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Dark energy properties in DBI theory
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The Dirac-Born-Infeld (DBI) action from string theory provides several new classes of dark energy
behavior beyond quintessence due to its relativistic kinematics. We constrain parameters of natural
potentials and brane tensions with cosmological observations as well as showing how to design these
functions for a desired expansion history. We enlarge the attractor solutions, including new ways of
obtaining cosmological constant behavior, to the case of generalized DBI theory with multiple branes. An
interesting novel signature of DBI attractors is that the sound speed is driven to zero, unlike for

quintessence where it is the speed of light.
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L. INTRODUCTION

High energy physics theories for dark energy causing the
accelerated expansion of the Universe face issues of natu-
ralness—why is the current dark energy density measured
so different from the initial conditions of the high energy,
early universe, and how is the current low energy form of
the potential energy related to the initial high energy form
that should receive quantum corrections?

The cosmological constant, in particular, suffers both
problems. Making the field dynamical helps. To more fully
solve the amplitude problem one would like an attractor
solution, where the present behavior is largely insensitive
to the exact initial conditions. To ameliorate the form
problem one would like a symmetry or geometric quantity
that protects the potential, or ideally have it predicted from
a fundamental theory such as string theory. Quintessence
models cannot achieve both properties, and even the at-
tractor solutions have difficulty in naturally reaching a dark
energy equation of state w = —1 [1] as indicated by cos-
mological observations.

Paper 1 [2], following the pioneering paper of [3], high-
lighted the Dirac-Born-Infeld (DBI) class from string the-
ory as possessing desirable properties to serve as dark
energy. In particular, it found not only the attractor solu-
tions accessible to quintessence, but three new classes that
could achieve or approach w = —1, the cosmological
constant state. String theory can impose a specific non-
trivial kinetic behavior through the DBI action that arises
naturally in consideration of D3-brane motion within a
warped compactification. The field properties are related
to the geometric position of a three-dimensional brane
within higher dimensions, and the brane tension and po-
tential functions are (in principle) given by string theory, in
particular, through the AdS/CFT correspondence.

In this paper we extend the attractor solutions as well as
more fully considering the entire evolution and its obser-
vational consequences. In Sec. II we examine in detail the
case motivated by the simplest physics and find the viable
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regions of parameter space constrained through cosmologi-
cal observations. We show in Sec. III how to construct the
required potential for a given cosmic expansion history or
equation of state. Generalizing DBI theory to multiple
branes or nonstandard branes adds a degree of freedom
which we analyze in Sec. IV. We explore a new window on
constraining DBI dark energy with observations in terms of
the dark energy sound speed—this gives a distinct predic-
tion from quintessence—and its effects on the matter den-
sity power spectrum in Sec. V.

II. CONSTRAINTS ON A NATURAL DBI MODEL

The DBI action arises in type IIB string theory in terms
of the volume swept out by a D3-brane in a warped
geometry, coupled to gravity. The form is

5= [ dxTG-T(GW1 — 62/ T($) + T(¢) — V()]
(D

where we ignore the spatial derivatives of ¢. T is the
warped brane tension and V is the potential arising from
interactions with Ramond-Ramond fluxes or other sectors.
See, e.g., [4] for more details. The kinetic factor is often
written in terms of a Lorentz boost factor

1

Y= _— 2)
\/1 — $?)T
and the DBI dark energy equation of state is
-1+
w=lto Y 7Y 3)

Py y—1+v

where v = V/T. The nonrelativistic limit y — 1 < 1
leads to the quintessence action and equation of state.

In [2] the main consideration was the critical points of
the equations of motion and the asymptotic attractor be-
havior. In this section we consider perhaps the most natural
forms for the tension and potential and follow the specific
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dynamics throughout the history of the Universe. A com-
plete string theory would predict the functions 7 and V;
while this is not available one can use known behaviors for
certain circumstances. For a pure AdSs geometry with
radius R, the warped tension is given by

T(¢) = 7%, “

with 7 = 1/(g,A), where g, is the string coupling, o’ is the
inverse string tension, and A = R*/a’?> which is identified
as the "t Hooft coupling in AdS/CFT correspondence.

