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Duality in N=2 super-Liouville theory
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In this paper we consider a strong-weak coupling duality ofNle2 super-Liouville field theorySLFT).
Without the self-duality found in other Liouville theories, tie=2 SLFT, we claim, is associated with a
“dual” action by a transformatiorb— 1/b whereb is the coupling constant. To justify our conjecture, we
compute the reflection amplitudésr two-point functiong of the Neveu-Schwarz and Ramond operators of the
N=2 SLFT based on the conjectured dual action and show that the results are consistent with known results.

DOI: 10.1103/PhysRevD.69.106011 PACS nuniferll.25.Hf, 11.55.Ds

[. INTRODUCTION symmetry without renormalization of the background charge
and loses self-duality.

Two-dimensional Liouville field theory(LFT) appears Our main proposal in this paper is that the=2 SLFT
naturally in the context of 2D quantum gravity and string still shows an interesting duality behavior. Under the dual
theories[1,2]. This theory has been extended to the superiransformationb— 1/b, the theory maps to a “dual” action
symmetric Liouville theories to accommodate world-sheetwhich is anotheN=2 super conformal field theorfCFT).
supersymmetries appearing in the string theories. Theséhe N=2 SLFT with a strong coupling can be described by
Liouville-type theories are also interesting for quantum fieldthe dual action perturbatively. We compute the reflection am-
theoretical properties as well. They possess both conformallitudes (the two-point functionsof the theory using func-
symmetry and the strong-weak coupling duality. The strongtional relations derived from the actions. This procedure pro-
weak coupling duality has been attracting much attentionjides an exact relation between two parameterg, which
recently to understand nonperturbative aspects of the varioyges the relations between the two actions completely. To
quantum field theories rigorously. For example, the seminagheck the self-consistency of our proposal, we compare the
work of Seiberg and Witten on the supersymmetric Yangyeflection amplitudes derived from the conjecture action with
Mills theories in 3+1 dimensions is based on the intuitive some independent result derived in a totally different con-
observation that the gauge theories in the strong couplingayt.
limit are described by a weak coupling region of some effec-  CFTs withN=2 supersymmetry have been actively stud-
tive action[3]. More recently, similar duality arises in the jed mainly due to possible applications to string theories. In
string theory context to understand strings and branes noRsarticular, theN=2 SLFT has been conjectured to be dual to
perturbatively. This duality also arises in statistical systemg, fermionic black hole based on the coSat(2)/U(1) [7].
such as the 2D Ising model. This proposal was further explored|ié]]. We will relate our

For the LFT and thé&l=1 super-LFT(SLFT), the strong-  «qyal” theory to the fermionic black hole theory by compar-

weak coupling duality appears as a quantum symmetryyg the reflection amplitudes and explicit Lagrangians.
closely connected tdsupejconformal symmetries. It has

been observed that the background charge is renormalized to

Q=Db+1/b by quantum corrections and the theories preserve; N=2 SUPER-LIOUVILLE THEORY AND ITS DUAL

the quantum conformal symmetri¢8,4]. This means the ACTION

two LFTs are invariant undds— 1/b—i.e., self-dual. These

two symmetries are essential to determine exact correlation The action of theN=2 SLFT at the flat background is
functions for the LFT5] and theN=1 SLFT[6]. Now letus  given by
consider the duality symmetry of the¢=2 SLFT. With or

without conformal symmetry, two-dimensional models with

N=2 supersymmetry show an interesting feature: namely, A:J o2z
the nonrenormalization. The parameters in the supersymmet- !

ric action do not change in all orders of perturbative calcu-

lations. This means that tiidé=2 SLFT maintains conformal
whereSis a scalar superfield satisfying

f d408§+,u,j d?6ePS+c.c., )
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1 _ _ _ . with background chargb. TheN=2 supersymmetry is pre-

