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Abstract

We study the ultraviolet asymptotics inAn affine Toda theories with integrable boundary actions.
The reflection amplitudes of non-affine Toda theories in the presence of conformal boundary
actions have been obtained from the quantum mechanical reflections of the wave functional in the
Weyl chamber and used for the quantization conditions and ground-state energies. We compare
these results with the thermodynamic Bethe ansatz derived from both the bulk and (conjectured)
boundary scattering amplitudes. The two independent approaches match very well and provide the
non-perturbative checks of the boundary scattering amplitudes for Neumann and(+) boundary
conditions. 2002 Elsevier Science B.V. All rights reserved.

PACS:11.25.Hf; 11.55.Ds

1. Introduction

A large class of massive 2D integrable quantum field theories (IQFTs) can be
considered as perturbed conformal field theories (CFTs) [1]. The ultraviolet (UV)
behavior of these IQFTs is encoded in the CFT data while their long distance properties
are defined by theS-matrix data. If the basic CFT admits the representation of the
primary fields of full symmetry algebra in terms of the exponential fields, the CFT data
include “reflection amplitudes”. These functions define the linear transformations between
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different exponential fields, corresponding to the same primary field. Reflection amplitudes
play a crucial role for the calculation of the one-point functions [2] as well as for the
description of the zero-mode dynamics [3–5] in integrable perturbed CFTs. In particular,
the zero-mode dynamics determines the UV asymptotics of the ground state energyE(R)

(or effective central chargeceff(R)) for the system on the circle of sizeR. The function
ceff(R) admits in this case the UV series expansion in the inverse powers of log(1/R). The
solution of the quantization condition for the vacuum wave function (which can be written
in terms of the reflection amplitudes), supplemented with the exact relations between the
parameters of the action and the masses of the particles determines all logarithmic terms
in this UV expansion.

The effective central chargeceff(R) in IQFT can be also calculated independently from
the S-matrix data using the TBA method [6]. At smallR its asymptotics can be com-
pared with that following from the CFT data. In the case when the basic CFT is known the
agreement of both approaches can be considered as nontrivial test for theS-matrix ampli-
tudes in IQFT. The corresponding analysis based on the both approaches was previously
done for the sinh-Gordon [3], supersymmetric sinh-Gordon, Bullough–Dodd [4] models,
simply-laced affine Toda field theories (ATFTs) [5] and nonsimply-laced ATFTs [7].

In this paper we extend this method to the ATFTs with integrable boundary actions.
IQFTs with the integrable boundary actions can also be interpreted as boundary CFTs
perturbed by both bulk and boundary operators [8]. The boundary ATFTs are the non-affine
Toda theories (NATTs) with boundary perturbed by both bulk and boundary operators
associated with the affine roots. These models become increasingly interesting due to
their potential applicability to condensed matter systems. For IQFTs with boundary, a
new physical quantity called “boundaryS-matrix”1 satisfies the boundary Yang–Baxter
equations and associated bootstrap equations. These equations determine the boundary
S-matrices upto CDD-like factors and most cases are without direct relations with the
boundary actions. It is an important issue to relate these two informations. Differently
from the bulk, even perturbative checks for the boundaryS-matrices are very complicated
because of the half-line geometry. One of our main results in this paper is to provide such
non-perturbative confirmation of the proposed boundaryS-matrices of theAn ATFTs.

For this purpose, we construct the boundary version of the TBA equations for these
models to obtain the ground state energy by generalizing [9] where only one scalar field
is considered. The effects of the boundaryS-matrices are encoded into the fugacity of the
TBA equations. To describe the zero-mode dynamics, we obtain the “boundary reflection
amplitudes” of the NATTs by considering reflections of the wave functional inside the Weyl
chamber. These amplitudes have been rigorously derived in [10] and our result turns out
to be exactly the same as these. The quantization conditions and effective central charges
of the ATFTs can be obtained from these reflection amplitudes. We show that these two
independent results match upto high accuracy forAn ATFTs and corresponding boundary
actions. While our analysis is valid in the UV region, it is noticed that two results agree well
even uptoR ∼O(1) if exact vacuum energies are considered. There are two contributions

1 This object is also called “boundary reflection amplitude” in some literature. Instead we use this terminology
to avoid confusion with the boundary version of reflection amplitude which will be introduced later.
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to the vacuum energies, one from the bulk term which is proportional toR2 and the other
from the boundary term proportional toR, both of which have been analytically obtained
and formally related to TBA in [10]. In this paper we confirm these vacuum energies using
numerical analysis of the TBA equations accurately upto largeR.