The potential is expected to have quadratic terms arising
from the breaking of conformal invariance due to cou-
plings to gravity and other sectors. In addition, quartic
terms enter from such interactions, while higher order
terms are suppressed, e.g. by powers of 1/R [4,5]. We
therefore take an ansatz

V(p) = m*¢> + cT = m>p* + cro™. 3)

Note that we take the potential to have a true zero mini-
mum so that there is no intrinsic cosmological constant.

For reference, we briefly review the equation of motion.
The DBI version of the Klein-Gordon equation is

$+3y2H +y 3V, +138y 2 -2y - DT, =0,
(6)

where H is the Hubble parameter, V , = dV/d¢ and
T, = dT/d¢. The energy-momentum tensor has perfect
fluid form with energy density p, and pressure p, given
by

pe=—DT+V;  py=Q0—yHT-V, (7

and so the equation of motion can also be viewed in terms
of the continuity equation

po="3H(py+ py)=-3Hly—y HT. (8

For the form of Eq. (5), the potential for large ¢ is
dominated by the quartic term while for small ¢ it looks
like a quadratic potential. Ahn et al. [2] identified the ratio
V /T as particularly important for determining the attractor,
if any. With Eq. (4) this implies that

ot k)2 ©

v

where u? = (m*k?/7) and k*> = 87G. At late times, ¢
rolls to zero and the quantity v is dominated by the second
term in Eq. (9) so v — oo, giving the ultrarelativistic class
of attractor solutions discussed by [2]. In particular, since
A= —(1/kV)dV/dp ~1/¢ and y~v ~ ¢~ 2 in this
limit, then the secondary attractor parameter of [2] is
A?/y = const. This implies that it is the second class of
attractor solution from Table I of [2] that is reached and at
late times w = —1 + A2/(3y). However the evolution at
present and at all times before the asymptotic future is of
interest.
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FIG. 1 (color online). The DBI solutions using quartic/qua-
dratic potential/tension functions of Eq. (9) are plotted in the
w-w' plane. The initial thawing behavior, the values today
(denoted by x’s along the curves) with property w' = 1 + w,
and future attractors to a constant w determined by the value of
w? are all evident.

Figure 1 illustrates the dynamical evolution of these
models in the w-w' plane, where w' = dw/d Ina, for vari-
ous values of ¢ and u?. The most noticeable common
characteristic of the field evolution is that it is a thawing
field. That is, the dynamical history lies within the thawing
region of the w-w' phase plane defined originally for
quintessence as bounded by 1 = w//(1 + w) =< 3, as one
of the two major classes of evolution [6]. Indeed, the field
evolves away from a frozen, w = —1 state in the high
redshift, matter dominated era along the w' = 3(1 + w)
line defined by [6] and shown to be a generic dynamical
flow solution by [7]. The evolution remains within the
thawing region, until today (defined by (2, = 0.72 and
denoted by an x along the evolutionary track) the field lies
roughly near w’ = (1 + w).

At early times, in the matter dominated era, the field is
frozen to a cosmological constant state, until the DBI dark
energy density becomes non-negligible. This is indepen-
dent of initial field value ¢; and velocity 7y;, as Fig. 2
illustrates. The freezing represents the effects of matter
domination and is a different sort of attractor than the late
time solution. The thawing occurs in a manner that does
depend on ¢, but is insensitive today to ¢, for |¢p;] < 1.1In
the future, the DBI attractor ensures the same solution
regardless of ¢;.

