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Reflection amplitudes are defined as two-point functions of certain class of con-
formal field theories where primary fields are given by vertex operators with real
couplings. Among these, we consider (Super-) Liouville theory and simply and
non-simply laced Toda theories. In this paper we show how to compute the
scaling functions of effective central charge for the models perturbed by some
primary fields which maintains integrability. This new derivation of the scaling
functions are compared with the results from conventional TBA approach and
confirms our approach along with other non-perturbative results such as exact
expressions of the on-shell masses in terms of the parameters in the action, exact
free energies. Another important application of the reflection amplitudes is a
computation of one-point functions for the integrable models. Introducing func-
tional relations between the one-point functions in terms of the reflection
amplitudes, we obtain explicit expressions for simply-laced and non-simply-
laced affine Toda theories. These nonperturbative results are confirmed numeri-
cally by comparing the free energies from the scaling functions with exact
expressions we obtain from the one-point functions.

KEY WORDS: Reflection amplitude; affine Toda field theory; conformal field
theory; super-Liouville theory; thermodynamic Bethe ansatz; one-point function.

1. INTRODUCTION

There is a large class of 2D quantum field theories (QFTs) which can be
considered as perturbed conformal field theories (CFTs).(!) These theories
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are completely defined if one specifies its CFT data and the relevant
operator which plays the role of perturbation. The CFT data contain
explicit information about ultraviolet (UV) asymptotics of the field theory
while its long distance property is the subject of analysis. If a perturbed
CFT contains only massive particles, it is equivalent to the relativistic
scattering theory and is completely defined by specifying the S-matrix.
Contrary to CFT data the S-matrix data exibit some information about
long distance properties of the theory in an explicit way, while the UV
asymptotics have to be derived.

A link between these two kinds of data would provide a good view
point for understanding the general structure of 2D QFTs. In general this
problem does not look tractable. Whereas the CFT data can be specified
in a relatively simple way, the general S-matrix is very complicated object
even in 2D. However, there exists an important class of 2D QFTs (inte-
grable theories) where scattering theory is factorized and S-matrix can be
described in great details.

In this case one can apply the nonperturbative methods based on the
S-matrix data. One of these methods is thermodynamic Bethe ansatz
(TBA).®>3 It gives the possibility to calculate the ground state energy E(R)
(or effective central charge c.q(R)) for the system on the circle of size R. At
small R the UV asymptotics of c¢4(R) can be compared with that following
from the CFT data.

Usually the UV asymptotics for the effective central charge can be
derived from the conformal perturbation theory. In this case the correc-
tions to ¢.4(0) = ccpr have a form of series in R” where y is defined by the
dimension of perturbing operator. However, there is an important class of
QFTs where the UV asymptotics of c.z(R) is mainly determined by the
zero-mode dynamics (see for example, refs.4-7). In this case the UV
corrections to c¢cpr have the form of series in inverse powers of log(1/R).
This UV expansion is also encoded in CFT data.®

The simplest integrable QFT with the logarithmic expansion for the
effective central charge is the sinh-Gordon (ShG) model, which is an inte-
grable deformation of Liouville conformal field theory (LFT). It was shown
in paper ref. 6 that the crucial role in the description of the zero-mode
dynamics in the ShG model is played by the “reflection amplitude” of the
LFT, which determines the asymptotics of the ground state wave function
in this theory. (The reflection amplitudes in CFT define the linear transfor-
mations between different exponential fields, corresponding to the same
primary field of chiral algebra.)

In this paper, we want to show that these zero-modes dynamics are
quite general features of 2D QFTs with exponential interactions. Imposing
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the integrability, we will consider the Bullough-Dodd model which is
another integrable perturbation of the LFT, supersymmetric ShG models,”
and affine Toda field theories (ATFTs) associated with both simply laced
and non-simply laced Lie algebras.®®’ Each model shows quite unique
properties in the S-matrix data; some has non-diagonal S-matrix, some has
many particles with different masses, and so on. In this review of our recent
works, 19 we want to describe UV asymptotic behaviours of these “Toda-
type” models, i.e., a class of the integrable QFTs with exponential interac-
tions, in unifying way in terms of the zero-mode dynamics. The perturbing
term in the model restricts the zero-mode dynamics to a box of size
[ ~log(1/R) in the auxiliary space with dimension equal to the number of
independent zero-modes. This leads to the quantization condition for the
momentum P conjugated to the zero-modes and the solution P(R) deter-
mines all logarithmic terms in the UV asymptotics of the effective central
charge c.(R). Although it may seem quite model-dependent, it turns out
that the basic dynamics in common is the reflection of a zero-mode off the
interacting potential of the LFT. In all cases the results agree perfectly with
TBA results based on the S-matrix data. The remarkable feature is that
effective central charge calculated from the CFT data with subtracted bulk
free energy term (like in TBA approach) gives a good agreement with the
TBA results even outside the UV region (at R~ @(1)). This “empirical”
fact still needs the explanation.

Finally the reflection amplitudes can be used'"!* to find the exact one-
point functions of this class of integrable models. One needs only symmetric
properties of the given Lagrangian and analytic properties of the one-point
function. Explicit calculation is given for various models.(® 13- 89

In the Section 2, we introduce the reflection amplitudes for the CFTs
we are interested in. These amplitudes are interpreted as quantum mechani-
cal reflections off the potential wall of the zero-modes dynamics in Section 3.
In Section 4 we analyze the off-critical integrable models. Due to the
integrable perturbations, the zero-modes are confined in the potential well
and the conjugate momenta are quantized. Using this, we calculate the UV
asymptotics for the effective central charges. In Section 5 we compare this
asymptotics with numerical solutions of TBA equations. We derive the
exact one-point functions and free energies in Section 6.

2. NORMALIZATION FACTORS AND REFLECTION
AMPLITUDES

In this section, we introduce the reflection amplitudes for the Toda-
type CFTs with background charges.
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2.1. Toda-Type CFTs

We start with non-affine Toda theories (NATTs) whose actions are
given by

—_
~

1 r
— 2 _ 2 be;-@
;z{—fd x[gn(aﬂ(p) +i:§1uie (

where e;, i=1,..., r are the simple roots of the Lie algebra G of rank r. For
simply laced algebras, the u,’s are all the same as x. Non-simply laced
ATFTs have standard simple roots with e?=2 and nonstandard simple
roots with e?=&%(#2). We choose the corresponding parameters u; as u
(for standard roots) and x' (for nonstandard ones), respectively.®

The simplest case is the 4; NATT, or the LFT with an action

|
y:jdzx {87[ (0,0)% + eV 2)

With appropriate background charges, these Toda-type QFTs are the
CFTs. To describe the generator of conformal symmetry we introduce the
complex coordinates z = x, + ix, and Z=x,; —ix, and vector:

1 1 1
Q=bp+-pY, p=35 ) «a pY =3 Y aY (3)

b 2 a>0 a>0

where the sum in definition of Weyl vector p (p") runs over all positive
roots o (co-roots a ") of G.
The holomorphic stress-energy tensor

T(z)=—30.9)*+Q-02¢ (4)

ensures the local conformal invariance of the NATT with the central charge
¢=r+ 12Q?2 For the simply laced algebras, these expressions are simplified
due to Q=Qp with Q=>b+1/b that the central charge is given by c¢=
r(14+h(h+1) Q%) (h is Coxeter number).