The rest of the paper is organized as follows. In Section 2 we introduce the simply-laced
ATFTs with integrable boundary actions along with the boundary TBA equations based
on the bulk and boundaryS-matrices corresponding to the Neumann and(+) boundary
conditions (see below). In Section 3 we considerA1 NATT, namely, the Liouville field
theory (LFT) with boundary, and establish the wave functional description in terms of the
boundary reflection amplitude of the LFT with boundary. Using this result, we derive the
boundary reflection amplitudes for the simply-laced NATTs. In Section 4 we analyze the
quantization conditions and UV asymptotics of ground state energies and effective central
charges. We follow closely the cases without boundary considered in [5]. Comparison
of these results with numerical solutions of the TBA equations and with the vacuum
energies are presented in Section 5. We conclude in Section 6 with open questions and
some remarks.

2. Affine Toda theories on a half line

2.1. Integrable actions, bulk and boundaryS-matrices

The ATFTs corresponding to Lie algebraG is described by the action

(1)A=
∫

d2x

[
1

8π
(∂aϕ)2+µ

r∑
i=0

ebei ·ϕ
]
+µB

∫
dx

r∑
i=0

ηie
bei ·ϕ/2,

whereei , i = 1, . . . , r are the simple roots of the Lie algebraG of rank r and−e0 is a
maximal root satisfying

(2)e0+
r∑

i=1

niei = 0.

For realb the spectrum of these ATFTs consists ofr particles with the massesmi

(i = 1, . . . , r) given by

(3)mi = m̄νi,

where

(4)m̄2= 1

2h

r∑
i=1

m2
i ,

and hereh is Coxeter number andν2
i are the eigenvalues of the mass matrix:

(5)Mab =
r∑

i=0

(ei )a(ei )b.
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The mass–µ relation is

(6)−πµγ (1+ b2)=
[
m̄k(G)Γ

( 1
(1+b2)h

)
Γ
(
1+ b2

(1+b2)h

)
2Γ (1/h)

]2(1+b2)

,

whereγ (x)= Γ (x)/Γ (1− x) and

(7)k(G)=
(

r∏
i=1

n
ni

i

)1/2h

,

with ni defined in Eq. (2).
The scattering amplitudes of the ATFTs are factorized into the two-particle bulk

S-matrices. From the bootstrap relations, crossing symmetry, and unitarity, theS-matrix
between the particlesmi andmj are given by [11,12]:

(8)Sij (θ)= exp
(−iδij (θ)),

where

δij (θ)=
∞∫

0

dt

t

[
8 sinh

(
πBt

h

)
sinh

(
π(1−B)t

h

)(
2 cosh

πt

h
− I
)−1

ij

− 2δij

]
sin(θt),

whereI is the incident matrix defined byIij = 2δij − ei · ej and with

(9)B = b2

1+ b2
.

The second term in (1) is the boundary action which preserves the integrability. The
boundary parameterµB should be fixed completely to have conserved charges [13,14]

(10)µ2
B =

µ

2
cot

(
πb2

2

)
with discrete parameter

(11)ηi = 1, −1, 0.

Only exception is theA1-ATFT, namely the sinh-Gordon model, which include two
continuous free parameters on boundary. These extra parameters introduce additional
complicacy in the analysis [15] and will not be considered here.

With the integrable boundary actions, the boundaryS-matrices should satisfy the
boundary Yang–Baxter equations and boundary bootstrap relations [16,17] along with
boundary crossing-unitarity relation [8]. With diagonal bulkS-matrices of the ATFTs,
these relations can determine the boundaryS-matrices only upto CDD factors. This CDD
ambiguity is more serious for the IQFTs with boundary. While the bulkS-matrices can be
checked both perturbatively and nonperturbatively, the boundaryS-matrices is difficult to
check perturbatively due to the presence of boundary [18], not to mention non-perturbative
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checks. In addition, there is no clear relations between the boundary actions and specific
CDD factors to be chosen. So far, only a few boundaryS-matrices have been associated
with combinations of the discrete possibilities Eq. (11). In this paper we will consider only
the simplest case where all the parametersηi = +1 denoted by(+) boundary condition
(BC) and the Neumann (free) BC denoted by(f ) with all ηi = 0, which is conjectured to
be a dual (b→ 1/b) of (+) [19]. We will impose the two BCs(+) and(f ) independently
on both boundaries of the strip. These are the cases without boundary bound states where
the standard “ground state” TBA should work.

ForA(1)
n−1 ATFTs, the boundaryS-matricesRj(θ) for the(+) BCs are given by [13]

R
(+)
j (b, θ)=

j∏
a=1

[a − 1][a− n][−a+B][−a − n+ 1−B],

(12)j = 1, . . . , n− 1

where

(13)[x] = sinh(θ/2+ iπx/2h)

sinh(θ/2− iπx/2h)
.

The boundaryS-matrices for the free BCs are conjectured to be dual transform of the(+)
BCs, namely,

(14)R
(f )
j (b, θ)=R

(+)
j (1/b, θ).

We will consider only theA-type ATFTs to avoid extra complicacy arising from ambiguous
CDD factors forD- andE-type ATFTs.