At late times the field only notices the quadratic part of
the potential; that is, this attractor solution only requires
that the potential look quadratic near the minimum—a
highly generic state. The evolution of the field up to the
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FIG. 2 (color online). The high Hubble friction during matter
domination freezes the field to w = —1 for many e-folds in
expansion, despite an initial field velocity measured in terms of
the Lorentz factor ;. This pseudoattractor ensures that models
with different v; then follow the same trajectory, as shown by the
convergence of tracks from the left side (early times) to the
middle (later times). (Tracks start in the plot at Q¢ = 10710,
with ¢; = —4 and the v; as labeled.) The light, green curves
diverging from the middle to the right side (today) show this is
not a true attractor since the thawing rate does depend on the
initial field value ¢; (here fixing y; = 1). However, the late time,
true attractor from DBI dynamics will bring all these trajectories
together; indeed at present all models with x¢; <1 have the
same dynamics.

present, however, does depend on the quartic term: contrast
the (¢, u?) = (0, 16) and (1, 16) curves in Fig. 1. At all
times until the final asymptotic value the specific evolution
differs, in particular, up to the present.

These differences allow us to constrain the parameters of
the theory by comparing to cosmological observations.
Here we consider the distance-redshift relation over the
range z = 0-1.7, as given by type la supernovae. We
examine the maximum fractional difference 8d/d, of
the model predictions for distances from those of the flat,
cosmological constant plus matter universe with Q, =
1-9Q, =0.72.

One question we can ask is what are the bounds on u?
such that the distance deviation is less than some value, say
2%. Large values of ¢; give a lengthy frozen state [note
(1/V)[dV/d(kp)] ~ 1/¢ becomes small], lasting until
close to the present, so w = —1. This will give little
deviation from a cosmological constant so the most strin-
gent bounds on u? occur for small ¢;. For k¢; <1,
though, the potential tends to be dominated by the qua-
dratic, attractor part and the field quickly forgets the initial
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value (compare the k¢, = —0.1 vs k¢p; = —1 curves in
Fig. 2). This also makes the bound fairly insensitive to the
value of c. A fitting formula to the constraint on w is

5d/dA)_1
2% '

u>7.1(1 + 0.00Zc)( (10)
Note the weak dependence on ¢. The inverse proportion-
ality to 6d/d , for small deviations, arises from the maxi-
mum deviation in the equation of state 1 + w. The attractor
value is given by [2]

2 , 2

which is inversely proportional to u, for u? > 1.

While Eq. (10) gives the most stringent bound to agree
with observations, models with lesser values of u are
viable if the values of ¢; are large enough. Figure 3 shows
the constraints in the c-¢; plane for a maximum allowed
distance deviation of 2%. For u? = 55, the distance de-
viation is less than 2% for all cases with ¢ <20. The
maximum tends to be quite shallow: for u?> = 50 most of
the disallowed lower half plane actually has 0.02 <
dd/d <0.021. The largest deviation for u? = 50 (40)
occurs for ¢ = 20 and is at the 2.18% (2.44%) level. The

(an

FIG. 3 (color online). Model parameters can be constrained by
comparison to distance data, here taken to be within 2% of
ACDM. Above the solid curves for each value of u? the
deviation is less than 2% (as ¢; gets large, w has deviated less
from the value w = —1 imposed by the matter dominated
freezing). Below the solid curves the distance deviation is larger,
but often by a small amount: only within the dotted, black
contour is the deviation more than 2.1% for u? = 50, and
similarly the dashed, red contour bounds the deviation to 2.4%
for u? = 40.
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figure exemplifies how cosmological observations can di-
rectly inform us on string theory parameters.

III. CUSTOMIZED EXPANSION HISTORY

From Egq. (3), we can write down a solution for the form
of the potential for any expansion history desired, i.e. any
given equation of state evolution w(a) (including w con-
stant). The reduced potential, v = V(¢)/T(¢) must satisfy

wa)y@) (@)
1+w(a) 1+w)

via) =1— (12)
Note this expression holds even for a time dependent y (we
are here interested in the full evolution, not just the attrac-
tor state). Combining this expression for v(a) with the
solutions of the equations of motion for y(a) and ¢(a),
one can construct the potential V(¢) for any desired equa-
tion of state function.