L= E[ZQDI%’(PT*‘ 20T d0@+ylay+ pay'+ Yoy served becaus8+S' is aN=2 scalar superfield. One can
see that this action is conformally invariant because the in-
— — 5 Leibel wh? b teraction term is a screening operator. Our conjecture is that

HYoYT ] g muthT e A yye the two actionsA4, and 4, are equivalent. To justify this
conjecture, we will compute the reflection amplitudes based

ub? _— be! on these actions and will compare with some independent
Ty 3 results.
As in the LFT and theN=1 SLFTs, one should introduce a Ill. REFLECTION AMPLITUDES

background charge B/so that the second term in E¢l) A tioned ab th flecti litud f th
becomes the screening operator of the CFT. However, afurE S _mentioneéd above, the refiection amplitudes of the

damental difference arises where the background charge 'ouville-type CFTis defineq by. the linear transfqrmations
unrenormalized due to thél=2 supersymmetry. For the etween different exponential fields, corresponding to the

_ ; i field of chiral algebra. In this paper, we apply
LFT and theN=1 SLFTs, the background charge is renor- Same primary . . X
malized toQ=1/b+b and the theories are invariant under :hg metp%mf\lzelgﬁﬁi [Eo] tc_) del.m./te the reflllecnotn etlmpll—
the dual transformatiomn— 1/b. This self-duality plays an udes o B - FOr SImplicity, we will restrict our-

essential role in determining various exact correlation funcSelves to the case af=« in Eq. (5) where theU(1) charge
tions of those Liouville theories. Unrenormalized, the=2  Of the (NS) operators becomes 0. We will refer to this case as

SLFT is not self-dual. the “neutral” sector.(From now on, we will suppress the
This theory is a CFT with a central charge second indicese.) The physical states in this sector are
given by
c=3+6/b?. (4) .
The primary operators of thd=2 SLFT are classified into a“= EHP’ (10
Neveu-SchwarzNS) and the Ramon(R) sectors and can be
written in terms of the component fields as folloj@: whereP is a real parameter. This parameter is transformed
by P— —P under the reflection relatioi8) and can be
N, =e tae R =gregre ta¢ (5)  thought of as a “momentum” which is reflected off from a
o potential wall.

wheres™ are spin operators. The conformal dimensions of _1WO-Point functions of the same operators can be ex-

these fields are given by pressed as
1 1 = D™(a)
A= —gat S o(ata), AR=AM4Z. (g (No(2.2)Na(0,0)= 77 3
aa 2b ! aw aa ' g |Z| «
The U(1) charges are given by — DR(a)
(R (z,2)R,(0,0)= TR (12
n o1 — Re_~N_, 1 7 7%
Qua= " pla—a@) Qu=Qu.*7- (7

whereAN AR are given by Eq(6). The reflection amplitudes
are given by the normalization factoB"(«),DR(a) and

From these expressions, one can notice that should satisfy

a—lb—a, a—lb—a (8) DN(a)DN(1b—a)=1, DR(a)DRX(Lb—a)=1.
(13
do not change the same conformal dimension &hd) ] ] o )
charge. From the CFT point of view, this means that 1O find these amphtudes ex_pI|C|tIy, we consider the operator
Nyp_o1n_ . Should be identified witiN - and similarly for product expansion€OPES with degenerate_ operators.
the (R) operators up to normalization factors. The reflection ~ The (NS) and(R) degenerate operators in the neutral sec-
amplitudes are determined by these normalization factors. tor areN, andR; with integersn,m and
Without self-duality, it is possible that there exists a

“dual” action to Eq. (1) whose perturbativéweak coupling 1-n mb
behaviors describe the=2 SLFT in the strong coupling Fnm= 5T o n,m=0. (14)
region. This action should be another CFT. Our proposal for
the dual action is as follows: The OPE of aNS) field with a degenerate operatr_, is
simply given by
A":J dZZJ d*O[S S+ el® ), ©) NoN_p2=N, b2+ CN(@)Nyspo. (15
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Here the structure constant can be obtained from the screewith R*,,,, on one of two other operators in the correlation

ing integral as follows:

CN (@)= k1y(1— ab) y(1/2— ab—b?/2) y(— 1/2

+ ab) y(ab+b?/2), (16
where
_M2b47T2 b2 1)+ 1 b2 b2 3
kK1=—— Y =DT=Dy 1+ S [y 5+ 5

with y(x)=T'(x)/T"(1—x) as usual.