Another model we are interested in is the N =1 supersymmetric LFT
with an action

212

1 | = - b
o= d2x§<aa¢)2—ﬂ<waw+wawwbzwebuL‘z e (5)

¢ We choose the convention that the length squared of the long roots are four for C{" and
two for the other untwisted algebras.
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The super-LFT with the background charge Q=5+ 1/b has the central
charge cg; =3/2(1 +20%).

2.2. Reflection Amplitudes

2.2.1. NATTs

Besides the conformal invariance the NATT possesses extended sym-
metry generated by W(G)-algebra. The full chiral W(G)-algebra contains r
holomorphic fields W;(z) (W,(z)=T(z)) with spins j which follows the
exponents of Lie algebra G. The primary fields @, of W(G) algebra are
classified by r eigenvalues w;, j=1,..,r of the operator W, (the zeroth
Fourier component of the current W;(z)):

W, o®@,=w;®,, W, ., =0, n>0 (6)
The exponential fields

V.

a

(x):e(Q+a)-¢(x) (7)

are spinless conformal primary fields with dimensions A(a)=w,(a)=
(Q%—a?)/2. The fields V, are also primary with respect to all chiral algebra
W(G) with the eigenvalues w; depending on a. The functions w;(a), which
define the representation of W/(G)-algebra possess the symmetry with
respect to the Weyl group #~ of Lie algebra G,"* ') i.e., w;(Sa) = w;(a); for
any §e€# . It means that the fields V,, for different §e€ #  are reflection
images of each other and are related by the linear transformation:

Va(x) = Ry(a) Vi,(x) (8)
where R (a) is the “reflection amplitude.” This function is an important
object in CFT and plays a crucial role in the calculation of the one-point
functions in perturbed CFT.!®

To calculate the function Ra) for simply laced NATTs, we introduce
the fields @ ,:

@, (x)=N"!(a) V,(x) 9)

where normalization factor N(a) is chosen in the way that field @, satisfies
the conformal normalization condition

1

|4A

(D, (x) D(y)) “x_ 4

(10)
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The normalized fields @, are invariant under reflection transformations
and hence;

N(a)

N(Sa)

Ry(a) = (11)

For the calculation of the normalization factor N(a), we can use the

integral representation for the correlation functions of the W(G)-invariant
CFT. (See ref. 16 for details.) We note that operators O, defined as

Oi=pu [dx eberot (12)

commute with all of the elements of W/(G)-algebra and can be used as
screening operators for the calculation of the correlation functions in the
NATT. If parameters a satisfy the condition

2Q+2a+ Y k=0 (13)

i=1

with non-negative integer k;, we obtain from Egs. (9) and (10) the follow-

ing expression for the function N(a) in terms of Coulomb integrals:('®

N2( | ,144 4 Qic’
a)=|x| Va(x) V,(0) [] X (14)
i=1"vi*

where the expectation value in Eq. (14) is taken over the Fock vacuum of
massless fields ¢ with the correlation functions

{Pa(x) @p(y)> = = log [x — y|?

The normalization integral can be calculated and the result has the
form:

N%(a) = (nuy(b?)) ~20 Q+a)b
I'(14Q4/b) (1 + 04b) (1 +ay/b) I'(1+a,b)

15
W =0 FA— 0 F(—ayo T —agp) )

in terms of the scalar products
Qm:Q'aa am:a'a (16)

where the product runs over all positive roots of Lie algebra G.
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We accept Eq. (15) as the proper analytical continuation of the func-
tion N*(a) for all a. It gives us the following expression for the reflection
amplitude R a):

N| A
Ria) =y =4 (1)
where
Ay = (muy(b*)* " ] I'(1—ag/b) I'(1—ayb) (18)
a>0

For non-simply laced NATTs, the expression is generalized to

= [T wan(e}p?/2)1° Fel T] F(1=agy /b) I(1—agb)  (19)
j = a>0
herea, =a-0,a,v =a-a” and vectors ;" are the co-weights of G, satisfying
the condition ®,” -e;=4.
The reflection relation Eq. (8) can be written in more symmetric form
as:

Aa Va(x):AS‘a Vfa(x)s Sew (20)
In following we will be interested in the values of functions A4, for imagi-
nary a =iP. We denote as V(P, x)=V,p(x) and A(P)= A,;p. Using these

objects we can construct the combination which is invariant under the
Weyl reflections:

Yp= ) A(SP) V(SP) (21)
Sew
From the above expression, we can find

A(3,P)
A(P)

= SL(ei’ P)

o T(1+iP-eb) (1 +iP-e"/b)
— . 2 2 iP-e;" /b i
[rpi(eib/2)] T —iP-ep) I(1—iPe'jp) 2

From Eq. (22), we see that the functional form of S, is independent of the
algebra under consideration. Considering the simplest case (4, Toda), we
identify that S, is the reflection amplitude of LFT R(iP)=S L(ﬂ P) where

oo oy T(1+iPb) I'(1 + iP/b)
SUP) = (e 0?) " e (T i b) (23)
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2.2.2. Super-LFT

Due to the superconformal symmetry, the primary fields of the super-
LFT can be devided into two sectors. The (NS) primary fields are given by

Va(za Z_’ 67 é) = ¢u(za Z_) + ewa(za Z_) + élpa(Z, Z_) - 06_)5«(29 Z_)

with dimensions

and the (R) fields by
v,

where ¢ is the “twist field” with dimension 1/16 so that the dimension of
the (R) fields are

A,= 16+ 30(0—a)

The reflection amplitudes of the super-LFT defined from the structure
constants have been derived from the structure constants in refs. 20 and 21.
The reflection amplitudes for the (NS) fields are

_ fmu (1+BN\\"2PP (14 iPh) I(1 +iP/b)
SNS(P)__<2V< 2 >> I'(1—iPb) I'(1—iPJb) (24)
and for the (R) fields
(LB T2PP [(1)2 4 iPb) (12 + iPJb)
SR(P)_<2y< 2 >> I'(1)2—iPb) I'(1)2—iP/b) (23)

3. REFLECTIONS OF ZERO-MODES

In this section we introduce the wave functional interpretation of the
primary fields of the LFT using the zero-mode following ref. 6 and show
how to generalize it to NATTs by considering the wave functionals
Y[ o(x)] whose asymptotic behaviours are described by the wave functions
of the zero-modes in higher dimensions.

