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Abstract

We study the ultraviolet asymptotics iy, affine Toda theories with integrable boundary actions.
The reflection amplitudes of non-affine Toda theories in the presence of conformal boundary
actions have been obtained from the quantum mechanical reflections of the wave functional in the
Weyl chamber and used for the quantization conditions and ground-state energies. We compare
these results with the thermodynamic Bethe ansatz derived from both the bulk and (conjectured)
boundary scattering amplitudes. The two independent approaches match very well and provide the
non-perturbative checks of the boundary scattering amplitudes for Neumant-argbundary
conditions.0 2002 Elsevier Science B.V. All rights reserved.

PACS:11.25.Hf; 11.55.Ds

1. Introduction

A large class of massive 2D integrable quantum field theories (IQFTs) can be
considered as perturbed conformal field theories (CFTs) [1]. The ultraviolet (UV)
behavior of these IQFTs is encoded in the CFT data while their long distance properties
are defined by theS-matrix data. If the basic CFT admits the representation of the
primary fields of full symmetry algebra in terms of the exponential fields, the CFT data
include “reflection amplitudes”. These functions define the linear transformations between
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different exponential fields, corresponding to the same primary field. Reflection amplitudes
play a crucial role for the calculation of the one-point functions [2] as well as for the
description of the zero-mode dynamics [3-5] in integrable perturbed CFTs. In particular,
the zero-mode dynamics determines the UV asymptotics of the ground state éné&gy

(or effective central chargess(R)) for the system on the circle of sizR. The function

cefi(R) admits in this case the UV series expansion in the inverse powers(@f Iy The
solution of the quantization condition for the vacuum wave function (which can be written

in terms of the reflection amplitudes), supplemented with the exact relations between the
parameters of the action and the masses of the particles determines all logarithmic terms
in this UV expansion.

The effective central charges(R) in IQFT can be also calculated independently from
the S-matrix data using the TBA method [6]. At small its asymptotics can be com-
pared with that following from the CFT data. In the case when the basic CFT is known the
agreement of both approaches can be considered as nontrivial test fonthtix ampli-
tudes in IQFT. The corresponding analysis based on the both approaches was previously
done for the sinh-Gordon [3], supersymmetric sinh-Gordon, Bullough—Dodd [4] models,
simply-laced affine Toda field theories (ATFTs) [5] and nonsimply-laced ATFTs [7].

In this paper we extend this method to the ATFTs with integrable boundary actions.
IQFTs with the integrable boundary actions can also be interpreted as boundary CFTs
perturbed by both bulk and boundary operators [8]. The boundary ATFTs are the non-affine
Toda theories (NATTs) with boundary perturbed by both bulk and boundary operators
associated with the affine roots. These models become increasingly interesting due to
their potential applicability to condensed matter systems. For IQFTs with boundary, a
new physical quantity called “boundasymatrix”! satisfies the boundary Yang—Baxter
equations and associated bootstrap equations. These equations determine the boundary
S-matrices upto CDD-like factors and most cases are without direct relations with the
boundary actions. It is an important issue to relate these two informations. Differently
from the bulk, even perturbative checks for the bound&argatrices are very complicated
because of the half-line geometry. One of our main results in this paper is to provide such
non-perturbative confirmation of the proposed boundamyatrices of thed,, ATFTs.

For this purpose, we construct the boundary version of the TBA equations for these
models to obtain the ground state energy by generalizing [9] where only one scalar field
is considered. The effects of the bound&rynatrices are encoded into the fugacity of the
TBA equations. To describe the zero-mode dynamics, we obtain the “boundary reflection
amplitudes” of the NATTs by considering reflections of the wave functional inside the Weyl
chamber. These amplitudes have been rigorously derived in [10] and our result turns out
to be exactly the same as these. The quantization conditions and effective central charges
of the ATFTs can be obtained from these reflection amplitudes. We show that these two
independent results match upto high accuracyAfpIATFTs and corresponding boundary
actions. While our analysis is valid in the UV region, it is noticed that two results agree well
even uptorR ~ O(1) if exact vacuum energies are considered. There are two contributions

1 This object is also called “boundary reflection amplitude” in some literature. Instead we use this terminology
to avoid confusion with the boundary version of reflection amplitude which will be introduced later.
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to the vacuum energies, one from the bulk term which is proportion&ftand the other
from the boundary term proportional ®, both of which have been analytically obtained
and formally related to TBA in [10]. In this paper we confirm these vacuum energies using
numerical analysis of the TBA equations accurately upto l&ge