To use this OPE, we consider a three-point function

(NgspoNoN_pn) and take the OPE bW _,,, either on
N,+p2 OF on N, using Eq.(15). This leads to a functional
equation

CV(a)DN(a+b/2)=DN(a). 17

This functional equation can determine {INS) reflection
amplitude in the following form:

ba+1/2)

—2alb
N K1 2 4
D (a)=(E) y(2alb—1/b )(—f(a),

(18

y(ba)

with an aribitrary functionf («) satisfyingf(a)="f(a+b).

To fix this unknown function, we need an additional func-
tional equation. It is natural that this relation is provided by

the dual action4,, .

For this purpose, we consider OPEs with another degen-

erate operator: namely,
NoRE 1= R 12+ CY (@) RY 1, (19

R, R" 120 =N4— 12+ CR(@)N g 1721 - (20)

functions and using the OPE relatiofi®) and(20), we ob-
tain an independent set of functional relations as follows:

CN(a)DR(a+1/20)=DN(a), (24)

CR(a)DN(a+1/20)=DX(a). (25)

Solving for theDN(«), we find that a most general solution
of Eq. (24) is

I?(ab+1/2)

N _ ,—2ab
@)= ™ 2 )

y(2alb—1b?)g(a),

(26)
where g(«) is another arbitrary function satisfying(«)
=g(a+1/b). Combining Egs(18) and (26), and requiring

the normalizationDN(a=1/2b)=1, we can determine the
(NS) reflection amplitude completely as follows:

2 —2ab+1 2a 1
a)=——kK, Ny v2)”

1

ab+ —

> y(1—ab),

(27)

where two parameters in the actiopsandu, are related by

(Kl) l/b_ .

The (R) reflection amplitude can be obtained by E24):

(28)

2

b? 20 1
DR(a):__Kz_zab+l'y F___l_l

The structure constants can be computed by the screening

integrals using the dual actiod, , which is equivalent to
A,. The results are

y(2alb—1/b?)

=N _
c,(a)—xz(b)—y(m/b) , (21)
=R, \_ y(2alb—1/b%+1)
C=(@)=r(b) y(2alb+1)
(22
where
. (1 )
ko(b)=pmy| —+1]. (23
b2

These results are consistent with the=2 superminimal
CFT resultd9].

Now we consider the three-point
(Rys12NoR 1) @nd(Ng; 10R, RE1,). Taking an OPE

functions

1

Xy —ab+§ v(ab). (29

We can rewrite these amplitudes using the momerude-
fined in Eq.(10):

r 1+2ip) F(l 'Pb)
- . 5|
ON(P) = rc; 2P b | T(1+iPb) " |2
2 1 2iP 1‘(1—in)F 1 _Pb’
b 2"
(30
(10 28) 1o 1 2ip)
- . =TI
DR(P) = 15 2P b /T(1-iPb) " |2
2 4 2iP F(1+in)F 1 - '
Y 2
(31)
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IV. CONSISTENCY CHECK observables in the so-called little string theory using a holo-
graphic projection. This statement was not proved but based
on a few observations ifi7]. The matching of the central
charges in both theories requires a connection between the
slope of the dilaton and the levklof the coset theory. Simi-
larly, the compactification radius of a bosonNr=2 SLFT is

To justify the reflection amplitudes derived in the previ-
ous section based on the conjectured actign we provide
several consistency checks.

It has been noticed that an integrable model with two

parameters proposed 1] can haveN=2 supersymmetry the inverse of that of the asymptotic radius of the black hole.