2.2. Boundary TBA

TBA equations are constructed in the rectangle with each sizeR andL. The free energy
given by scattering theories defined on the space with infinite sizeL and imaginary time
R = 1/T (“R-channel”) is compared with the opposite case where the Casimir energy
E0(R) is obtained as a function of finite spatial sizeR while the timeL (“L-channel”)
goes to∞. With periodic BCs, the opposite case ofL finite andR→∞ does not raise any
new problem since it is identical to the above by just interchangingR andL.

In the presence of boundaries where specific integrable BCs are imposed, these two
cases have totally different meanings because one of the size, sayR, should denote the
width between two sides where the BCs are imposed [9]. (See also [20].) Now consider the
former case. In theR-channel, the thermodynamic functions are defined by the scattering
theories with “fugacity” where the boundary states act as creating/annihilating sources of
particle pairs with certain probabilities which are determined by the boundaryS-matrices.
The physical quantity generated by the TBA is the Casimir energyE

αβ

0 (R) which depends
on the specific BCs(α) and (β). The Casimir energy is related to the effective central
charges of the underlying CFTs. In opposite case ofR→∞, the thermodynamic analysis
generates the boundary entropy instead.



C. Ahn et al. / Nuclear Physics B 628 [FS] (2002) 486–504 491

For the irrational CFTs like the NATTs, it is quite difficult to define conformal boundary
states and associated boundary entropies. Therefore, we will concentrate on the former case
of L→∞ with finiteR in which the boundary TBA generates the effective central charge.

Following the formalism of [9], we can derive the TBA equations straightforwardly
because the boundary ATFTs are purely diagonal scattering theories. The TBA equations
for the ATFTs are given by (i = 1, . . . , r)

(15)2miR coshθ = εi(θ)+
r∑

j=1

∞∫
−∞

ϕij (θ − θ ′) log
(
1+ λ

(αβ)
j (θ ′)e−εj (θ ′)

)dθ ′
2π

,

whereϕij is the kernel which is equal to the logarithmic derivative of theS-matrix Sij (θ)

in Eq. (8)

ϕij (θ)=−i d

dθ
logSij (θ)= δ′ij (θ)

and

(16)λ
(αβ)
j (θ)=R

(α)
j

(
θ + iπ

2

)
R

(β)
j

(
−θ + iπ

2

)
,

where(α) and(β) refer to the integrable BCs either(+) or (f ).
The ‘pseudo-energies’εi(θ,R) give the scaling function of the effective central charge

(17)ceff(R)=
r∑

i=1

6Rmi

π2

∫
coshθ log

(
1+ λ

(αβ)
i (θ)e−εi(θ)

)
dθ.

We compute the effective central charges for the simply-lacedAn ATFTs with the BCs
on both boundaries(++), (+f ), (f+), and(ff ) and compare with the UV asymptotics
determined by the reflection amplitudes which will be derived in the next section. This
provides nonperturbative check for the boundaryS-matrices conjectured in the literature.

3. Reflections of quantum mechanical waves

In this section we will follow the same logical step as the NATTs without boundary in
[5] to derive the “boundary reflection amplitudes” of the boundary NATTs.

3.1. Boundary Liouville theory

We start with the LFT with boundary whose action is given by

ALiouv=
∫

y1�y�y2

(
1

4π
(∂aφ)

2+µe2bφ
)
d2x +µ

(1)
B

∫
ebφB(y1) dx

(18)+µ
(2)
B

∫
ebφB(y2) dx.
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The “boundary reflection amplitude” of the LFT relating a conjugate pair of boundary
operatorsVβ ≡ expβϕB andVQ−β of the same dimension (withQ= b+ 1/b) are defined
by

(19)
〈
Vβ(x)Vα1(x1) · · ·

〉= d(β|s1, s2)
〈
VQ−β(x)Vα1(x1) · · ·

〉
,

where the parameters is given by

(20)cosh2(πbs)= µ2
B

µ
sin
(
πb2).

It is more convenient to use a real variableP defined byβ =Q/2+ iP and define

(21)SB(P |s1, s2)= d(Q/2+ iP |s1, s2)

since the reflectionβ→Q − β corresponds toP →−P in this parametrization so that
the “reflection” has a physical meaning in this parameter space. This quantity has been
obtained by functional relations and boundary degenerate operators in [14] as follows:

(22)SB(P |s1, s2)=
(
πµγ

(
b2)b2−2b2)−iP /b GB(−P |s1, s2)

GB(P |s1, s2)
,

where

GB(P |s1, s2)=G(2iP )
G(Q/2− iP − i(s1− s2)/2)G(Q/2− iP + i(s1− s2)/2)

G(Q/2+ iP − i(s1+ s2)/2)G(Q/2− iP + i(s1+ s2)/2)
.