3.1. LFT

Consider LFT on a cylinder of circumference 2z with the cartesian
coordinates x;, x, where x, along the cylinder is defined as the imaginary
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time and x; ~ x; + 27 is the space coordinate. The Hamiltonian acting in
the space of states ./ of LFT

H= —%+LO+ZO (26)

generates translations along the time Xx,.
The conformal structure can be formulated in terms of the “zero-
mode” of the Liouville field ¢(x) defined by

dxy

o (27)

do= ()

As ¢,— — oo in the configuration space, one can neglect the exponential
interaction term in the LFT action so that one can expand ¢(x) as a free
massless field (z=x; +ix,)

$x) = o2z =2)+ T (Fz e o) (28)

n#0 n

where the momentum conjugate to the zero-mode ¢, and oscillators satisfy

i 0 m _ m
92_5%, [am, an]=55m+na [ama an]=55m+n (29)

The Virasoro generators can be written in terms of these modes. The space
of states is now represented as

Ay =L(—0<hpy<0)QF (30)

where %, is the two-dimensional phase space spanned by ¢, and its
conjugate momentum £ and % is the Fock space of the oscillators.

Any state s € .o/ can be represented by a wave functional ¥ [ #(x,)] in
the ¢, — — oo asymptotic limit. In particular, the wave functional for the
primary state vp corresponds to

Y, [d(x))]=(eTh+S(P) e~ ™) |0)  as ¢p—> —0 (31)
where S(P) is the reflection coefficient of the asymptotic wave functional.

One can check that the wave functional of asymptotic form Eq. (31) has
correct conformal dimension by acting L,. The coefficient S(P) should be
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the reflection amplitude S, (P) introduced earlier since the wave functional
¥,_, for the primary state v_p is S, (—P) ¥, along with

Si(P) S, (—P)=1 (32)

In this framework, one can check the wvalidity of the reflection
amplitude by taking semiclassical limit b — 0 and using duality. Since P is
of the order of ()(b), one can neglect the oscillators and keep only the zero-
mode ¢, so that the Hamiltonian is approximated as

Hy= — 15— P2 + 2mpe/ % (33)

The exact wave function of ¢, for the Hamiltonian is well-known whose
asymptotic form as ¢, - — oo is given by Eq. (31) with

[\ TP (1 4iP/b)
sn==(5%) R .

It is straightforward to check this result is consistent with the non-pertur-
bative reflection amplitude Eq. (23) perturbatively.

3.2. NATTs
The zero-modes of the fields ¢(x) are defined as:

dx,

2n (33)

R

Here we consider the NATT on an infinite plane cylinder of circumference
27 with coordinate x, along the cylinder playing the role of imaginary time.
In the asymptotic region where the potential terms in the NATT action
become negligible (e;-@,— —oo for all i), the fields can be expanded in
terms of free field operators a

ia, . ia, . _
Ox)=0y—P(z—2)+ ). <e"‘z+e’”2> (36)
n#0 h n
where # = —iV,, is the conjugate momentum of ¢,. In this region any

state of the NATT can be decomposed into a direct product of two parts,
namely, a wave function of the zero-modes and a state in Fock space
generated by the operators a,. In particular, the wave functional corre-
sponding to the primary state Eq. (21) can be expressed as a direct product
of a wave function of the zero-modes ¢, and Fock vacuum:

Pelo(x)]~ ¥e(0o) ® [0) (37)
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where the wave function ¥p(@,) in this asymptotic region is a superposi-
tion of plane waves with momenta §P.

The reflection amplitudes of the NATT defined in the previous section
can be interpreted as those for the wave function of the zero-modes in the
presence of potential walls. This can be understood most clearly in the
semiclassical limit » — 0 where one can neglect the operators a, in Eq. (36)
even for significant values of the parameters x;. The full quantum effect can
be implemented simply by introducing the exact reflection amplitudes
which take into account also non-zero-mode contributions.® The resulting
Schrodinger equation is given by

7 r
_E_Vio"' Y 2mpe” | W (o) = Eo Pp(90) (38)

i=1

with the ground state energy

-
E,=——+P? 39
0 12+ (39)

Here the momentum P is any continuous real vector. The effective central
charge can be obtained from Eq. (39) where P? takes the minimal possible
value for the perturbed theory. Since only asymptotic form of the wave
function matters, we derive the reflection amplitudes of the ATFTs in the
way that we need only the LFT result.

In the u; — 0 limit which will be of our interest, the potential vanishes
almost everywhere except for the values of @, where some of exponential
terms in the potential become large enough to overcome the small value
of u;. In this case, each exponential term €% ® in the interaction represents
a wall with e; being its normal vector. If we consider the behaviour of a
wave function near a wall normal to e; where the effect of other interaction
terms becomes negligible, the problem becomes equivalent to the LFT in
the e; direction. The potential becomes flat in the (r—1)-dimensional
orthogonal directions. The asymptotic form of the energy eigenfunction is
then given by the product of that of Liouville wave function and (r—1)-
dimensional plane wave,

Y~ [eFi%i+ S, (e;, vP) e Fi?0i] L %
~eP S (e;, P) et (40)

where §; denotes the Weyl reflection by the simple root e; and P; the com-
ponent of P along e; direction. S,(e;, P) is defined in Eq. (22). Since the
wave function interpretation makes sense only in the semiclassical limit, it
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is the b — 0 limit of Eq. (23) which can be obtained from the solution of the
Schrodinger equation for the LFT.

We can see from Eq. (40) that the momentum of the reflected wave by
the ith wall is given by the Weyl reflection §; acting on the incoming
momentum. If we consider the reflections from all the potential walls, the
wave function in the asymptotic region is a superposition of the plane
waves reflected by potential walls in different ways. The momenta of these
waves form the orbit of the Weyl group #~ of the Lie algebra G;

V(o) = ), A(SP) e % (41)

Sew

This is indeed the wave function representation of the primary field (21) in
the asymptotic region. It follows from Eq. (40) that the amplitudes A(P)
satisfy the relations

=Sy(e;, P) (42)
which is the same as Eq. (23). Equation (42) is solved by

AP) = [T [ (€26%/2) 1 ™ [] I(1—iPob) I(1—iPyr /) (43)
i=1

a>0

and we recover the result (19) calculated in the previous section.