Figure 4 shows the potential V(¢) constructed (taking
T~ ¢*to give constant w for all times, for the cases w =
—0.99, —0.9, and —0.8. (If w = —1 exactly then the field
does not roll at all and the potential cannot be recon-
structed.) The conditions for w = —1 to be realized (for
constant w) can be written through Eq. (3) in terms of the
initial values (note we are not describing an attractor
solution) and are either v; > y; orv; > y; — 1. For y; =
1 + €, with € a small quantity, w = —1 + 2¢/v; if the

V/V,

FIG. 4 (color online). Solutions for the potential function are
exhibited that deliver constant values of the equation of state w.
Solid portions of the curves correspond to the region over which
the field has rolled by the present. Short dotted arcs near ¢ = 0
show the V ~ ¢? asymptotic behavior. The potentials do not
contain an explicit cosmological constant [i.e. V(¢) has a true
zero minimum], but the equations of state can approach w = —1
due to the DBI dynamics.
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second condition holds. When the first condition holds,
w= —1+[(y? = 1)/y;](1/v;). In either case, w — —1.
The potential is steep initially (roughly A* ~ Q) and the
field rolls to ¢ = 0. The shape of the potential near ¢ = 0
is given by V(¢ < 1) ~ ¢? (since we took T ~ ¢*), as
required by our previous results. However, as noted there,
the potential when the dynamics is off the attractor trajec-
tory does not need to stay in the asymptotic form.

IV. MULTIBRANE DBI

In the presence of multiple D3-branes or a non-BPS
brane, the DBI action acquires an additional potential
U(¢) multiplying the DBI term [8,9],

5= [ dx =g~ UHT($W1 — $*/T($)
+ T(¢p) — V(¢)] (13)

The energy-momentum tensor takes a perfect fluid form
with energy density p, and pressure py given by
py=U—1T+V; pey=0—y'OT - V.
(14

The Lorentz factor 7y is still given by Eq. (2) and the
equation of state for the DBI field is

p¢__y_1U—1+v

. 15
P ’}/U_1+v ( )

w =

The extra freedom from the additional potential U means
that interesting results occur in both the nonrelativistic and
relativistic cases, not just y — oo as in the standard DBI
model.

A. Equations of motion and attractors

The equation of motion for the field follows from either
functional variation of the action or directly from the
continuity equation for the energy density,

Py = —3(pg + py) = =3(y =y HUT, (16)

where a prime denotes a derivative with respect to the e-
folding parameter, d/d Ina.

To begin, we define the contributions of the tension and
potential to the vacuum energy density relative to the
critical density,

2

5 K
=_—_V, 17
Y (17

2 K
- X yu-r;
¥ =g

where k> = 877G and H is the Hubble parameter. We allow
the parameter x> < 0 so as to unify the treatment of when
vyU > 1 and yU < 1. The equations of motion are given by
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where A = —(1/kV)dV /d¢ and

3
%(xz)’ = —§x2(1 - x?)

/

3
Y73

B V x?

Ty 2D

When U =1 these equations reduce to those in [2]. The
case yU = 1 can be handled by the above equations since
the denominator yU — 1 always occurs in the finite ratio
x2/(yU —1).

We are interested in the DBI field as late time accelerat-
ing dark energy, not for inflation, so we take the initial
conditions in the matter dominated universe and define the
present by ), = 0.72. The attractor solutions to the equa-
tions of motion have the critical values

A2 yU—1 3 U-1
X% :—2727; Xl = 72 y2 , (22
307 47— 1 22—
A yU—1 3 y2—yU
2 1 _ 2 _
Yel 1 3U2 ')’2_1’ ch_P 2_1 ’ (23)
3yU
Qye=1; Oy YR (24)
/\2
W¢,cl = _1 +3’y—U’ W¢,C2 :0 (25)

These are stable, late time attractors, with the w # 0
solution reached for A> < 3yU. The form of these solu-
tions reveals that paths to the attractor classes are more
diverse compared to standard DBI theory. For example,
new windows appear for obtaining w = — 1 if U(¢p.) — o
sufficiently quickly. In particular, this cosmological con-
stant behavior can even be realized when y — 1, without
the potential running to infinite field values. Now the
important limit is when yU — oo rather than 7y alone.
These attractors can therefore be achieved when vy remains
nonrelativistic but U gets large for the asymptotic field
value.