Here the functionG(x) is explicitly defined as

(23)logG(x)=
∞∫

0

dt

t

[
e−Qt/2− e−xt

(1− e−bt )(1− e−t/b)
+ (Q/2− x)2

2
e−t + Q/2− x

t

]
.

One can expand the scalar field in terms of zero-mode and oscillator modes

(24)ϕ(x)= ϕ0−P(z− z̄)+
∑
n�=0

(
ian

n
einz + iān

n
e−inz̄

)
in the limit of ϕ0→−∞ where the interaction terms vanish. Boundary condition imposes
a constraintan = ān. Then, a primary fieldVβ can be described in theb→ 0 limit by a
wave functional

(25)ΨP [ϕ(x)] ∼ ΨP (ϕ0)⊗ |0〉
satisfying the Liouville–Schrödinger equation:

(26)

[
1

24
−∇2

ϕ0
+ πµe2bϕ0 +µBe

bϕ0

]
ΨP (ϕ0)=E0ΨP (ϕ0),

whereE0 is the ground-state energy

(27)E0=− 1

24
+ P 2

andµB = µ
(1)
B +µ

(2)
B .
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This interpretation of the “boundary reflection amplitude” as quantum mechanical
amplitude of the zero-mode wave function reflected off from the exponential potential wall
can be confirmed by solving the Schrödinger equation. The solution is written in terms of
confluent hypergeometric function

(28)

ΨP (ϕ0)=Nzνe−z/2
[

M(C,D,z)

Γ (1+C −D)Γ (D)
− z1−D M(1+C −D,2−D,z)

Γ (C)Γ (2−D)

]
,

whereN is a normalization constant,M(C,D,z)= 1F1(C;D; z) is the Kummer function
and

ν = iP

b
, z= 2

√
πµ

b
ebφ0, C = 1

2
+ µB

2
√
πµb2

+ iP

b
, D = 1+ 2iP

b
.

In the limit of ϕ0→−∞, the wave functional behaves like

(29)ΨP (ϕ0)∼ eiPϕ0 + S̃B(P )e−iPϕ0,

where

(30)S̃B(P )=
(

4πµ

b2

)−iP /b Γ
(1

2 + µB

2b
√
πµ
− iP

b

)
Γ
( 2iP

b

)
Γ
(1

2 + µB

2b
√
πµ
+ iP

b

)
Γ
(−2iP

b

) .
This S̃B(P ) indeed reproduces the reflection amplitudeSB(P |s1, s2) in Eq. (22) asb→ 0.
For generic value ofb we will use SB(P |s1, s2) as the quantum mechanical reflection
amplitude.

3.2. Non-affine Toda theories

Now we generalize the result on the boundary LFT to the NATTs. The actions of these
models can be obtained by removing the affine terms associated withe0 from those of the
ATFTs (1). In the presence of boundary, the primary fields of the NATTs can be described
by the wave functionalsΨ [ϕ(x)] whose asymptotic behaviours are described by the wave
functions of the zero-modes. The zero-modes of the fieldsϕ(x) are defined as:

(31)ϕ0=
π∫

0

ϕ(x)
dy

π
.

Here we consider the NATT on an infinite strip of widthπ with coordinatex along the
strip playing the role of imaginary time. In the asymptotic region where the potential terms
in the NATT action become negligible (ei ·ϕ0→−∞ for all i), the fields can be expanded
in terms of free field operatorsan

(32)ϕ(x)= ϕ0−P(z− z̄)+
∑
n�=0

(
ian

n
einz + iān

n
e−inz̄

)
,

whereP =−i∇ϕ0
is the conjugate momentum ofϕ0.
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In this region any state of the NATT can be decomposed into a direct product of two
parts, namely, a wave function of the zero-modes and a state in Fock space generated by
the operatorsan. The physical states should satisfy the constraint equations

(33)(an − ān)|s〉 = 0.

In particular, the wave functional corresponding to the primary state can be expressed as a
direct product of a wave function of the zero-modesϕ0 and Fock vacuum:

(34)ΨP
[
ϕ(x)

]∼ ΨP(ϕ0)⊗ |0〉,
where the wave functionΨP(ϕ0) in this asymptotic region is a superposition of plane waves
with momentâsP.

The reflection amplitudes of the NATT defined in the previous section can be interpreted
as those for the wave function of the zero-modes in the presence of potential walls. This
can be understood most clearly in the semiclassical limitb→ 0 where one can neglect
the operatorsan even for significant values of the parameterµ. The full quantum effect
can be implemented simply by introducing the exact reflection amplitudes which take into
account also non-zero-mode contributions. The resulting Schrödinger equation is given by

(35)

[
r

24
− 2∇2

ϕ0
+µπ

r∑
i=1

ebei ·ϕ0 +µB

r∑
i=1

Aie
bei ·ϕ0/2

]
ΨP(ϕ0)=E0ΨP(ϕ0)

with the ground state energy

(36)E0=− r

24
+ 2P2.