3.3. Super-LFT

The super-LFT is a super-CFT which satisfies the usual super-
Virasoro algebra. The space of states for the super-LFT can be expressed
by

Sy =L =0 <hg<0,Yo) ®F (44)

where the fermionic zero-mode appears only for the (R) sector and % is
the Fock space of bosonic and fermionic oscillators. The appearance of
bosonic and fermionic zero-modes in Eq. (44) is well-known from the
super-CFT results. In the (NS) sector, there is no fermionic zero-mode
since the fermion field satisfies the anti-periodic boundary condition while
it appears in the (R) sector with periodic one. The zero-modes appear in
the super-Virasoro generator L, and S, of the (R) sector in such a way
that L, contains the square of the conjugate momentum and S, acts non-
trivially only on the twist field.
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The primary state v, can be also expressed by a wave functional
¥, [¢(x1)] whose asymptotic form is given similarly as Eq.(40). The
amplitude S(P) is either Syg(P) or Sg(P) depending on the sector so that
the wave functional ¥,  is given by S(—P) ¥, . One can also check the
validity of this expression by taking the classical limit of » — 0. Since P is
small of order of ()(b), one can neglect the oscillator part in Eq. (44) and
study only the dynamics of zero-modes. In the (NS) sector, only bosonic
zero-mode appears so that the Hamiltonian becomes

HNS — _l_ <8 2 + 712,u2b262b¢0
0 8 0¢o

which is essentially the same as that of the LFT, hence the reflection
amplitude becomes

)\ TP P (1 +iP/b)
Sns(P) = _<2> I'(1—iP/b)

On the other hand, in the (R) sector, additional fermionic zero-mode
is introduced in the hamiltonian by‘®®

a 2 —
Hg=— <5¢> + n22b%e® % + 2miub o o e
0

Since the fermionic zero-mode satisfies

Woutho} =0, Yi=15=3

we can represent it by

and the Hamiltonian becomes

0 H

HE = 22 4 222h%* — rub?ePhig, = <H+ 0 >

The solution of H, can be obtained as

Y, (go) = <\/;C [Kl/zfiP/b(xO) + K1/2+iP/b(x)]>, —
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where K ,(x) is the modified Bessel function. By taking the asymptotic limit
¢o— — oo, one can find the non-vanishing component is given by

Y~ P4 S (P) e o
with

m>—<2f/b>1’r(1/2 +iP/b)

SR(P):<2 I'(1)2—iPJb)

These are consistent with the exact result Eq. (25) in the b — 0 limit.

4. QUANTIZATION CONDITIONS AND SCALING FUNCTIONS

In this section we derive the scaling functions for the various Toda-
type models on a cylinder with circumference R. In the deep UV region
R—0, the wave functional interpretation introduced in the previous
section is used to obtain the quantization condition for the zero-mode
momenta and the vacuum energies.

4.1. ShG Model

We start by reviewing the analysis of ref. 6 for the ShG model or 4,
ATFT defined first on a circle of circumference R with periodic boundary
condition. By rescaling the size to 2z, one can write the action as

B 1 2 R\ 264 | ,—2b4
=[x | dn| @2 ru(5 ) @ e 4)

where p~ [mass]>*?’ is the dimensional coupling constant with b the
coupling constant.

We are interested in the ground state energy E(R) or, more con-
veniently, the finite-size effective central charge

6
cal R) =~ E(R) (46)

in the ultraviolet limit R — 0. Since we are interested in the ground-state
energy, only the zero-mode contribution counts. So the corresponding
effective central charge at R — 0 is determined mainly by P

cer(R) =1—24P? + O(R) (47)

up to power corrections in R.
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For the ground state energy, one can consider only the zero-mode
dynamics where the wave functional of ¢, is confined in the potential well
due to the ShG interaction term. The ShG potential introduces a quantiza-
tion condition for the momentum P which depends on the finite size R. As
R— 0, in particular, the wave functional is confined in the potential well
where the potential vanishes in the most of the region and becomes non-
trivial only at 2b¢, ~ + In u(R/27)>*+2** near the left and right edges. Near
these edges of the potential well, the potential becomes that of the LFT and
the wave functional will be reflected with the reflection amplitude of the
LFT introduced earlier. Therefore, the quantization condition is given by

(R2m)~*V2P2 §2(P)=1 (48)
In terms of the reflection phase d,(P) defined by
S,(P) = — i) (49)

the ground state momentum is qunatized as

O (P)=n+2/2PQ 1112137Z (50)

Thus determined quantized momentum will give the scaling function
cer(R) in the UV region by Eq. (47). To see this explicitly, one can expand
the reflection phase in the odd powers of P,

0. (P)=0,(b) P+65(b) PP+ 3d5(b) P+ --- (51)

where the coefficients can be obtained from the reflection amplitude
Eq. (23) as follows:

T(1/(2+2b%)) T(1 + b2/(2 +2b?))

2
6,(b) =Eln b>—20In

(%)
w
-

S
-

Il

56(3)(b3+b‘3)

2
0s5(b) = —gé(5)(b5 +b77)
with Euler constant yg. Now solving Eq. (51) iteratively, we get

Cal R) =1+ 5+ F+ 5+ (52)
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where
1=0,(b)—2./2 QIn(R/27) (53)
¢, = —6n> ¢, = 121%65(b), c3=127%4(b) (54)

The Gamma functions appear in ¢, due to the relation between the
mass of the physical particle and the coupling constant x in the action'®

o m 1 bz >}2—%—2h2
y(—bz)_{4ﬁr<2+2b2>F<1+2+2b2 (53)

4.2. ATFTs
The action of the ATFT is given by

1 "
o = [ | 0,00+ T e e (56)

i=1

The additional potential term in the ATFT Lagrangian corresponding to
the zeroth root e, introduces new potential wall in that direction (see Fig. 1
as a simplest example, the 4, ATFT). With this addition, the region of ¢,
made of the non-affine Toda potential walls (Weyl chamber) is now closed
and the momentum of the wave function should be quantized depending

(a) (b)

Fig. 1. (a) Potential walls in A4, affine Toda theory. (b) A wave with momentum P near the
zeroth wall comes back to the same wall with momentum P’ after a series of reflections.



Applications of Reflection Amplitudes in Toda-Type Theories 401

on the size of the enclosed region. This quantized momentum defines the
scaling function c.4 in the UV region by Eq. (39).