The rest of the paper is organized as follows. In Section 2 we introduce the simply-laced
ATFTs with integrable boundary actions along with the boundary TBA equations based
on the bulk and boundar§-matrices corresponding to the Neumann &md boundary
conditions (see below). In Section 3 we considar NATT, namely, the Liouville field
theory (LFT) with boundary, and establish the wave functional description in terms of the
boundary reflection amplitude of the LFT with boundary. Using this result, we derive the
boundary reflection amplitudes for the simply-laced NATTs. In Section 4 we analyze the
guantization conditions and UV asymptotics of ground state energies and effective central
charges. We follow closely the cases without boundary considered in [5]. Comparison
of these results with numerical solutions of the TBA equations and with the vacuum
energies are presented in Section 5. We conclude in Section 6 with open questions and
some remarks.

2. Affine Toda theorieson a half line

2.1. Integrable actions, bulk and bounda¥ymatrices

The ATFTs corresponding to Lie algeb@ais described by the action

1 S : .
A=/d2x[§(8u<p)2+u« > ebe""’} +M3/dx > eI, 1
i=0 i=0

whereeg;, i =1,...,r are the simple roots of the Lie algebgaof rankr and—ep is a
maximal root satisfying

.
90+Zniei =0. 2
i=1

For realb the spectrum of these ATFTs consistsroparticles with the masses;
(i=1,...,r)given by

m; = n_ﬂ),', (3)
where
2= = Zr:m.z (4)
2h “ v

and herer is Coxeter number andf are the eigenvalues of the mass matrix:

Map =) _(e)"(e)". (5)

i=0



C. Ahn et al. / Nuclear Physics B 628 [FS] (2002) 486-504 489

The massy relation is

[mk(G)r(—l (14 2 )T(””Z)

(14+b2)h (1+b2)h

—ruy(1+b? = TS

(6)

wherey (x) =I'(x)/I"'(1—x) and

, 1/2h
k(G) = (]’[n?) , ()
i=1
with n; defined in Eq. (2).

The scattering amplitudes of the ATFTs are factorized into the two-particle bulk
S-matrices. From the bootstrap relations, crossing symmetry, and unitarity; itinetrix
between the particles; andm ; are given by [11,12]:

Sij (0) = exp(—id;;(0)), ®)
where
oodt B 1—B P -1
8;ij(0) = / — | 8sin T[_t sinh u 2COShn— —
) t h h h i
0
— 28,~j] sin(9r),
wherel is the incident matrix defined dy; = 26;; — &; - €; and with
b2
B=——. 9
1+b2 9)

The second term in (1) is the boundary action which preserves the integrability. The
boundary parameterg should be fixed completely to have conserved charges [13,14]

2
> M b
= —cotl — 10
= o ) (10)
with discrete parameter
ni = 1’ _1, 0. (11)

Only exception is theAd1-ATFT, namely the sinh-Gordon model, which include two
continuous free parameters on boundary. These extra parameters introduce additional
complicacy in the analysis [15] and will not be considered here.

With the integrable boundary actions, the bound&rynatrices should satisfy the
boundary Yang—Baxter equations and boundary bootstrap relations [16,17] along with
boundary crossing-unitarity relation [8]. With diagonal bulkmatrices of the ATFTS,
these relations can determine the boundamatrices only upto CDD factors. This CDD
ambiguity is more serious for the IQFTs with boundary. While the Issthatrices can be
checked both perturbatively and nonperturbatively, the boungtamatrices is difficult to
check perturbatively due to the presence of boundary [18], not to mention non-perturbative
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checks. In addition, there is no clear relations between the boundary actions and specific
CDD factors to be chosen. So far, only a few boundguyatrices have been associated
with combinations of the discrete possibilities Eq. (11). In this paper we will consider only
the simplest case where all the parameigrs +1 denoted by(+) boundary condition
(BC) and the Neumann (free) BC denoted(y) with all »; = 0, which is conjectured to
be a dualg — 1/b) of (+) [19]. We will impose the two BC¢+) and( f) independently
on both boundaries of the strip. These are the cases without boundary bound states where
the standard “ground state” TBA should work.