Here the momentumP is any continuous real vector. The effective central charge can be
obtained from Eq. (36) whereP2 takes the minimal possible value for the perturbed theory.
Since only asymptotic form of the wave function matters, we can derive the reflection
amplitudes in the same way as the ATFTs without boundary [5].

In the UV limit whereµ,µB→ 0, the potential vanishes almost everywhere except for
the values ofϕ0 where some of exponential terms in the potential become large enough to
overcome the small value ofµ. In this case, each exponential termebei ·ϕ0 in the interaction
represent a wall withei being its normal vector. If we consider the behaviour of a wave
function near a wall normal toei where the effect of other interaction terms becomes
negligible, the problem becomes equivalent to the boundary LFT in theei direction. The
potential becomes flat in the(r − 1)-dimensional orthogonal directions. The asymptotic
form of the energy eigenfunction is then given by the product of that of Liouville wave
function and(r − 1)-dimensional plane wave,

ΨP ∼
[
eiPiϕ0i + SB(Pi)e

−iPiϕ0i
]
eiP⊥·ϕ0

(37)∼ eiP·ϕ0 + SB(Pi)e
iŝiP·ϕ0,

whereŝi denotes the Weyl reflection by the simple rootei andPi the component ofP along
ei direction.

We can see from Eq. (37) that the momentum of the reflected wave by theith wall
is given by the Weyl reflection̂si acting on the incoming momentum. If we consider
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the reflections from all the potential walls, the wave function in the asymptotic region
is a superposition of the plane waves reflected by potential walls in different ways. The
momenta of these waves form the orbit of the Weyl groupW of the Lie algebraG;

(38)ΨP(ϕ0)�
∑
ŝ∈W

A(ŝP)eiŝP·ϕ0.

This is indeed the wave function representation of the primary field in the asymptotic
region.

It follows from Eq. (37) that the amplitudesA(P) satisfy the relations

(39)
A(ŝiP)

A(P)
= SB(Pi).

For a general Weyl elementŝ which can be represented by a product of the Weyl elements
ŝi associated with the simple roots byŝ = ŝik ŝik−1 · · · ŝi1, the above equation can be
generalized to

A(ŝik · · · ŝi1P)

A(P)
= SB(P · ei1)SB(ŝi1P · ei2)

(40)× SB(ŝi2 ŝi1P · ei3) · · ·SB(ŝik−1 · · · ŝi1P · eik ).
Using the properties of the Weyl group and the explicit form of the amplitudeSB(P ) in
Eq. (22), it is straightforward to verify that the following functionA(P) satisfies Eqs. (39)
and (40):

(41)A(P)= (πµγ (b2)b2−2b2)iρ·P/b
∏
α>0

GB(Pα|s1, s2),

wherePα = α ·P is a scalar product with a positive rootα. This result is valid for all simply-
laced Lie algebras. Major difference in the NATTs is that the values ofs parameters should
be fixed since there are no free boundary parameters in the NATTs. Comparing Eqs. (10)
and (20), one can find that for the(+) BC

(42)s(+) = ib

2
,

and for the free BC(f ) using duality

(43)s(f ) = i

2b
.

Therefore, the boundary reflection amplitudes of the NATTs for the four combinations of
the two BCs are given by Eq. (22) withs1 ands2

(++) ←→ s1= ib

2
, s2= ib

2
,

(+f ) ←→ s1= ib

2
, s2= i

2b
,

(f+) ←→ s1= i

2b
, s2= ib

2
,

(ff ) ←→ s1= i

2b
, s2= i

2b
.



496 C. Ahn et al. / Nuclear Physics B 628 [FS] (2002) 486–504

The boundary reflection amplitudes of the NATTs with(++) BCs have been derived
more rigorously from the generalized functional relations method along with boundary
degenerate operators in [10]. It is straightforward to check that these two independent
derivations match exactly. This confirms the validity of our wave functional interpretation.

4. Quantization condition and scaling function

In this section we derive the UV asymptotic expressions for the effective central charges
using the quantization conditions satisfied by the wave functionals confined in the potential
well. When perturbed by the bulk and boundary operators associated with the affine root,
the NATTs become the ATFTs with boundary equation (1). The perturbations provide
additional potential wall which confines the wave functional in the multi-dimensional
potential well, i.e., the Weyl chamber. Once confined in the well, the wave functional is
quantized and has discrete energy levels. The derivation of the quantization condition is
exactly identical to the bulk only case [5] if one substitute the bulk reflection amplitude to
the boundary one. The quantization condition becomes

(44)
(
πµγ

(
b2)b2−2b2)ihP·ŝe0/b

∏
α>0

[
GB(−P · ŝα)

GB(P · ŝα)

]−ŝα·ŝe0

= 1.