The quantization condition can be derived as follows. For simplicity
let us first consider simply laced cases. Also, we assume for the moment
that the circumference of the cylinder is 2z. Consider the path C of a wave
which starts with momentum P and comes back (after a series of reflections
by other walls) to the zeroth potential wall with momentum P’. It will then
be reflected by the zeroth wall. Figure 1(b) illustrates a multiple reflection
in the two-dimensional potential. To satisfy the self-consistency condition,
the momentum P’ after the last reflection by the zeroth wall should be
equal to the incoming momentum P so that s,P’ =P. Furthermore, since
the zeroth wall is again Liouville-type, the momenta P’ =s,P of the inci-
dent wave and P of the reflected wave should satisfy Eq. (42) which leads
to

=S,(ey, P) (57)

On the other hand, since s, is given by a product of the Weyl reflections
corresponding to simple roots, each representing the reflection experienced
by the wave along the path C, the left hand side of Eq.(57) can be
obtained from Eq. (43). Therefore, Eq. (57) gives a nontrivial quantization
condition for the momentum P. This condition can be generalized using the
same arguments for other potential walls instead of the zeroth one. Then
we obtain

A(sysP)

A(sP) =S;(eg, sP) (58)

where s is an arbitrary Weyl group element.
Using Eq. (18) we can write (58)

(nﬂy(bz))ip'”/b{ I1 =1 (39)

a>0

G(sP-sqa)] G(sP-ep)
G(sP-a) } G(—sP-ep)

where
V=sop—pteo=—(ep)eytey=rhe
and we define a function

G(P)=TI'(1—iP/b) I'(1—iPb)
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The I-function factors in Eq. (59) can be further simplified. First, consider
the action of s, on a positive root a: 5,0 =a —ey(e, - @), which is either a
or a+e, if a# —e, since —e, is the maximal root. In the first case, the
factor G(sP-sqa) in Eq. (59) is cancelled out by the same factor in the
denominator, while, in the second case, there is no cancellation since a + e
is a negative root. Finally, s,e,= —e, and the corresponding factor
G(sP -e,) appears twice in Eq. (58). Using the property e,-a=0 or 1 for
0>0 (a# —ey) and e, - e, =2, we can simplify Eq. (59) as

P se, G(—P-s0)| =% _
(mowtyre [ | St (60)

For the non-simply laced ATFTs, we obtain the condition for P by
inserting Egs. (43) and (22) into Eq. (58). After some transformations as
above, it can be written in the form:

r - " iP - sey/b g(a’ P) u-seov_
1 Gptet) | H{M} “1 (6D

where we define
Y(a,P)=I(1—iP,b) I'(1 —iP4./b)

Now we consider the system defined on a cylinder with the circum-
ference R. When we scale back the size from R to 2z, the parameters u; in

the action (56) rescales as
R 2+ b2}
= s <2n> (62)

Then, Eq. (61) for the lowest energy state reduces to

LP=21p— Y ad(a,P) (63)
a>0
where
2 s R . e2h?
L=—>(h+b*")In—— fln [T (mue;y(e2b%/2))™ (64)
b 2n i—o
and

(1 +iP,b) (1 +iP,./b)
olo, P) = —ilog - F (= iP.. jb) (65)
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This is the quantization condition for the momentum P in the UV region
R—-0.
The ground state energy with the circumference R is given by

E(R):—”g;‘f with  cpg=r— 12P? (66)

where P satisfies Eq. (63).
In the UV region we can solve Eq. (63) perturbatively by expanding
o(a, P) in powers of P,,

6(“9 P)zél(asb) Pa +53(G,b) Pc31 +65(u5b) P(Sl (67)

where the coefficients J,(a, ) and d,(a, b), s=3, 5 are:

5y(a, b)= 2yE<b+ 2b> 5S(a,b)=()‘S—3>/2-§C(s)<bS+<éj>s>
(68)

Using the relations: 3,0 (@) (0)°=4Y6%, and 3,-, (@) (a")®=ho®,
we obtain that:

IP=2np— Y ds(a,b)aP)— > Js(a,b)aP),—
a>0 a>0
with
I=L—2ya(bh +hfb)=L—L, (69)

The above equation can be solved iteratively in powers of 1//. Inserting the
solution into Eq. (66), we find:

2
ca=r—rthe i (Z) 2 iaeo v+ cqomy ()

24 27\’
S USICAG) b+ CGE (7 )+t (70)
where the coefficients C(G) are defined as:

CiG)= 3 parav,  CuGY)= ) py

a>0 a>0

Co(G)=Y papav,  Co(GV)=Y p§

a>0 a>0
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For simply laced algebras, these coefficients have the values:

Cy(A) ) = gon’(n* —1)(2n> = 3)

Co( A ) = gn*(n® — 1)(n* —2)(3n* = 5) a1

Cy( D)= 55(16n>—45n*+27n+ 8) n(n—1)(2n—1)
Co(DV) =% (48n° —213n* +262n* + 6n> —101n —32) n(n — 1)(2n — 1)

For the non-simply laced algebras B'" and C"’, we can express the results
through these values. Namely, we find:

Ci(B(l)):lC'(A(zln)fl)» Ci(Bgtl)v):Ci(DillJ)rl/z)

i (72)
Ci(Cil)):C(Dillll) Ci(Czl)v):Ci(D(_l),,), (i=4,06)
For exceptional algebras G and F{", we obtain:
Cy(GP)=3Cy(D§V) =392,  CyGyY)=2
Co(GD)=1C(DPV)=7386,  Co(GMY) =136 -
CAFD)=1C(EW)=27378,  Cy(F{)v)=2815

6
Co(F{) = LCL(EL) =2203578,  Cy(F{Vv)= 2052763

We note that above equations relating coefficients C;(G) for different Lie
algebras follow from the similar exact relations between the ground state
energies e¢(G) of quantum affine Toda chains associated with these Lie
algebras. These exact relations are valid if the parameters yu, ¢’ for non-
simply laced Lie algebras and corresponding parameter u,; for simply laced
ones satisfy the condition: x” ~%(2u'/E*)* = u”,, where z=2(h—h")/(2 — &?).

4.3. The BD Model

The BD model is an integrable field theory associated with 4% affine
Toda theory and can be regarded as an integrable perturbation of the
LFT."® The action is given on a circle of circumference 2z with periodic
boundary condition;

- 1 5 R\2+ 262 20 R\2+ b2 v
o= s | dxl[%waqs) +/¢<2n> i <2n> c }
(74)

This model possesses asymmetrical exponential potential terms compared
with the ShG model. In the UV limit, the exponential potential becomes
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negligibly small except in the region where ¢, goes to + co. This means
that the BD model is again effectively described by the LFT. It is the quan-
tization condition that makes the difference from the ShG model, due to
the asymmetry of the potential well in the left and right edges. The con-
jugate momentum P is now quantized by the condition

R\ —4PQ+0)
<2n> Si(P) SL(P)=1 (75)

where S,(P) is obtained by substituting b — b/2 for S, (P) given in Eq. (23)
and

O=b+1/b, Q' =b2+2/b (76)
Using the phase shifts defined as
Sy(P)= —ePP, Sy (P)= — PP

the quantization condition becomes
_ _ R
o(P)=n+40P lnz— (77)
T

where

o(P)=3(0.(P)+0L(P)), Q=30+ Q)

