (or H) will be pre-
served.

The evolution equations are

8 G
=5 (1)

H = —47 Gy (pk + Pr), 2)

where H = a/a, an overdot represents a time derivative, p, repre-
sents the total energy density including all components (e.g. mat-
ter, scalar field, etc.), and py is the total pressure. We show sub-
scripts k on the gravitational coupling (generalization of Newton’s
constant) G, and quantities involving the scalar field coupling, i.e.
the potential, to remind that these may flow with the RG scale k.
Note that in a scalar-tensor theory, where the time variation of
the gravitational coupling arises from a dynamical field, the form

HZ

of the Friedmann equations will be modified. Extra terms involv-
ing G and G will appear.

One also has the Bianchi identity, involving the covariant
derivative of each side of the Einstein field equation. This gives

0=(GT{"),
= (G,J,ﬁ”)y + G TR + GV THY. (3)

For the ;=0 equation in a Friedmann-Robertson-Walker cosmol-
ogy one gets

(Gkpr).0 +3HGk(p + px) =0. (4)

Finally, one must take into account that the time derivative in-
volves a piece from the possible time variation of the RG scale k
to find the continuity equation

9k _ —3H,0k[l L Pk . ldlnk Bln(Gk,ok)]
at ok 3 dN olnk
where N = Ina. Checking against dp,/dt derived by differentiat-
ing Eq. (1) and substituting into Eq. (2) gives agreement. That is,
preservation of the form of the Friedmann equations necessarily
implies a modification to the continuity equation due to the flow
of the RG scale.
For the matter component, the continuity equation reads

10InG, dInk
3 dlnk dN |

Note that the evolution is altered from the usual behavior due to
the flow of the gravitational coupling. For the dark energy compo-
nent, the evolution is

(5)

0tom = —3Hpnm |:1 + (6)

0t Pde = —3H(0de + Dde)

Hcllnk dInGy +31nvkv (7)
dN \ ok 7T Jmk k)

Note that only the coupling coefficients within the potential
change under the RG flow, and the kinetic term and matter den-
sity are unchanged. For the total density, the continuity equation
is

0o = —3H (0 + Pr)

dink (01In Gy +81nvkv (8)
dN \ ok %7 mk k)

We can verify that the total density equation is indeed consistent
with the sum of the individual components, as another check on
the system of equations.

However, a crucial further condition is that the variation of
the action with respect to the field ¢ gives an unaltered Klein-
Gordon equation, since there is no explicit k dependence of ¢.
This field equation must be consistent with the continuity equa-
tion we derived. Introducing the RG flow parameters (also called
the anomalous dimensions) arising from the flow of the effective
action,

d1InGy
= 9
dlnk’ ©)
dlnVy
= 10
Y= ok (10)

and taking the derivative of pge = (1/2)¢% + Vi we find

L. AV,
O Pde = ¢ + ——

Gloj
. dink /1. dink
=—3H¢2—Hnw<§¢2+vk>—H1} N Vi, (11)
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where the second line comes from the continuity equation (7) for
the dark energy. Only the first term of the second line appears in
the Klein-Gordon equation, though, so consistency of the theory
requires that the terms proportional to dlnk/dN must vanish.

This condition leads to two possibilities: either dInk/dN = 0 for
all time, in which case there is no relation between cosmological
evolution and renormalization group flow, or

0=%&n+vwn+w. (12)
This is a crucial point because it restricts arbitrary behavior of the
RG flow cosmology for the truncated, i.e. Einstein-Hilbert action.

In summary, the gravitational field equations, Bianchi identity,
and field evolution equation give a consistent framework within
which to treat renormalization group flow and cosmological dy-
namics together when Eq. (12) is applied.

3. System of dynamical equations

To evaluate the cosmological evolution we can rewrite the cos-
mological evolution equations in the standard way (see, e.g., [22])
as a coupled system of equations for the dynamics. We use the
dynamical variables

22

K¢
= (13)

2

KV
yzzﬁ, (14)
where k2 = 87 Gy. The system of equations is
dx 3 3 n dlnk
—— = —3x(1—x? Ay XX+ = , 15
N x( x)+,/2y+2 X+ Xy (15)
dy /3 5 3 n+v dink
— ==X 3 ) 16
dN 2xy+xy+2 y+ Zde’ (16)
where the logarithmic potential slope

1 dv
A=—— K (17)

ICVk d¢

and X = Z#de(l + w;)£2i(a). The sum includes all barotropic flu-
ids present such as matter or radiation, but the scalar field com-
ponent is treated separately. Here £2; is the dimensionless energy
density in barotropic component i and w; is its equation of state
parameter or pressure to density ratio (e.g. 0 for matter, 1/3 for
radiation).

Thus the time dependence of the RG cutoff parameter k(N) will
be an important element in the cosmological dynamics.