Since the Weyl element̂s is arbitrary, Eq. (44) leads to the following condition for the
lowest energy state

(45)2hQLP= 2πρ −
∑
α>0

αδB(Pα),

whereρ is the Weyl vector and

L=− 1

2(1+ b2)
log
[
πµγ

(
b2)b2−2b2]

,

and

(46)δB(P )= i log
GB(P)

GB(−P)
.

This is the quantization condition for the momentumP in theµ→ 0 limit. We see that
each positive rootα causes an effective phase shift of Liouville type.

Now we consider the system defined on a strip with a widthR. When we scale back the
size fromR to π , the parameterµ in the action (1) changes to

(47)µ→ µ

(
R

π

)2(1+b2)

.

The µ→ 0 limit is realized as the deep UV limitR → 0. The rescaling changes the
definition ofL in Eq. (45) by

(48)L=− log
R

π
− 1

2(1+ b2)
log
[
πµγ

(
b2)b2−2b2]

.
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The ground state energy with the circumferenceR is given by

(49)E(R)=−πceff

24R
with ceff = r − 48P2,

whereP satisfies Eq. (45).
In this limit, Eq. (45) can be solved perturbatively. For this we expand the function

δB(P ) in Eq. (46) in powers ofP ,

(50)δB(P )= δ1(b)P + δ3(b)P
3+ δ5(b)P

5 · · · ,
where

δ1(b)=−2γE(b+ 1/b)− 2(b− 1/b) logb

+ 2

∞∫
0

dt

t

[
2t cosh2(bt/2)

sinh(bt)sinh(t/b)
− t (e−bt + e−t/b)

(1− e−bt )(1− e−t/b)

]
,

δ3(b)= 8

3

(
b3+ b−3)ζ(3)− 8

3

∞∫
0

dt

[
t2 cosh2(bt/2)

sinh(bt)sinh(t/b)
− t2(e−bt + e−t/b)

2(1− e−bt )(1− e−t/b)

]
,

δ5(b)=−32

5

(
b5+ b−5)ζ(5)+ 8

15

∞∫
0

dt

[
t4 cosh2(bt/2)

sinh(bt)sinh(t/b)

− t4(e−bt + e−t/b)
2(1− e−bt )(1− e−t/b)

]
.

Using the relation∑
α>0

(α)a(α)b = hδab,

we obtain

hlP= 2πρ − δ3(b)
∑
α>0

α(Pα)
3− δ5(b)

∑
α>0

α(Pα)
5− · · · ,

with

(51)l ≡ 2QL+ δ1.

The above equation can be solved iteratively in powers of 1/l. Inserting the solution into
Eq. (49), we find

ceff = r − 4r(h+ 1)

h

[(
2π

l

)2

− 24δ3

2π

(
2π

l

)5

D4

(52)− 24δ5

2π

(
2π

l

)7

D6+O
(
l−8)],
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where the coefficients are given by

D4= 1

r(h+ 1)h4

∑
α>0

ρ4
α =

2n2− 3

60n2
,

D6= 1

r(h+ 1)h6

∑
α>0

ρ6
α =

(n2− 2)(3n2− 5)

168n4 ,

for theAn−1 algebra.

5. Numerical comparison

We will compute effective central chargesceff(R) of the A2, A3, andA4 ATFTs as
a function ofm̄R for the BCs mentioned above following [5]. In order to compare the
numerical data with our results based on the reflection amplitudes, we fit the numerical
data forceff(R) from the TBA equations for many different values ofR with the function
(52), whereδ1, δ3 andδ5 are considered as the fitting parameters. For this comparison the
relation (6) between the parameterµ in the action and parameterm̄ for the particle masses
is used. These parametersδi ’s are then compared with Eq. (51) defined from the reflection
amplitude of the LFT. Since we already separate out the dependence on the Lie algebraG,
our numerical results for the parametersδi ’s should be independent ofG.

5.1. (++) and(ff ) boundary conditions

These two BCs are related by the dual transformB→ 1− B. Hence, it is enough to
consider(++) BC only for 0<B < 1. The fugacity is given by

(53)λ
(++)
j (θ)=R

(+)
j

(
θ + iπ

2

)
R

(+)
j

(
−θ + iπ

2

)
and the reflection amplitudes are given by Eq. (45) withs1= s2 = ib/2. Tables 1–3 show
the values of parametersδi ’s obtained numerically from TBA equations for various val-
ues of the coupling constantB in A2, A3, andA4 ATFTs. We see that they are in excellent
agreement with those values ofδi ’s following from the reflection amplitudes supplemented
with Eq. (6). Thus numerical TBA analysis fully supports the validity of our whole scheme
based on the reflection amplitude,µ–m̄ relation, the shift and the quantization condition
on P.