For Af}jl ATFTs, the boundang-matricesR; () for the (4-) BCs are given by [13]

j
R (b.0) = []la—1lla - nl[-a+ Bll-a —n+1- B,
a=1
j=1....n—1 (12)

where
_sinh@/2+ imx/2h)
" sinh#/2—inx/2h)’

The boundan$-matrices for the free BCs are conjectured to be dual transform afithe
BCs, namely,

[x] (13)

Rj.f) (b.6) =R (1/b.6). (14)

We will consider only theA-type ATFTs to avoid extra complicacy arising from ambiguous
CDD factors forD- and E-type ATFTs.

2.2. Boundary TBA

TBA equations are constructed in the rectangle with each®iaedL. The free energy
given by scattering theories defined on the space with infinite/siaad imaginary time
R =1/T (“R-channel”) is compared with the opposite case where the Casimir energy
Eo(R) is obtained as a function of finite spatial siRewhile the timeL (“ L-channel”)
goes toco. With periodic BCs, the opposite caselofinite andR — oo does not raise any
new problem since it is identical to the above by just interchangirgd L.

In the presence of boundaries where specific integrable BCs are imposed, these two
cases have totally different meanings because one of the siz&,sshould denote the
width between two sides where the BCs are imposed [9]. (See also [20].) Now consider the
former case. In th&-channel, the thermodynamic functions are defined by the scattering
theories with “fugacity” where the boundary states act as creating/annihilating sources of
particle pairs with certain probabilities which are determined by the bourtiargtrices.

The physical quantity generated by the TBA is the Casimir enEﬁ;(R) which depends
on the specific BCg«) and (8). The Casimir energy is related to the effective central
charges of the underlying CFTs. In opposite cas® e$ oo, the thermodynamic analysis
generates the boundary entropy instead.
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For the irrational CFTs like the NATTS, it is quite difficult to define conformal boundary
states and associated boundary entropies. Therefore, we will concentrate on the former case
of L — oo with finite R in which the boundary TBA generates the effective central charge.

Following the formalism of [9], we can derive the TBA equations straightforwardly
because the boundary ATFTs are purely diagonal scattering theories. The TBA equations
forthe ATFTs are given byi= 1, ...,7)

o0
4 n do’
(@p) —¢;
2m; R cosh = €; (0) + § / @ij (6 —6")1og(1+ 2] P 0"e fﬂ@))g, (15)

.jzl—oo
whereg;; is the kernel which is equal to the logarithmic derivative of Samatrix S;; (6)
in Eq. (8)
. d | p
¥ij(0) = i 0gS;j(0) =6;;(0)

and
@B) 1y _ pl@) I\ (8) i
2 0) =R; (9~|—7>Rj (—9+7>, (16)

where(a) and(B) refer to the integrable BCs eithéf) or (f).
The ‘pseudo-energies; (6, R) give the scaling function of the effective central charge

" 6R i o )
ceff(R) = Z n’g fcosh9 Iog(l-|—k§ f’)(e)e—ff@)d@. (17)
i—1

We compute the effective central charges for the simply-latedTFTs with the BCs
on both boundariest++), (+f), (f+), and(ff) and compare with the UV asymptotics
determined by the reflection amplitudes which will be derived in the next section. This
provides nonperturbative check for the boundsamatrices conjectured in the literature.

3. Réflections of quantum mechanical waves

In this section we will follow the same logical step as the NATTs without boundary in
[5] to derive the “boundary reflection amplitudes” of the boundary NATTSs.

3.1. Boundary Liouville theory

We start with the LFT with boundary whose action is given by
1 ).
ALiouv = / (E@M’)Z + ,U«€2h¢> d%x + ,U«Egl) / P8O gy
YISYSY2

+u'? / 9802 gy (18)
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The “boundary reflection amplitude” of the LFT relating a conjugate pair of boundary
operatorsd/g = expBep andVy_g of the same dimension (wit@ = b + 1/b) are defined

by
(Va(x) Vo (x1) - ) =d(Bls1,52)(Vo—p(x) Vi (x1) - - ) (19)
where the parameteris given by

2
costt(rbs) = sm(nbz) (20)
o
It is more convenient to use a real variatfledefined by = Q/2 + i P and define

Sp(Pls1,s2) =d(Q/2+iPls1, s2) (21)

since the reflectio8 — Q — B8 corresponds t®® — — P in this parametrization so that
the “reflection” has a physical meaning in this parameter space. This quantity has been
obtained by functional relations and boundary degenerate operators in [14] as follows:

irbGp(— P|S1,S2)