The attractor value for w depends on two key parame-
ters: A2/U and vA%/U?. The explicit solution is given by
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TABLE I. Summary of accelerating attractor properties. The
columns give the values of the quantities for the attractor
solution, all of which possess asymptotic {}, = 1. Each group-
ing of rows corresponds to one of the classes of standard DBI
from Table 1 of [2], with the first row of each group being the
standard DBI solution. We see that multibrane DBI increases the
number of ways of obtaining accelerating attractor solutions by
almost a factor 3 over standard DBI and a factor 11 over
quintessence. The dagger indicates that while V/T = oo,
(V/T)/A? = const. The asterisk in the last row denotes that
the constant is 0 unless U — oo. The values of constant w are
given by Eq. (26).

V)T AU Av/U? y yU w
0 moot 00 00 e -1
00 0 0 1 00 -1
00 [e9] 00 00 (o] const
00 00 const 00 const const
o) const const const const const
oot 0 0 1 00 -1
const const const const const const
const 00 00 00 const const
const 0 0 1 00 —1
0 const 0 1 const const
0 0 0 1 const* -1

—1 27-1
w=—1+2[1+\/1+12”—2+<6—U)] ., (©6)
A 22

and the value of the Lorentz boost factor is

22 2\ Aw-1)
A LAY A YD 27
Y " 6u \/<6U) 302 @7)

Table I shows the parameter combinations that lead to
attractors with accelerated expansion. As stated, although
the essential classes of attractors (the four groups divided
by the horizontal rows) are the same as with standard DBI
(cf. Table 1 of [2]), the paths to obtaining them are multi-
plied. These can deliver cosmological constantlike behav-
ior nonrelativistically, due to the influence of the
multibrane potential U, as well as new approaches to w =

const, arbitrarily close to w = —1. (However, as we dis-
cuss in the next subsection, one can also absorb U into
standard DBI.)

Class 1 in the first group of rows of the table achieves
cosmological constant behavior. This can be realized, for
example, through taking 7 ~ ¢™, V ~ ¢, U ~ ¢ with
any p < —2. In other words, even forms of the tension T
and potential V that in standard DBI do not give accelera-
tion, let alone w = —1, can give an asymptotic cosmologi-
cal constant state if U increases sufficiently rapidly, e.g.
having an inverse power law form with p < —2. The
steepness of U trumps the behavior of V, T so also the
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standard case giving w constant (e.g. T ~ ¢*, V ~ ¢?)
would instead yield w = —1.

Class 2 in the second group of rows of the table delivers
a constant w, which can be made arbitrarily close to —1
depending on parameter values. An example would be
given by the additional multibrane potential with p =
—2. Here, though, if V and T were such that they would
cause an attractor to w = —1, then this still holds.
Alternately, if V and T could not attain an accelerating
attractor, U ~ ¢~ 2 can achieve this with a constant w.
Note that the presence of U also alters the value of constant
w [cf. Eq. (26)] from the standard DBI case where V, T
give a constant w.

However, if U does not get large sufficiently quickly,
e.g. p > —2,then V and T determine the attractor behavior
in the same manner as in standard DBI. Figures 5 and 6
illustrate these various behaviors, for cases where standard
DBI would predict a constant w attractor and no accelerat-
ing attractor, respectively. (We do not show the V ~ ¢!
case because as stated this has identical asymptotic behav-
ior to the standard DBI theory.)

Class 3 is characteristic of exponential potential and
tension, where the field runs off to infinity. However, the
behavior of U can determine the value of w, leading to
either a constant w # —1 attractor or a cosmological con-
stant state, unlike in standard DBI. Class 4 is similar to

standard quintessence but again U can deliver w = —1.
70.7 T T T T I T T T T I T T T T I T T T T I T T T T

| Tt Vg2, Un~gp 1

p=0,-1,-2,-3

= L i
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FIG. 5 (color online). The presence of the multibrane potential
U alters the conditions for attractor solutions and opens up new
routes to approach w = —1. When A?/U — 0, then the cosmo-
logical constant is the asymptotic solution. When this combina-
tion goes to a constant value, then w — const given by Eq. (26),
and when the combination goes to oo then the standard DBI
solution is unchanged. For a power law potential U ~ ¢7, these
correspond to p < —2, = —2, and > — 2.