The agreement ofδ5 becomes less accurate for the cases with high rank partly due
to the numerical errors in higher order calculations. Another reason comes from the fact
that neglected terms in the 1/l expansion (the order ofO(1/l8) or higher) in Eq. (52)
may not be sufficiently small compared with terms withδ5. However, one can in principle
reduce these errors by increasing the accuracy of the numerical calculations. There are also
corrections ofO(Rγ ) to the expansion ofceff(R) in power series of 1/l which increase as
B goes to zero. This explains why the discrepancies in the tables increase asB decreases.

In Fig. 1, we also plot the scaling functionsceff(R) as a function ofR settingm̄ = 1
for different ATFTs in two ways. The first is the curves generated by the TBA equations
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Table 1
δ
(RA)
1 vs.δ(TBA)

1 for A2, A3, andA4 ATFTs for (++) BC

B δ
(RA)
1 δ

(TBA)
1 (A2) δ

(TBA)
1 (A3) δ

(TBA)
1 (A4)

0.25 −8.12340 −8.12344 −8.12345 −8.12345
0.30 −6.15569 −6.15571 −6.15572 −6.15572
0.35 −4.73422 −4.73423 −4.73423 −4.73423
0.40 −3.68012 −3.68013 −3.68013 −3.68013
0.45 −2.89175 −2.89175 −2.89175 −2.89175
0.50 −2.30886 −2.30886 −2.30886 −2.30887
0.55 −1.89627 −1.89627 −1.89627 −1.89627
0.60 −1.63628 −1.63628 −1.63628 −1.63628
0.65 −1.52627 −1.52627 −1.52627 −1.52627
0.70 −1.58079 −1.58079 −1.58079 −1.58079
0.75 −1.84022 −1.84022 −1.84022 −1.84022
0.80 −2.39472 −2.39472 −2.39473 −2.39455

Table 2
δ
(RA)
3 vs.δ(TBA)

3 for A2, A3, andA4 ATFTs for (++) BC

B δ
(RA)
3 δ

(TBA)
3 (A2) δ

(TBA)
3 (A3) δ

(TBA)
3 (A4)

0.25 32.5848 32.6563 32.6634 32.6677
0.30 22.1701 22.2054 22.2095 22.2113
0.35 15.6353 15.6524 15.6549 15.6560
0.40 11.3251 11.3327 11.3343 11.3350
0.45 8.40246 8.40505 8.40615 8.40663
0.50 6.41097 6.41084 6.41165 6.41200
0.55 5.09233 5.09070 5.09136 5.09164
0.60 4.30543 4.30291 4.30349 4.30374
0.65 3.99324 3.99008 3.99064 3.99088
0.70 4.18219 4.17842 4.17903 4.17928
0.75 5.02369 5.01914 5.01987 5.02180
0.80 6.93616 6.93039 6.93375 7.29485

Table 3
δ
(RA)
5 vs.δ(TBA)

5 for A2, A3, andA4 ATFTs for (++) BC

B δ
(RA)
5 δ

(TBA)
5 (A2) δ

(TBA)
5 (A3) δ

(TBA)
5 (A4)

0.25 −206.638 −208.099 −208.050 −208.047
0.30 −110.087 −110.739 −110.726 −110.720
0.35 −62.0830 −62.3780 −62.3798 −62.3796
0.40 −36.3095 −36.4358 −36.4434 −36.4458
0.45 −21.7458 −21.7885 −21.7986 −21.8021
0.50 −13.2727 −13.2721 −13.2833 −13.2874
0.55 −8.33556 −8.31104 −8.32307 −8.32744
0.60 −5.61763 −5.57761 −5.59071 −5.59551
0.65 −4.48789 −4.43462 −4.44955 −4.45501
0.70 −4.82305 −4.75409 −4.77232 −4.77893
0.75 −7.15865 −7.06574 −7.09021 −7.12790
0.80 −13.5875 −13.4502 −13.5398 −21.0323
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Fig. 1. Plot ofceff for A2, A3, A4 ATFTs atB = 0.4 for (++) BC.

Fig. 2. Plot ofceff for A2 ATFTs for (++) BC without any vacuum energy (dotted line) and with boundary
vacuum energy (dashed line). Including both energies (solid line), two results become identical uptoR ∼O(1).
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and the second by the reflection amplitudes. To compare the same objects, one should add
to the second case the contribution from the vacuum energy terms. In addition to the dual
symmetric bulk contribution given by [21]

(54)=cBulk = 3m̄2R2

2π

sin(π/h)

sin(πB/h)sin(π(1−B)/h)
,

one should consider the boundary contribution. This is given by 2=cboun where=cboun is
the boundary vacuum energy obtained in [10]

(55)=cboun(b)= 6m̄R cos(π/2h)

sin(πB/2h)sin(π(1−B)/2h)
.