The relation between P and R in Eq. (77) gives the scaling function c.g
as a continuous function of R, Eq. (70), with Q replaced by O and ¢’s with
0’s defined by power series expansion of the phase shift in P

O(P)=06,P+0,P>+55sP°+ -

s 00 , ur (1 + )] Y6+
=g -20+ ) {in| 5
2wl (1 + b2/4)]2/6+30)
{IK—b74)} +VE}

(78)
05 =3((3) <b3+:3>

- 33 32
5= - us) (04 55)
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Then, the central charge is given by
Carl R) =1+ T3+ 4754 oo (79)
where
[=6,(h)—4QIn(R/21)
¢y = —24xn*
c, =487* 55(b)
€, =487% 64(b)

(80)

4.4. The SShG Model

Now we consider an integrable model obtained as a perturbation of
the super-LFT, the SShG model. By rescaling the size to 27, one can
express the action of the SShG model by

oo =[ s [ dvi | G- 0uP =5 (5 00+ &)

2+ 2b2

+ 2iub? (i)l 0 Yy cosh(bg) + muh? <2]i> [cosh(2b¢) — 1]]

(81)

In the UV limit, the exponential potential becomes negligible except in the
region where ¢, goes to +oo. This means that the SShG model is effec-
tively described by the super-LFT as R — 0. From the ground state energy
for the primary state labelled by P, the effective central charge can be
obtained by

c(R)=3—12P>+ O(R)  (NS)
= —12P*+ ((R) (R) (82)

For the (NS) sector, P corresponding to the ground state is deter-
mined again by the quantization condition coming from the super-LFT
reflection amplitudes:

Ons(P) =7+ 20P ln2£ (83)
T
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where dng(P) is the phase factor of (NS) reflection amplitudes. This quan-
tization condition can be solved iteratively by expanding dyg(P) in powers
of P,

Ons(P)=01SP+ 5P +035P° + ...

1 T 1+52
s LEC

2 1
0y =23 (5435

oY= —315) (8455

The (R) sector shows very different behaviour from the (NS). The

physical meaning becomes clear if one considers the P — 0 limit where

Sg(P)—1 comparing with Sygs(P)— —1. While for the (NS) sector

Yp~2iP¢, so that the quantum number n should be 1 as in Eq. (83), the

wave functional for the (R) sector becomes constant corresponding to
n=0. Therefore, the quantization condition becomes

Oor(P)=20QP ln£ (85)
2n

An obvious solution is P =0 so that
Cer(R)=0+ O(R) (86)

In the »— 0 limit, one can verify this from the (R) sector zero-mode
dynamics of the SShG model which is governed by the Hamiltonain

0 \? _
Hy=— <6¢> + 4n?u?b? sinh? boo + dmiub>y oo cosh bg,  (87)
0

This is a typical supersymmetric quantum mechanics problem and in
general there exists a zero-energy ground state'®® if the supersymmetry is
not broken. Explicitly, the wavefunction of the state is found to be

(88)

—2mu cosh be,
0 >

7i(go)= (¢

This state is normalizable and its energy is exactly zero. Thus at least in
b — 0 limit, c.4 is exactly zero regardless of » without any power correction.
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5. COMPARISON WITH THE TBA RESULTS

A standard approach to study the scaling behaviour of integrable
QFTs is to solve the TBA equations. In this section we compute the scaling
functions in the UV region from the TBA equations and compare them
with the results in the previous section based on the reflection amplitudes.

5.1. TBAs of ATFTs and BD Model
The TBA equations for the ATFTs are given by (i=1,..., r)

" 3Rm,
cEPO(R) = Y =5 [cosh 0 log(1 -+ R) do (89)
T

i=1

where m,’s are particles masses and functions ¢;(6, R) (i =1,..., r) satisfy the
system of r coupled integral equations:

m;R cosh 0=¢,(0, R)+ ) fgo,.j(ﬁ —0') log(1 + e 5 R) ‘;—0 (90)

j=1 n

with the kernels ¢, equal to the logarithmic derivatives of the S-matrices
S;(0) of ATFTs,>*+27

d
log S;(0)

(pij(e): _i%

Equation (90) becomes the TBA equation of BD model when r=1
and the kernel is given by

b2

P(0) =D, 3(0) + D _pjs(0) + D p_5(0), with B= 14672

where

4 sin nx cosh 0

[0)) = 1
=0) cos 2nx — cosh 20 O1)

The function E™A)(R) defined from the TBA equations differs from
the ground state energy E(R) of the system on the circle of size R by the
bulk term: E™4)(R)= E(R) — fR, where f is a specific bulk free energy.®
To compare the same functions we should subtract this term from the func-
tion E(R) defined by Eq. (70) i.e.,

g™ (R) = CEY(R) +67R2f(G) (92)
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The specific bulk free energy f(G) can be calculated by Bethe Ansatz
method. For ATFTs, 3% 2% 9 10)

Ne=% 51n(nB’7h)Ssi?n(n7:hl “ By G = ADE series
/(6= 8 sin(nB};qI-j)Siinlr(I:fl)— B)/H) G=B", ;" ©3)
where
For the BD model,*

f= m (95)

16 /3 sin(nB/6) sin(z(2 — B)/6)

The contribution of bulk term f(G) becomes quite essential at R ~ O(1).

The TBA equations (90) are solved numerically for various algebras.
The effective central charge ¢(Z®*)(R) is then computed from Eq. (89) for
many different values of parameter mR. After taking into account the bulk
term, the numerical solution for ¢(E3*)(R) is fitted with the expansions (70)
in 1// considering the coeffiecients as fitting parameters.

To compare the numerical TBA results with analytical ones from
reflection amplitudes, we need to know the exact relations between
parameters g, of the action and masses of particles m,. This is because TBA
equations are derived from S-matrix data while the method of reflection
amplitudes deals with the paramters of the action directly. These “mass-u”
relations'® 2% are given in the Appendix. With the help of them, we can
express c.s(R) obtained in the previous section purely in terms of particles
masses m;. For example, the function L(R) of ATFTs defined in Eq. (64)
becomes

—Z(h+b%")In {’ka(G)F<1_B>F<1+ﬂ—i—iln(b”’(éz/z();é)

L=

@H\)
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Similarly we can rewrite x4 and g’ in (78) in terms of the particle mass m
as,
< 6 b mI'(1+ b%/(6 +3b%)) I'(2/(6 + 3b?))
o0i=—In——-2(0+ Q') | In +
(97)

Comparing the results, we found that, up to the order 1/I7, the
numerical TBA results are in excellent agreement with the analytic results
given in previous sections. (For the details of the comparison, see refs. 8
and 9.) To see the agreement more concretely, we plot the functions

c(IBY(R) and ¢BY(R) for non-simply laced ATFTs setting B=0.5. The
first function is computed numerically from TBA equations. The second
one is calculated using Egs.(63) and (66), based on the reflection
amplitudes, with taking into account the bulk free energy term according
to Eq. (92). Figure 2 shows that, for all models, the two curves are almost
identical without essential difference in the graphs even at R~ (O(1). This
good agreement outside the UV region looks not to be accidental.
However, at present, we have no satisfactory explanation of this interesting
phenomena in ATFTs.