PHYSICAL REVIEW D 80, 123016 (2009)

O L —
T Tegt, Va3, Ungp b
L p=—1,-2,-3,-4 .
-0.2 — —
-04 —
3 L .
-0.8 — —
71 — —
1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
—10 -5 0 5 10 15

In a

FIG. 6 (color online). As in Fig. 5 but for a form of the
standard potential V that would not give an accelerating attractor
in standard DBI theory. Here, however, the multibrane potential
can give constant w (for p = —2) or a cosmological constant
(for p < —2).

Just as in Sec. III, one can design a function U to fit a
specific expansion history, or equation of state, through
Eq. (15). Also note that a constraint on U exists from the
non-negativity of the energy density in Eq. (14). This
imposes the condition

yU=1-u. (28)

This is automatically satisfied for yU = 1 (we always take
V, T non-negative). For yU <1 though it limits the al-
lowed forms of U(¢). When yU =1 then w=
—1+ A%/3 at all times, not just asymptotically (when
A2 > 3 there is no attractor). This looks like a standard
quintessence attractor solution, but can actually be realized
by a relativistic y model with U < 1.

B. Single brane equivalence

In examining the nonrelativistic limit of the action (13)
we see that it approaches quintessence with a redefinition
of the field and potential. This suggests a deeper mapping
between the multibrane and standard single brane DBI
actions. By defining

o= [ JUdg, (29)

we can rewrite the action (13) in terms of ¢:

S = [d“x\/_—E[—TU\/l — @2/(TU)+T—-V] (@30

Comparing this action with Eq. (1), we see that it is
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equivalent to the original DBI action with tension 7" and
potential V given by

T=T1U, (€3]

V=TU-T+V. (32)

Therefore, the general analysis of [2] applies to the multi-
brane situation when viewed in terms of the equiva-
lent single brane, hatted quantities. Specifically, the for-
mulas (17)—(25) hold for
) K> A .
=—(y—1T; =—V, 33
X =ap (y—1D y (33)
with the replacement U — 1, v — 0, ¢ — ¢, and A — X,
where A = —(1/V)dV/d(ke). In this formulation, the
attractor values for w and 7y, Egs. (26) and (27), take the
same form as in standard DBI.

As an explicit example of the mapping between the
multibrane and single brane views, let us consider the
case where the (unhatted) tension and the potentials are
given by power laws,

T~ ¢™, V ~ ¢, U~ ¢?, (34)
and investigate how the attractor values of y and w change
as the exponents are varied. This gives an alternate view
and derivation of the results in Sec. [IVA. We assume m and
¢ are positive for simplicity. From Eq. (29), the redefined
field ¢ is related to the original field ¢ as @ ~ ¢P*2/2 and
the hatted quantities become

T =TU ~ 2m*p)/(p+2),
V=TU—T+V ~ @2mtp)/(p+2) _ 52m/(p+2) 4 52¢/(p+2),
U= V/T ~1— ¢72P/(P+2) + 902(0*’"*17)/(1”2)' (35)

Note that, if p < —2, ¢ is inversely proportional to ¢
and the small-field limit for one is the large-field limit
for the other. Thus it is natural to separately study the cases
p>—2and p < —2.

For the case p > —2, all the powers of the terms in V are
positive and ¢ would go to zero asymptotically. Then the
logarithmic derivative A~1/¢ diverges, giving the ultra-
relativistic class of attractor solution y — co. To obtain
w = —1, 9/A? should diverge, which happens if m — ¢ >
2. Note that this result is independent of p. Therefore we
conclude that if U is less singular than 1/¢? there is no
effect of U, in agreement with Sec. IVA.

If p = —2, then ¢ ~ ¢? and the hatted potentials and
tension appear exponential. These give constant w attrac-
tors, even if (unhatted) V and 7 would not normally give
acceleration. If V and T would give w = —1 by them-
selves, then this is maintained.