_ 2\ 1.2—2b?
SB(Pls1,52) = (mpy (b%)b"2"7) " GaPlst.52)

(22)

where

G(Q/2—iP —i(s1—52)/2G(Q/2—iP +i(s1—152)/2)
G(Q/2+iP —i(s1+52)/2)G(Q/2—iP +i(s1+52)/2)°
Here the functiorG (x) is explicitly defined as

x —Q1)2 _ —xt N2 _
IogG(x)z/.%l:(l_e e n (Q/2—x) e 4 Q/2t xil. (23)
0

Gp(Pls1,s2) =G (2 P)

e~ by(1—e1/D) 2
One can expand the scalar field in terms of zero-mode and oscillator modes
(x) (,00 _ P(Z _ Z) + Z( n lﬂZ + ﬂeiﬂZ> (24)
n#0 n
in the limit of g9 — —oo where the interaction terms vanish. Boundary condition imposes

a constraint, = a,. Then, a primary field/s can be described in the— 0 limit by a
wave functional

Yplp(x)]~ ¥p(po) ® |0) (25)
satisfying the Liouville—Schrddinger equation:

1
[24 Vz + e 4 MB€b¢0:| Yp(po0) = Eo¥p(90), (26)
whereEj is the ground-state energy
1 2
Eo=——+P 27
0=—>5,+ (27)

1 2
andup =ply + 1.
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This interpretation of the “boundary reflection amplitude” as quantum mechanical
amplitude of the zero-mode wave function reflected off from the exponential potential wall
can be confirmed by solving the Schrédinger equation. The solution is written in terms of
confluent hypergeometric function

M(C, D, ?7) _1DM(1+C—D,2—D,Z)]
Ir'A+C—DI (D) ° ()T 2-D) :

Wp (o) = N Z”eZ/z[

(28)
whereN is a normalization constan¥/ (C, D, z) = 1F1(C; D; z) is the Kummer function
and

L L S SN L L
b’ b ’ 2 2/7ub?2 b’ b

In the limit of g — —o0, the wave functional behaves like

Wp(po) ~ ' P0 + Sp(Pre P, (29)
where
- i 2i
~ Agp\ IEP F(%"”Zb%_TP)F(TP)
B e I e 30)
F(7+2bﬂ+7)r(_T)

This Sz (P) indeed reproduces the reflection amplituig P|s1, s2) in Eq. (22) a$» — 0.
For generic value ob we will use Sg(P]s1,s2) as the quantum mechanical reflection
amplitude.

3.2. Non-affine Toda theories

Now we generalize the result on the boundary LFT to the NATTs. The actions of these
models can be obtained by removing the affine terms associate@g/fithm those of the
ATFTs (1). In the presence of boundary, the primary fields of the NATTs can be described
by the wave functional® [¢(x)] whose asymptotic behaviours are described by the wave
functions of the zero-modes. The zero-modes of the figlds are defined as:

rod
<po=/¢(x)—y- (31)
T
0

Here we consider the NATT on an infinite strip of widthwith coordinatex along the

strip playing the role of imaginary time. In the asymptotic region where the potential terms
in the NATT action become negligible;(- ¢ — —oo for all i), the fields can be expanded

in terms of free field operatoss,

P(x)=¢o—Pz—2)+ Z(@e"“ + @e—""z>, (32)
n n
n#0
whereP = —iV,, is the conjugate momentum of,
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In this region any state of the NATT can be decomposed into a direct product of two
parts, namely, a wave function of the zero-modes and a state in Fock space generated by
the operators,,. The physical states should satisfy the constraint equations

(@, —a,)ls) =0. (33)

In particular, the wave functional corresponding to the primary state can be expressed as a
direct product of a wave function of the zero-moggsand Fock vacuum:

p[p(x)] ~ ¥p(9o) ® |0), (34)

where the wave functio¥ip(¢g) in this asymptotic region is a superposition of plane waves
with momentasP.

The reflection amplitudes of the NATT defined in the previous section can be interpreted
as those for the wave function of the zero-modes in the presence of potential walls. This
can be understood most clearly in the semiclassical lmit 0 where one can neglect
the operators,, even for significant values of the parameterThe full quantum effect
can be implemented simply by introducing the exact reflection amplitudes which take into
account also non-zero-mode contributions. The resulting Schrédinger equation is given by

r r

r .. .