Cosmological quantities of interest will be the effective dark en-
ergy density and its equation of state defined through dIn pg./dN
=-3(1+w),

Qqe =X + ¥, (18)
2 2
Xt =Yy
= 19
X2+y2 ( )

Note that the influence of the RG flow is implicit in the behavior
of x and y; the correction term in Eq. (7) vanishes due to the
consistency condition and so the scale k does not explicitly appear.

In the case where dInk/dN = 0 for all time, there is no RG flow
and the standard cosmological dynamics results apply. We there-
fore do not consider this case further. The necessary consistency
condition of Eq. (12) then becomes in terms of the dynamical vari-
ables,

2_ N
n+v

(Note that we expect n to be negative.) Applying this to the cos-
mological quantities gives

x. (20)

y

Qge = X2 21

de xn—‘f-]), ( )
2

w=”’T+”. (22)

We will be particularly interested in fixed point solutions of
the dynamics, asymptotic behaviors that are insensitive to initial
conditions and can serve as cosmological, and possibly RG flow,
attractors.

In searching for such solutions, first consider y = 0. Then the
solutions are either x = 0, which implies §24. =0, i.e. the vanish-
ing of dark energy, or dInk/dN =0, x=1 and X =0, i.e. complete
dark energy domination with £24. =1 but w =1 so this is a kinetic
energy dominated solution that decelerates the expansion. Both of
these are standard cosmology solutions in the absence of RG flow,
since asymptotically dInk/dN = 0, i.e. the RG flow freezes. How-
ever, the trajectory to reach the fixed point in general differs in
the RG cosmology.

If x =0 the fixed points are y = 0 as already considered, or
dlnk/dN =0 with A =0 (as in a runaway, e.g. inverse power law
potential). This solution is dark energy dominated with 24 =1
and w = —1, so this is a potential energy dominated case that
accelerates the expansion, ending in a de Sitter state. Again, this
asymptotically agrees with a standard cosmology fixed point.

In the case where asymptotically dink/dN =0 (but x £ 0 # y),
the critical points are

5 A2 5 3 (1+wp)?
=g Xe=3 2 o

2 2
2 _ M 2 _31-wj
Ya= 6 J’cz—z 2

3(1 4 wp)

Qde,c] =1, -Qde,cl = T,

)»2
Wep=-1+ 3 W2 = Wp. (23)

The first critical point is dark energy dominated, with an equa-
tion of state depending on the value of A. If A = 0 asymptotically,
then the dynamics approaches a de Sitter state. A stable fixed point
only exists for A2 < 3. The second critical point is a scaling solu-
tion where dark energy and the least positive equation of state
barotropic component have densities in a constant ratio. Since w
is equal to the equation of state of the barotropic component wy,
then this cannot give acceleration unless one already had an accel-
erating barotropic component.

Going beyond these cases, there is only one general solution
since y is not independent of x due to the consistency requirement
of Eq. (20),

Xy=1+ g
2 —-n
Vi3 = >
-Qde,c3 =1,
2n
W53:1+7. (24)

This is a dark energy dominated solution with the possibility of
a variety of equations of state, depending on the specific renor-
malization group theory. In particular, the case with n=-2, v=4
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corresponding to the asymptotically safe UV fixed point for the
RG flow (not the cosmology) gives w = 0 asymptotically, i.e. the
cosmological dynamics behaves asymptotically in the future like a
matter dominated universe.

The RG scale parameter here evolves at the cosmological fixed
point as

dink 2 341 3 v (25)
dN v 2n4v |

Recall that the matter in general does not have an equation of state
of zero, but rather

__ ndlnk

T3 dN (26)

m
If one wanted w;,; = 0 then one must shut off the evolution of
the scale k through choosing A% = 6(1+4 n/v). However, the matter
is irrelevant asymptotically in the dark energy dominated solution
above. (Also see the next section for further discussion.)
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Fig. 1. The ratio /v of the anomalous dimensions of the RG flow variables deter-
mines the cosmological fixed point for the third critical point. The solid black curve
shows the dark energy equation of state dominating the future cosmic expansion,
while the blue dashed curve shows the value of A for which the RG flow freezes.
Runaway potentials such as inverse power laws give A =0 and so w = —1. (For in-
terpretation of the references to color in this figure legend, the reader is referred to
the web version of this Letter.)

Table 1

Fig. 1 shows the dependence on n/v of the fixed point values
for the dark energy equation of state w in this case, and the po-
tential slope A needed to freeze the RG flow.

In order to end in a de Sitter state in this case, one needs
n = —v. Going back to the original consistency condition on the
Klein-Gordon equation (11), this requires nx?(dInk/dN) = 0. So ei-
ther we reduce to the previous dInk/dN = 0 solution that gave de
Sitter behavior, or we take n = 0 = v, which requires the previ-
ous x =0, A = 0 solution. Thus the list of cases giving w = —1 is
complete.