Ir;g;r?s ?;;Pgngagzrce::)%%&'?ek?ﬁe ?e?lgigﬁr! ;ﬂgﬁ%h;-ehslsof ﬂ}'lélhere is a similar dualty between the bosonic black hole and
N=2 SLFT independently as a special case of thogd 2 e so-called sine-Liouville theoiy1 3]. The two-point func-

: tion of vertex operator¥;., ., was computed ifi7] based on
D e 201 2%k revious rest found 14] using the coset theory
g ' . . b SL(2)/U(1). One carcheck that this two-point function co-
specific values ofa directly from the action. Whenx

—1/2b—b/2, the Coulomb integral using the actigh gives incides exactly with ours in the neutral case=0 provided

the spinj=— ab and the levek=b2,
ub?\ 2 The above proposal was further explored & where it
(NL(0)N,(1))= _) f d221d222<e“(¢+";)(0) was argued that these two theories can be viewed as a mirror
2 image of each other. Starting with certain gauged Wess-

ot oh) Tt abe(zs 7)1 b (2, Z0) Zumino-Witten(WZW) model and itsT dual transformation,
Xe® e (L)Y yleP A yype? 1220y ne authors of 8] showed that these lead to the fermionic
black hole and thé&l=2 SLFT, respectively, in the IR limit.

23,2 2 —1—p2
__* b 1+Db%  y(=1-b%) The fermionic black hole is defined as a Kazama-Suzuki
1—b?2 Y 2 | y(—1/2— b2/2)' coset model des_cribed by a gauged §upersymme_tric WzZW
a— theory. After solving for the nondynamical gauge fields and
2b performing some implicit transformations between the
(32 SL(2) andN=2 superfields, one obtains an action of the
form
This result agrees with Eq27) for a—1/2b—b/2. Simi-
larly, when a— 0, one can compute the two-point function
directly from the action4,, and get S:f d?zd*0K(S,S™), (35)
W .
(NL(0)N(1))=— —zf d2z(ex¢¢N(0)exe ¢ (1) whereK(S,S") is a Kahler potential depending on the chiral
b superfieldsS,S* with the black hole metric:
xe#t eI o+ oMol o+ o7)(2,2))
1
~ — (36)
—— L rab=o0 0 33 Hoaeror
= b277a = as a—0. (33 1__23‘P+‘P

Here, the insertion we have considered is the only term in the

action.A, which can give nonvanishing contribution. Again, (¢ and ¢ are the first components of the superfigldst
this result agrees with Eq27) for a=0. first sight this action looks different from,, which we pro-

In the semiclassical limib— 0, the reflection amplitudes P°S€d above. But if one expands interacting terms in the
can be interpreted as the quantum mechanical reflection arRCtion perturbatively in the manner of the screening proce-
plitudes of the wave function of the zero modes from thedUre: it is easy to see that the result for the physical observ-
exponential potential wall arising from the actiéf). One ables is the same. This is particularly evident for the calcu-

can easily find that the reflection amplitude corresponding td2tion of the structure constants computed in Sec. Ill where
the (NS) operator is given by only the first-order perturbatiofi.e., one screening insertipn

is needed.
['(1+2iP/b) In summary, we have conjectured a strong coupling effec-
RY(P)~ T(1=2iP/b)’ (34)  tive action which is dual to thél=2 SLFT. Based on this
conjecture, we have computed the reflection amplituties
which is consistent with E¢31) in the limit b—0. two-point function$ of the (NS) and the(R) primary_fields in
neutral sectors exactly. We have fixed the relation between
V. RELATION TO THE FERMIONIC BLACK HOLES the two parameterg and . Then, we have checked the

validity of these amplitudes by comparing with an indepen-

It was proposed in Ref.7] thatN=2 SLFT isT dual to  dent result along with some other consistency checks. Also

the theory of the fermionic black hole based on the cosetve related our result to the fermionic black hole which has
SL(2)/U(1). The purpose was to compute some physicalbeen conjectured to be dual to tNe=2 SLFT. The reflection
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