[ﬂ - 2V§:o + pr Zebe’ P04 g Z Ajeb® "’0/2} Yp(@o) = Eo¥r(9g) (35)
i=1 i=1

with the ground state energy

.
Ep=—— +2P2 36
0 24-|- (36)

Here the momenturR is any continuous real vector. The effective central charge can be
obtained from Eq. (36) wheie? takes the minimal possible value for the perturbed theory.
Since only asymptotic form of the wave function matters, we can derive the reflection
amplitudes in the same way as the ATFTs without boundary [5].

In the UV limit whereu, up — 0, the potential vanishes almost everywhere except for
the values ofpy where some of exponential terms in the potential become large enough to
overcome the small value g¢f. In this case, each exponential tegf§*#0 in the interaction
represent a wall witle; being its normal vector. If we consider the behaviour of a wave
function near a wall normal t@, where the effect of other interaction terms becomes
negligible, the problem becomes equivalent to the boundary LFT ie;td@ection. The
potential becomes flat in theg — 1)-dimensional orthogonal directions. The asymptotic
form of the energy eigenfunction is then given by the product of that of Liouville wave
function and(r — 1)-dimensional plane wave,

Wp ~ [eiPiqooi + SB(pl.)e*iPNﬂol']eiPJ_'Wo
~ ¢'Po SB(Pi)eig"P'%, (37)

wheres; denotes the Weyl reflection by the simple reoand P; the component d? along
g direction.
We can see from Eq. (37) that the momentum of the reflected wave biththeall
is given by the Weyl reflectior; acting on the incoming momentum. If we consider
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the reflections from all the potential walls, the wave function in the asymptotic region
is a superposition of the plane waves reflected by potential walls in different ways. The
momenta of these waves form the orbit of the Weyl groupf the Lie algebraG;

Up(po) = Y A(GP)e!Po0. (38)
SEW
This is indeed the wave function representation of the primary field in the asymptotic
region.
It follows from Eq. (37) that the amplitude$(P) satisfy the relations
A(5;P)
= Sp(P). 39
A(P) B(Pi) (39)

For a general Weyl elemefitwhich can be represented by a product of the Weyl elements
5; associated with the simple roots By= §; 5, _,---5;,, the above equation can be
generalized to

A(f' S p) .

— e (P)’l = Sp(P-€;,)Sp(5i,P-€5,)

X SB(§,'2§,'1P . e,~3) s SB(§ik,1 . ~§,’1P . e,'k). (40)

Using the properties of the Weyl group and the explicit form of the amplitigleP) in
Eq. (22), it is straightforward to verify that the following functiai{P) satisfies Egs. (39)
and (40):

AP) = (muy D62 2) PP [T G (Palsi. 52, (41)
a>0
whereP, = «-Pis a scalar product with a positive ramt This result is valid for all simply-
laced Lie algebras. Major difference in the NATTs is that the valuespaframeters should
be fixed since there are no free boundary parameters in the NATTs. Comparing Eqgs. (10)
and (20), one can find that for tlie-) BC

+_ 42
s > (42)

and for the free BQ f) using duality
sH = L (43)

2b
Therefore, the boundary reflection amplitudes of the NATTs for the four combinations of
the two BCs are given by Eq. (22) with ands>

) = p=l
Sl_Es SZ_E’
) o =2 g=
S1_21 s2_2b7

(f+) < i _ib
sl_z.bv S2_21

1 l

(ffH <« s= §2= -
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The boundary reflection amplitudes of the NATTs with+) BCs have been derived
more rigorously from the generalized functional relations method along with boundary
degenerate operators in [10]. It is straightforward to check that these two independent
derivations match exactly. This confirms the validity of our wave functional interpretation.

4. Quantization condition and scaling function

In this section we derive the UV asymptotic expressions for the effective central charges
using the quantization conditions satisfied by the wave functionals confined in the potential
well. When perturbed by the bulk and boundary operators associated with the affine root,
the NATTs become the ATFTs with boundary equation (1). The perturbations provide
additional potential wall which confines the wave functional in the multi-dimensional
potential well, i.e., the Weyl chamber. Once confined in the well, the wave functional is
quantized and has discrete energy levels. The derivation of the quantization condition is
exactly identical to the bulk only case [5] if one substitute the bulk reflection amplitude to
the boundary one. The quantization condition becomes

2\ 2—2b2\ihP-ep/b Gp(=P-$a) 4,,,&%_
(py (70227 ]_[[ GB(PM)} 1 )

oa>0

Since the Weyl elemerit is arbitrary, Eq. (44) leads to the following condition for the
lowest energy state

2hQLP=2mp— > adp(Pu). (45)

a>0

wherep is the Weyl vector and

1 _op2
and
. Gp(P)

This is the quantization condition for the momentéhin the © — 0 limit. We see that
each positive roak causes an effective phase shift of Liouville type.