These terms are negligible in the UV region. The “experimental” observation that two
results agree well even for large values ofR can provide nonperturbative check for the
boundary vacuum energies. To illustrate the accurate agreement, we plotceff(R) as a
function of R for A2 ATFT in Fig. 2. The dotted line is without any vacuum energies.
Including the bulk vacuum energy=cBulk, we obtain the dashed line. Finally, correcting
with the boundary vacuum energy 2=cboun we can obtain theceff(R) graphs which are
identical uptoR ∼O(1) as shown in Fig. 1.

5.2. (+f ) and(f+) boundary conditions

The fugacity for these two equivalent BCs is given by

(56)λ
(+f )

j (θ)=R
(+)
j

(
b, θ + iπ

2

)
R

(+)
j

(
1

b
,−θ + iπ

2

)
and the reflection amplitudes bys1= ib/2 ands2= i/(2b). These two BCs are equivalent
since they are related by exchanging the left and right boundaries. Furthermore, they are
self-dual as one can see from Eq. (56). Therefore, we can consider 0< B < 1/2 only.
Using the same procedure, we can compare two results in Tables 4–6.

In Fig. 3, we also plot the scaling functionsceff(R) as a function ofR settingm̄ = 1
by considering both the bulk and boundary vacuum energies. In particular, the boundary
energy is given by

(57)=cboun==cboun(b)+=cboun(1/b).

This agreement is a nonperturbative proof of the duality conjecture.

Table 4
δ
(RA)
1 vs.δ(TBA)

1 for A2, A3, andA4 ATFTs for (+f ) BC

B δ
(RA)
1 δ

(TBA)
1 (A2) δ

(TBA)
1 (A3) δ

(TBA)
1 (A4)

0.20 −8.40840 −8.40846 −8.40846 −8.40822
0.25 −6.02901 −6.02904 −6.02904 −6.02903
0.30 −4.47772 −4.47773 −4.47774 −4.47773
0.35 −3.45078 −3.45079 −3.45079 −3.45079
0.40 −2.79439 −2.79440 −2.79440 −2.79439
0.45 −2.42719 −2.42719 −2.42719 −2.42719
0.50 −2.30886 −2.30886 −2.30886 −2.30886
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Table 5
δ
(RA)
3 vs.δ(TBA)

3 for A2, A3, andA4 ATFTs for (+f ) BC

B δ
(RA)
3 δ

(TBA)
3 (A2) δ

(TBA)
3 (A3) δ

(TBA)
3 (A4)

0.20 47.6454 47.7694 47.7812 48.1325
0.25 29.5225 29.5766 29.5815 29.5700
0.30 19.1384 19.1616 19.1642 19.1608
0.35 12.8599 12.8691 12.8707 12.8711
0.40 9.08618 9.08921 9.09027 9.09219
0.45 7.05398 7.05450 7.05537 7.05780
0.50 6.41097 6.41084 6.41165 6.41421

Table 6
δ
(RA)
5 vs.δ(TBA)

5 for A2, A3, andA4 ATFTs for (+f ) BC

B δ
(RA)
5 δ

(TBA)
5 (A2) δ

(TBA)
5 (A3) δ

(TBA)
5 (A4)

0.20 −419.960 −422.929 −422.818 −420.097
0.25 −200.593 −201.713 −201.666 −200.605
0.30 −102.893 −103.327 −103.316 −102.898
0.35 −54.4153 −54.5765 −54.5799 −54.4176
0.40 −29.2623 −29.3138 −29.3226 −29.2635
0.45 −16.9759 −16.9859 −16.9966 −16.9766
0.50 −13.2727 −13.2721 −13.2833 −13.2733

Fig. 3. Plot ofceff for A2, A3, A4 ATFTs atB = 0.4 for (+f ) BC.
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6. Concluding remarks

In this paper we have derived the reflection amplitudes of the simply-laced ATFTs with
integrable BCs by considering the quantum mechanical reflections of the wave functional
in the Weyl chamber and show that the results are consistent with those from the functional
relation method [10]. The quantization conditions arising from these amplitudes generate
the ground state energies which are compared with the boundary TBA equations based
on the bulk and boundaryS-matrices. The excellent agreements of the two different
approaches provide the nonperturbative checks for the conjectured boundaryS-matrices
of the simply-laced ATFTs with(+) BCs and its dual (free) BCs where the conjectured
boundary vacuum energies play the essential role for the agreement to the orderR1.

The two different approaches based on the quantum mechanical reflections and TBA
analysis should in principle provide a useful nonperturbative check for different BCs such
as all or someηi = −1 whose boundaryS-matrices are conjectured in [22]. Boundary
ATFTs with simply-laced Lie algebras other thanA-series can be also studied in this
way to fix the ambiguity in the CDD factors. Another interesting problem is to relate
the “L-channel” TBA which generates the boundary entropy to the boundary one-point
functions of the ATFTs. We hope to publish these results in other publications.
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