5.2. TBA of SShG Model

Finally we briefly describe the TBA analysis of SShG model (see ref. 7
for details). There are two sectors in SShG model and the corresponding
TBA equations are different from each other. They can be written as”

3
Corlr) =2 jcog191n(1j;e—eﬂ”)a@ (98)
T
where the pseudo-energies are the solution of the equations,

P(0—0")In[1+e =]

£,(0)=rcosh 0 — JZ
, (99)
&y(0) = —Jig P(0—0)In[1+e=)]

In the above equations, the plus (minus) sign corresponds to the NS (R)
sector and the kernel is given by

b2
1+b2

p(0)= —®40) with B=
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0.001 0.01 0.1 1
R

4 : - -
3
T
Es
O

2

o .

0.001 0.01 0.1 1

R

Fig. 2. (a) Plot of ¢y for A,, A5, A4, D4, A, E¢ ATFTs and BD model at B=0.5. (b) Plot
of ¢(fB for €V, €V, BV, GV and F{" ATFTs at B=0.5. As an example, we also display
CRY for CV calculated without taking into account the bulk term. The difference between

this function and ¢({®" gives the bulk free energy of CY") ATFT according to Eq. (63).
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where @g(60) is defined in Eq. (91). In the case of NS sector, we can per-
form the numerical analysis following the method described before and
again we have an excellent agreement between the results of TBA and
reflection amplitudes. On the other hand, we find that the R sector TBA
equation is trivial, giving vanishing c.(R). This is consistent with the exist-
ence of the supersymmetric zero mode as explained in Section 4.3.

6. VACUUM EXPECTATION VALUE OF EXPONENTIAL
OPERATOR

The reflection amplitude, being the quantity derived from CFT, plays
a crucial role in the calculation of one-point functions in perturbed CFT.
In this section, we will demonstrate how powerful this method is by con-
structing explicitly the one-point funtion of ATFTs. One point function
G(a) we are considering is defined as the vacuum expectaion value of the
vertex operator V, (x)=exp(a-@(x)) of the ATFTs (56):

Gla) =V, (x)) = {exp(a-@(x))) (100)

We start with the one point function of the simplest case, sinh-Gordon
model, 4" ATFT""'? and Bullough-Dodd model, 4$?. This approach is
generalized to ATFTs.!!> 1489 This same approach was also applied to
two-parameter family of integrable models.

6.1. One-Point Function of Sinh-Gordon Model and
Bullough-Dodd Model

The sinh-Gordon model (45) has the one component field, which can
be considered as the perturbed LFT. The operator Vg (x) = exp(ﬁ ad(x))
satisfies the “reflection relation”

exp(y/2 ad(x)) = Ryg(a) exp(/2(0 —a) ¢(x)) (101)

We put a - ﬁ a in the vertex operator for convenience. R ;(a) is given in
terms of Liouville reflection amplitude, S L(ﬁ P) in Eq. (23).

The vacuum expectation value G,z(a) of the sinh-Gordon model is
considered to satisfy the same reflection relation,

G6la) = Rgla) Gy(Q—a) (102)
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In addition, since the sinh-Gordon model is invariant under the parity
transformation ¢ - — ¢, the one-point function is an even function of a.

Gyo(—a)=Ggla) (103)

This symmetric consideration determines G,;(a) up to a periodic function.
The one-point function of the sinh-Gordon model is given as the mini-
mal solution of Egs. (102), (103).

dr
Gro(a) = (=mup(1+5%) =0 xexp [ < (2a% > = F(a, 1)) (104)
with

F(a,t)

sinh? (2abt) } (105)

~ | 2sinh(¢) sinh(b?¢) sinh((1 + b2) 1)

The result is checked by various consideration including the classical
equation, free energy of the theory and perturbative calculation.!V

For the Bullough-Dodd model (74), the one-point function Ggp(x) =
{exp(2ag(x))y is similarly found."* (Here the factor 2 is included in the
exponential again for convenience. This has to be related with the nor-
malization of the action.)

Gppla) = Rgp(a) Ggp(Q —a) (106)

where Ryp =S,(2P). However, the parity symmetry is no longer the sym-
metry of BD. Instead, we have

Gypla) = Rypl(a) Gep(Q' —a) (107)

where Q' is given in Eq.(76) and Ryp(a)=S7(2P) as in Eq. (75). From
this one obtains the one-point function of the BD model as

{25 (1—b%) (14 b%/4)]
o T(1+b%) I(1—b%4)

{ml"(l +b2/(6+3b%)) I'(2/(6 —|—3b2)):|db—2a2
X
222 /3 1(1/3)

J+w dt< sinh((2 4+ b%) 1) Y(t, a) o _2t>
o 1\ sinh(3(2+5?) 1) sinh(2f) sin (p%) € }

Gupla) = [

xexp{
(108)
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where
¥(t, a) = sinh(2abt)[ sinh((4 + b* + 2ab) t) — sinh((2 + 2b* — 2ab) 1)
+ sinh((2 + b* + 2ab) t) — sinh((2 + b* — 2ab) t)
—sinh((2 —b*+2ab) t)]

and m is given in Appendix.

6.2. One-Point Function in Simply-Laced ATFTs

Simply laced ATFTs can be considered as the obvious generalization
of the sinh-Gordon model. The complexity comes from the fact that more
than two operators are of the same conformal dimension and satisfy the
reflection relation.(!*® The Weyl reflection of Lie algebra space takes over
the simple parity reflection in sinh-Gordon model. We summarize here the
general rule for the one-point function to satisfy the requirements:

e [R1] Analytic property: G(a) is meromorphic in a.

¢ [ R2] Normalization: G(a=0)=1.

e [ R3] Reflection relation from (8): G(Q + iP) = R (a) G(Q + isP)

e [R4] Symmetry of the system: G(ta)= G(a). t is the symmetry
operation of the action.