Now we consider the system defined on a strip with a wiklthVhen we scale back the
size fromR to 7, the parametes in the action (1) changes to

R\ 2107
uw— M(;) . (47)

The u — 0 limit is realized as the deep UV limik — 0. The rescaling changes the
definition of L in Eq. (45) by
R

— —log= — ; 2\ 2—2b?
L=—log < 2045 log[r y (b°)b ]- (48)
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The ground state energy with the circumfere®cis given by
TT Ceff
24R

whereP satisfies Eq. (45).
In this limit, Eq. (45) can be solved perturbatively. For this we expand the function

3p(P) in EQ. (46) in powers oP,

E(R) = with  ceff = r — 48P, (49)

85(P) =81(b)P + 83(b) P>+ 85(b) P° - -, (50)
where
81(b) = —2yE (b + 1/b) — 2(b — 1/b) logh
27}@[ 2t costt (bt /2) B t(e Pt 4 e1/b) ]
t | sinh(®r)sinh(z/b) (1—e b)(1—e-t/b) |

8,3 3 8 [ 12 costt(br/2) 12(e7bt 4 o7 1/b)
S3(b) = §(b +07)E) - 3 /dt[sinh(bt) sinht/b)  2(1—e b1y (1— et/b)]’

° 4
85(b)=_%2(b5+b_5)§(5)+E/dt[ tcosti(b1/2)

15 sinh(bt) sinh(¢ /b)
0
t4(e—ht +e—t/b)
2 —ety(A—e/h) }

Using the relation

3 (@) @) = hs®,

a>0
we obtain

hiP=2mp —53(b) Y a(Po)® —85(b) Y a(Py)®— -,

o>0 o>0

with

[=20L + é1. (51)

The above equation can be solved iteratively in powers/éf thserting the solution into
Eq. (49), we find

_, D[ (2m\? 2455 (2m)\°
cet =7 h I r \1 )™

2 (%) b0 52)
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where the coefficients are given by

1 20?2 -3
Dp=— " 4a_— =
4 r(h+1)h4o§)p“ 6012
1 6 (n?—2)(3n?-5)
D= — = s
8= r(h+ kb o;)p“ 168:%

forthe A,,_1 algebra.

5. Numerical comparison

We will compute effective central chargesis(R) of the Az, Az, and A;4 ATFTs as
a function ofmR for the BCs mentioned above following [5]. In order to compare the
numerical data with our results based on the reflection amplitudes, we fit the numerical
data forcesi(R) from the TBA equations for many different values®fwith the function
(52), wheres1, 63 andés are considered as the fitting parameters. For this comparison the
relation (6) between the parametein the action and parameterfor the particle masses
is used. These parametéfs are then compared with Eq. (51) defined from the reflection
amplitude of the LFT. Since we already separate out the dependence on the Lie élgebra
our numerical results for the parametés’s should be independent 6f.

5.1. (++) and(ff) boundary conditions

These two BCs are related by the dual transf@m> 1 — B. Hence, it is enough to
considern++) BC only for 0< B < 1. The fugacity is given by

4+ + T + 4
W @0) = RS ><9+7>R§ >(—9+7> (53)
and the reflection amplitudes are given by Eq. (45) witk- so = ib/2. Tables 1-3 show
the values of parameteég's obtained numerically from TBA equations for various val-
ues of the coupling constaBtin Az, A3, andA4 ATFTs. We see that they are in excellent
agreement with those values&s following from the reflection amplitudes supplemented
with Eq. (6). Thus numerical TBA analysis fully supports the validity of our whole scheme
based on the reflection amplitudesn relation, the shift and the quantization condition
onP.