If p < —2, then as noted above the small-field and large-
field limits are reversed. Thus we obtain w = —1 in any
case: if V and T provide w = —1 themselves, then this is

PHYSICAL REVIEW D 80, 123016 (2009)

maintained, while if they do not give acceleration then U
operates in the opposite limit and drives the field to a w =
—1 attractor. Again, see Figs. 5 and 6 and Sec. IVA.

As a curiosity, note we could take the converse view and
split the single brane picture into multiple branes. For
example, the usual quartic single brane tension 7' ~ ¢*
could be viewed as T ~ ¢™ and U ~ ¢™ * as a way of
relaxing the conditions on the brane tension. It is this extra
freedom from U that generates further paths to the same
attractors as in standard DBI.

Another interesting case arises by choosing 7 =V =
const and U(¢) as a runaway type potential connecting
U(0) =1 and U(c0) = 0. Then the action can be inter-
preted as the action for an unstable D-brane in string theory
[10] and the field ¢ represents its tachyonic mode. A
standard form for U(¢) is [11-13]

U = 1/cosh(ad¢), (36)

where « is a constant. In this case, ¢ ~ e *%/2 and V ~
¢>. Then we get y — o0 and w = 0.

V. SOUND SPEED

Beyond the homogeneous field properties we can briefly
consider perturbations to the dark energy density. These
propagate with sound speed ¢, and define a Jeans wave-
length above which the dark energy can cluster. The sound
speed is defined in terms of the Lagrangian density L
[given by the term in square brackets in Eqgs. (1) or (13)]
and canonical kinetic energy X = (1/2)¢? as [14]

2

Lx
Cy -

= 37
" Ly +2XLyx 37)

The result is ¢, = 1/y for both the standard [3] and
generalized DBI actions, since U(¢) does not change the
kinetic structure.

For the attractors depending on the relativistic limit,
such as for w = —1 in the standard DBI case, this implies
the sound speed goes to 0 and dark energy can clump on all
scales. One of the interesting aspects of multibrane DBI is
that this is no longer necessary; w = —1 can be achieved
with ¥y =1 and so ¢, = 1. However, when w = —1 in
whichever case then dark energy perturbations cannot
grow regardless of the sound speed, so the sound speed is
unlikely to give a clear signature of the DBI theory for the
cases we consider. Indeed even models of dark energy with
¢, = 0 cannot be readily distinguished from those with
¢, = 1, when w = —1 and the dark energy does not couple
to matter [15-17] (see [18,19] for the case of coupling).

VI. CONCLUSIONS

We have investigated possible constraints on DBI string
theory from cosmological observations, considering the
entire field evolution and not just the asymptotic future
behavior. In particular, Eq. (10) gives a bound on the
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deviation of the locally warped region generated by the
form-field fluxes from the AdS geometry. It is very inter-
esting if more accurate cosmological data can restrict
fundamental string parameters.

To improve the fine-tuning problem of initial conditions,
we have enlarged attractor solutions to the case of gener-
alized DBI theory which includes an additional potential
arising from either multiple coincident branes, or non-BPS
branes, or D5-branes wrapping a two-cycle within the
compact space and carrying a nonzero magnetic flux along
this cycle [8]. We have obtained exact cosmological con-
stant behavior from some attractors of the extended DBI
theory. Also, we have noticed that the extended DBI theory
can have the identical attractor behavior to single brane
DBI with a different tension and potential.

An interesting novel feature of the DBI attractors is that
the sound speed can be driven to zero which enhances dark
energy clustering, although this is suppressed when w =~
—1. We also showed that a straightforward quadratic plus
quartic potential acts like a thawing scalar field, and how
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more complicated potentials could be designed for a spe-
cific cosmic expansion history.

We have analyzed in greater detail than in [2] how
accurate cosmological observations on the dark energy
can constrain some aspects of fundamental string theory
within the DBI framework. Input from high energy physics
on the forms of the functions is necessary as well. The
connections between string theory and astrophysical data
offer exciting prospects for revealing the nature of the
cosmological constant and the accelerating universe.
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