The minimal solution satisfying these requirements is given in refs. 14
and 8

d
G(a) = (—mup(1 4 b2)) ~#/CA+E)  exp H (@2 —F(a, 1))  (109)

with

sinh((b>+1) 1)
sinh(¢) sinh(b?¢) sinh((1 + b?) ht)

Fla,t)= } x I(a, ) (110)

and

Ia,1)=Y [sinh(a-abr)sinh((a-ab—2a-Qb+h(1+b*)1)]  (111)

a>0

One may simply prove that [R1] and [ R2] are satisfied. Requirement
[R3] is checked by confirming the result for the Weyl reflection s; with
respect to any simple root e;:

G(Q+iP;)=S,(e,, P) G(Q + is,P) (112)
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where P,=P.e,. Here are two ingredients to be checked, a* and I(a, ?),
which under the reflection, result in

(Q+iP)2—(Q+isiP)2=2i<b+;> P,=2iQP, (113)

and

Ka, t)=1(Q +iP)— I(Q + is;P)
= L(cosh[ 2biP,t + h(1 + b?) 1] —cosh[ —2biP,t + h(1 + b?) ])
= sinh(2biP,1) sinh h(1 +b?) ¢ (114)

Combining this two reflection property, G(a) satisfies the Eq. (112).

The symmetry operation 7 in the the requirement [ R4] is the Dynkin
diagram symmetry of ADE series. Obviously a? is invariant under 7. One
needs to prove that I(a, ) is invariant. Let us rearrange /(a, t) in Eq. (110)
as

Ia,t)=4%[J(a,t)—J(a;=0,1)] (115)
where
J(a, t)=") cosh(2b(a-a—Q-a)t+h(1+b%) 1) (116)
a>0

The problem reduces to prove J(a,t) invariant under z. Under 7, if a
positive root goes to another positive root, this only reshuffles the terms in
J(a, t).

However, there are cases where a postive root goes to a negative root,
— P =rta. Then apart from the reshuffling, J(a, t) contains the term,

cosh(2ba-(—PB) t —2bQ - ar + h(1 +b?) ) (117)

This is the case when 7 changes a simple root a, to zeroth root e,: 7o, =e,.
Noting that in ADE series, any postive root can contain at most one such
a root a,, and the root satisfies an identity,

p-(o—ta)=p-(a,—ey)="h (118)
From this one can find a unique positive root a satisfying
2bQ -0.—h(1+b*)= —2bQ - B+ h(1 +b?) (119)

and therefore, J(a, t) is invariant under .
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6.3. One-Point Function in Nonsimply-Laced ATFTs

One-point function of non-simply laced ATFTs can be obtained in the

same way as follows: 10
dl 2,—2t
G(a)=K(a)><expj7(a e _eg,f(a’ l)) (120)
where
b2 |@|?\\ ~((=-@)w-ab—2a- Qb+ HOb))/(|al* HO)
o (157 |
a>0 2
(121)
and

sinh(a - abt) sinh((o - ab —2a.- Qb + HQOb) t)>
F(a, )=} < x sinh(((b? |a@|?/2) +1) 1)
*=0 sinh(¢) sinh((h? |a|?/2) t) sinh( HQbt)

(122)

where Qb =1+b?%* B=b?/(1+b*) and H=h(1 —B)+h"B.

It is simple to show that G(a) in Eq. (120) satisfies the requirements
[R1] and [R2]. For the requirements of [ R3], we can proceed same as in
the simply laced case for a? and .# parts. Only the factor K(a) needs care.
The exponent of the factor K

L,(a)=(o-a)o-a—2a-Q+ HQ) (123)

is rewritten as

La(a)z<a-a—<a~Q—HzQ>>2—<a-Q—H2Q>2 (124)

Under the Weyl reflection, one has

L,(Q+iP)—Ly(Q+is;P,a)=iP-(a—5;a) (125)
Now the Weyl reflection changes positive roots to another positive root
with the same length except the simple root a;, §;,a,= —a;, we have the
ration of K(a)’s as
2
K(Q+iP) < bza%>><l’-“f>/bﬂf
= —quy|14+—% 126
K(Q +i5,P) < a1t (126)

which proves the requirement [ R3].
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Finally, if the Dynkin diagram symmetry operation 7 changes a
positive root to another positive root, this will reshuffle the multiplication
factors in G(a). On the other hand, When e becomes a negative root
—f =1a, one may apply the similar argument of the simply laced case and
find G(a) is invariant. Here one needs the identities, (e +f)-p¥ =/ and
(a+P)-p=h".

Of course, the symmetry operation requirements [ R1]-[ R4] do not
guarantee that G(a) is the correct one-point function. The solution we have
is the minimal solution which is meromorphic function of a. In fact, one
can show that this one-point function G(a) does give the correct bulk free
energy in Eq. (93).*”) The one-point function of the BD model introduced
earlier can be reproduced since it is the dual theory of nonsimply-laced
ATFTs, A$?. Furthermore, one may check that the result is consistent with
the perturbative calculation.!?

APPENDIX. MASS-p RELATIONS

In the BD model, the parameters 4 and g’ in the action are related to
the mass of on-shell particle by**

= 2\/§F(1/3) /uz]"(].}.[ﬂ) 1/(6 + 3b?)
M T+ b2/(6+367) T(2/(6 + 3b%)) [ Tr(—p) }

2ﬂ/nF(l +b2/4) 2/(6 + 3b2)
R (127
For SShG model, m — u relation is given in ref. 15,
o, (1463 [m  ab¥(1+b%) '+
= e A L 12
Pl y< 2 8 sin(nb%/(1+ b%)) (128)

The spectrum of simply laced ATFTs consists of r particles with the
masses m; (i=1,..., r) given by

(129)

where

PEBLIN (g (130)
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and v? are the eigenvalues of the mass matrix:

Z b+ (€0)” (e9)” (131)

The parameter m characterizing the spectrum of physical particles can be
related with the parameter y in the action using Bethe ansatz method %2
and the result is

[mk(G) T(1)(1+b2) h) T(1+ (b*/(1 +b2) h)) ]2 +29
—n,uy(l—i-bz)—{ o (l/h) (132)
where
r 1/2h
=<l_[ n> (133)
i=1

In the case of non-simply laced ATFTs, the exact mass ratios are
different from the classical ones and get quantum corrections.®*2?” Using
the notation (94), the spectrum of ATFTs are expressed in terms of one
mass parameter » as:

B M,=m M ,=2m sin(rna/H), a=1,2,.,r—1
CV: M, =2msin(na/H), a=1,2,.,r

GV M, =m, M, =2nicos(n(1/3—1/H))

FO: M, = M, =217 cos(n(1/3 — 1/H))

My =2mcos(n(1/6 —1/H)), M,=2M,cos(n/H) (134)

Again, #i can be written as a function of the parameter y; as,®

r k _B B 2H(1 + b?)
ﬂ — (1 + e2b?/2) 1™ {mz( )r< = >r<1+H>}

(135)
where k(G) is a function depending on the algebra:
0 —2H D2B/H
k(B) = , k(CV) =
(B,”) T(UH) (C.7) T(UH) e
_ I'(2/3) I'(2/3)
k(G(zl))_ZF(l/Z) r(1/6+1/HY KFY) = 2r(12) r(1/6+1/H)
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