The agreement ofs becomes less accurate for the cases with high rank partly due
to the numerical errors in higher order calculations. Another reason comes from the fact
that neglected terms in the/ L expansion (the order aP(1/18) or higher) in Eq. (52)
may not be sufficiently small compared with terms wigh However, one can in principle
reduce these errors by increasing the accuracy of the numerical calculations. There are also
corrections ofD(RY) to the expansion ofesf(R) in power series of 1/ which increase as
B goes to zero. This explains why the discrepancies in the tables increAsgesseases.

In Fig. 1, we also plot the scaling functiongt(R) as a function ofR settingm =1
for different ATFTs in two ways. The first is the curves generated by the TBA equations
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Table 1
8§RA) vs.siTBA) for Ao, A3, andA4 ATFTs for (++) BC

B 8(1RA) 8§TBA)(A2) 8§TBA)(A3) 8(1TBA)(A4)
0.25 —8.12340 —8.12344 —8.12345 —8.12345
0.30 —6.15569 —6.15571 —6.15572 —6.15572
0.35 —4.73422 —4.73423 —4.73423 —4.73423
0.40 —3.68012 —3.68013 —3.68013 —3.68013
0.45 —2.89175 —2.89175 —2.89175 —2.89175
0.50 —2.30886 —2.30886 —2.30886 —2.30887
0.55 —1.89627 —1.89627 —1.89627 —1.89627
0.60 —1.63628 —1.63628 —1.63628 —1.63628
0.65 —1.52627 —1.52627 —1.52627 —1.52627
0.70 —1.58079 —1.58079 —1.58079 —1.58079
0.75 —1.84022 —1.84022 —1.84022 —1.84022
0.80 —2.39472 —2.39472 —2.39473 —2.39455
Table 2
35M vs.85TB™ for Ap, A3, andAg ATFTS for (++) BC

B SéRA) SéTBA)(AZ) 8§TBA)(A3) SéTBA)(AM
0.25 325848 326563 326634 326677
0.30 221701 222054 222095 222113
0.35 156353 156524 156549 156560
0.40 113251 113327 113343 113350
0.45 840246 840505 840615 840663
0.50 641097 641084 641165 641200
0.55 509233 509070 509136 509164
0.60 430543 430291 430349 430374
0.65 399324 399008 399064 399088
0.70 418219 417842 417903 417928
0.75 502369 501914 501987 502180
0.80 693616 693039 693375 729485
Table 3
8éRA) vs.séTBA) for Ao, Az, andA4 ATFTs for (++) BC

B 5éRA) SéTBA)(AZ) SéTBA)(A?’) SETBA)(M)
0.25 —206638 —208099 —208050 —208047
0.30 —110087 —110739 —110726 —110720
0.35 —62.0830 —62.3780 —62.3798 —62.3796
0.40 —36.3095 —36.4358 —36.4434 —36.4458
0.45 —21.7458 —217885 —21.7986 —21.8021
0.50 —132727 —132721 —132833 —132874
0.55 —8.33556 —8.31104 —8.32307 —8.32744
0.60 —5.61763 —5.57761 —5.59071 —5.59551
0.65 —4.48789 —4.43462 —4.44955 —4.45501
0.70 —4.82305 —4.75409 —4.77232 —4.77893
0.75 —7.15865 —7.06574 —7.09021 —7.12790

0.80 —135875 —13.4502 —135398 —21.0323
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Fig. 1. Plot ofceff for A, Az, A4 ATFTs atB = 0.4 for (++) BC.

2 T T T

3
% -

(&)

0 | | L | \

0.0001 0.001 0.01 0.1 1

R

Fig. 2. Plot ofceff for Ap ATFTs for (++) BC without any vacuum energy (dotted line) and with boundary
vacuum energy (dashed line). Including both energies (solid line), two results become identicRl~u#ol).



C. Ahn et al. / Nuclear Physics B 628 [FS] (2002) 486-504 501

and the second by the reflection amplitudes. To compare the same objects, one should add
to the second case the contribution from the vacuum energy terms. In addition to the dual
symmetric bulk contribution given by [21]

3m2R? sin(zr/ h)
2r  sin(mB/h)sin(r(1— B)/h)’

one should consider the boundary contribution. This is given&yhgun whereAcpoun is
the boundary vacuum energy obtained in [10]

6mR cog/2h)
sin(r B/2h) sin(w(1— B)/2h)
These terms are negligible in the UV region. The “experimental” observation that two
results agree well even for large valuesifcan provide nonperturbative check for the
boundary vacuum energies. To illustrate the accurate agreement, weegi&) as a
function of R for A, ATFT in Fig. 2. The dotted line is without any vacuum energies.
Including the bulk vacuum energicgyk, we obtain the dashed line. Finally, correcting

with the boundary vacuum energy\2poun We can obtain thees(R) graphs which are
identical uptoR ~ O(1) as shown in Fig. 1.