The cosmological attractor solutions are summarized in Table 1.
The asymptotic de Sitter solutions with A =0 can be achieved by
a runaway potential such as an inverse power law V ~ ¢~ " [23],
with the field ¢ rolling to the zero potential minimum, without
the need for an explicit cosmological constant.

4. Relation of cutoff scale to Hubble scale

Finally, let us examine the issue of the dependence of the renor-
malization cutoff scale k on the Hubble scale H. Taking the deriva-
tive of Eq. (1) with respect to Ink one obtains (also see [20] for
the first equality)

91ln H?
dlnk

where the second equality follows from our consistency condition.

In general the right-hand side evolves with time so an explicit
dependence of k on H, such as k ~ HP which gives a constant left-
hand side, without time explicitly entering, would be very special.
Such a relation, which is sometimes assumed in the RG cosmology
literature, will not in general be consistent.

A special case is when £24.(t) = constant is achieved through
A = constant for all time, i.e. an exponential potential [24]. This
situation implies that dark energy is either the only component if
22 < 3, or scales with the barotropic component otherwise; such
a universe does not yield acceleration. Together with this must go
that n and v are constant. Thus, the assumption of the RG cutoff
scale k being proportional to the Hubble scale, or some power of
it, is extremely restricting, and does not lead to viable solutions
describing our universe.

If we want to know how k asymptotically depends on H at the
cosmological fixed point, we see that it can there have a power law
relation with H. For example, in the dark energy potential domi-
nated solution one gets asymptotically k ~ H%@+V)_If one wanted
the IR fixed point to return to the asymptotically safe UV fixed
point of n = —2, v =4, this would give k ~ H in the future limit
(but not for the present or all times in general).

In addition, note that astrophysical conditions exist on the
flow of the gravitational coupling. Observations of the cosmic mi-
crowave background [25] and primordial nucleosynthesis abun-

=n+vy* =n[1 - 20] (27)

Cosmological attractor solutions under the renormalization group flow, including the values of the dark energy equation of state w, energy density 24, and type of solution.

When a variable is repeated under its column heading that means its value is moot.

1S}

X y? A dInk/dN w e Type

% - % A 0 -1+ é 1 Accelerating DE dominated
%(14;‘/;/:;)2 3(1—2W§) 1 N 0 wp ALt we) Scaling

1+1 =2 A L4k % 1+ 2 1 Flowing DE dominated

0 0 A dInk/dN w 0 Barotropic dominated

0 1 0 0 -1 1 DE potential dominated

1 0 A 0 1 1 DE kinetic dominated

0 1 0 dlnk/dN but n=0=v -1 1 no RG, de Sitter
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dances [26] indicate that the coupling is constant to a precision
of ~ 10% over a time comparable to the age of the universe. Thus,

G 1dInG _1dlnk 0.1

G H dN H dN H’
places a condition 7 (dInk/dN) < 0.1. This can be achieved either
through a small magnitude of n or a slow flow dInk/dN since
primordial nucleosynthesis (~ 1 MeV scale). The dashed curve in
Fig. 1 shows the condition on A needed to give dInk/dN =0 for
the flowing DE critical point, for example. This will simultaneously
also ensure that the matter equation of state w, =0.

n < (28)

5. Conclusions

In this Letter we have explored the quantum modifications
to cosmological evolution at late times. For Einstein gravity and
barotropic fluid and scalar field components, we considered the RG
running of the gravitational coupling (Newton’s constant) and the
scalar field potential. Keeping the form of the equations of motion
invariant under the RG evolution leads to a necessary consistency
condition between the RG flow parameters and the cosmological
quantities. This condition implies that one cannot adopt an ar-
bitrary a priori relation between the RG cutoff scale k and the
cosmological Hubble parameter H(t).

From the RG influenced cosmological evolution equations, we
have identified three classes of cosmological fixed points depend-
ing on the RG parameters: a dark energy dominated universe,
a barotropic dominated universe, and solutions where the gravi-
tational and potential couplings cease to flow. One can obtain an
asymptotically de Sitter universe with w = —1 for specific choices
of parameters, even if the potential has no intrinsic cosmological
constant.

In general, due to the flow of the gravitational coupling the
matter equation of state is not zero. This will affect structure for-
mation, which is beyond the scope of this article, but the require-
ments on the parameters are similar to those directly on varia-
tion of G. We have considered cosmological constraints on G/G
from cosmic microwave background and primordial nucleosynthe-
sis observations and given the conditions necessary on the flow
behavior. One can also satisfy both the matter equation of state
and varying gravity requirements through specific choices of po-
tential.

In this Letter we have not specified an explicit form of the
scalar field potential. It would be interesting in future work to
solve the RG equation explicitly for various specific potentials, such
as those just mentioned, and see how the cosmological evolution
develops toward the fixed points we have found. One could also
consider the higher order terms beyond the conventional trun-
cation as used here and see how the consistency condition is
modified. This would serve as a test of the renormalization group
formalism as usually applied to cosmology.
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