Acpuk = (54)

Achour(b) =

(55)

5.2. (+f) and(f+) boundary conditions

The fugacity for these two equivalent BCs is given by

+h gy — ptH) i\ pe (1 in
2 O)=R; <b,9+7>Rj (E’_9+7> (56)

and the reflection amplitudes By=ib/2 ands> =i /(2b). These two BCs are equivalent
since they are related by exchanging the left and right boundaries. Furthermore, they are
self-dual as one can see from Eg. (56). Therefore, we can consideB & 1/2 only.
Using the same procedure, we can compare two results in Tables 4-6.

In Fig. 3, we also plot the scaling functiongt(R) as a function ofR settingm =1
by considering both the bulk and boundary vacuum energies. In particular, the boundary
energy is given by

Achoun= Acpour(b) + Acpour(1/b). (57)
This agreement is a nonperturbative proof of the duality conjecture.

Table 4
85R*M vs. 8T8 for A5, A3, andA4 ATFTs for (+ f) BC

B 8:(LRA) 5:(LTBA)(A2) 5:(LTBA)(A3) 8:(LTBA) (A4)
0.20 —8.40840 —8.40846 —8.40846 —8.40822
0.25 ~6.02901 —6.02904 ~6.02904 ~6.02903
0.30 —4.47772 —4.47773 —4.47774 —4.47773
0.35 ~3.45078 —3.45079 —3.45079 —3.45079
0.40 —2.79439 —2.79440 —2.79440 —2.79439
0.45 —2.42719 —2.42719 —2.42719 —2.42719

0.50 —2.30886 —2.30886 —2.30886 —2.30886
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Table 5
8§RA) vs.séTBA) for Ay, A3, andA4 ATFTs for (+f) BC

B SéRA) BéTBA)(AZ) 8§TBA) (A3) SéTBA)(A4)
0.20 476454 477694 477812 481325
0.25 295225 295766 295815 295700
0.30 191384 191616 191642 191608
0.35 128599 128691 128707 128711
0.40 908618 908921 909027 909219
0.45 7.05398 705450 705537 705780
0.50 641097 641084 641165 641421
Table 6
8éRA) vs.séTBA) for Ay, A3, andA4 ATFTs for (+f) BC

RA TBA TBA TBA

B s 55" (42) 55"%M (a3) 55" (Ag)
0.20 —419960 —422929 —422818 —420097
0.25 —200593 —201713 —201666 —200.605
0.30 —102893 —103327 —103316 —102898
0.35 —54.4153 —54.5765 —54.5799 —54.4176
0.40 —29.2623 —29.3138 —29.3226 —29.2635
0.45 —16.9759 —16.9859 —16.9966 —16.9766
0.50 —132727 —-132721 —132833 —132733

4 T

C.«(R)

]
199-06 0.0001 0.01 1
R

Fig. 3. Plot ofceg; for Ao, Az, A4 ATFTs atB = 0.4 for (+f) BC.
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6. Concluding remarks

In this paper we have derived the reflection amplitudes of the simply-laced ATFTs with
integrable BCs by considering the quantum mechanical reflections of the wave functional
in the Weyl chamber and show that the results are consistent with those from the functional
relation method [10]. The quantization conditions arising from these amplitudes generate
the ground state energies which are compared with the boundary TBA equations based
on the bulk and boundarg-matrices. The excellent agreements of the two different
approaches provide the nonperturbative checks for the conjectured bouirdeairices
of the simply-laced ATFTs witl{+) BCs and its dual (free) BCs where the conjectured
boundary vacuum energies play the essential role for the agreement to th&brder

The two different approaches based on the quantum mechanical reflections and TBA
analysis should in principle provide a useful nonperturbative check for different BCs such
as all or some); = —1 whose boundang-matrices are conjectured in [22]. Boundary
ATFTs with simply-laced Lie algebras other thanseries can be also studied in this
way to fix the ambiguity in the CDD factors. Another interesting problem is to relate
the “L-channel” TBA which generates the boundary entropy to the boundary one-point
functions of the ATFTs. We hope to publish these results in other publications.
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