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RG flows from super-Liouville theory to critical Ising model
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Abstract

We study an integrable deformation of the super-Liouville theory which generates a RG flows to the critical Ising model
as the IR fixed point. This model turns out to be a supersymmetric sinh-Gordon model with spontaneously brokenN = 1
supersymmetry. The resulting massless goldstino is the only stable on-shell particle which controls the IR behaviours.
We propose the exactS-matrix of the goldstino and compare associated thermodynamic Bethe ansatz equations with the
quantization conditions derived from the reflection amplitudes of the super-Liouville theory to provide nonperturbative checks
for both the (NS) and the (R) sectors. 2002 Published by Elsevier Science B.V.

PACS: 11.25.Hf; 11.55.Ds

1. Introduction

Integrable quantum field theories defined in two di-
mensions can be formally written as a UV conformal
field theory (CFT) perturbed by some relevant oper-
ator [1]. Most well known examples are the unitary
minimal CFTsMp perturbed by the least relevant
field Φ1,3 whose action can be written formally as fol-
lows:

(1)MA±
p =Mp + λΦ1,3.

E-mail addresses: ahn@ewha.ac.kr (C. Ahn),
cjkim@phya.snu.ac.kr (C. Kim), rim@mail.chonbuk.ac.kr
(C. Rim), zamolod@lpm.univ-montp2.fr (Al.B. Zamolodchikov).

Here, the sign± stands for the signature of the
coefficientλ. If the coefficient of the perturbation is
negative, the perturbed CFTMA−

p is described by the
factorized scattering theory of massive particles called
kinks. More interesting is the case ofMA+

p which is
shown to generate RG flows from the UV CFTMp

to Mp−1. This was first noticed in [2] by perturbative
computation for the case ofp � 1 and was proved
later by the thermodynamic Bethe ansatz (TBA) based
on theS-matrix of the massless kinks [3].

Among these, the RG flows from the tricritical
Ising model (TIM) to the critical Ising model draws
a particular interest since the TIM is a super CFT
while the Ising model is not [4]. An analysis based
on the Landau–Ginzburg potential in [5] shows clearly
how the RG flow can be understood. The unperturbed
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TIM has aΦ3 superpotential, which is in components
ψ̄ψφ + 1

8φ
4. The relevant perturbation,Φ1,3, is the

top component of the superfieldΦ and preserves the
supersymmetry. This modifies the superpotential to
ψ̄ψφ + 1

2(
1
2φ

2 + λ)2. For λ < 0 the ground state
energy is zero, so supersymmetry is unbroken and both
boson and fermion become massive. TheS-matrix is
nondiagonal and commutes with the supercharges [6].

With the positive coefficientλ > 0, the superpoten-
tial generates nonvanishing ground state energy and
the supersymmetry becomes spontaneously broken.
The bosonic field becomes massive, but the fermion
stays massless and plays the role of goldstino. In the
IR limit one can integrate out the massive bosonic field
to obtain the effective theory described by the Volkov–
Akulov field theory [7]

(2)

LVA = − 1

2π
(ψ∂̄ψ + ψ̄∂ψ̄)− g(ψ∂ψ)(ψ̄ ∂̄ψ̄)+ · · · ,

where· · · include higher-dimensional operators.
In this Letter, we propose another RG flow where

the supersymmetry is spontaneously broken and the
low energy effective action is described by a goldstino.
The model is another supersymmetric sinh-Gordon
(SShG) model which can be considered as a perturbed
super-Liouville field theory (SLFT) [8]. The ordinary
SShG model is one of the simplest examples of a
(1 + 1)-dimensional integrable quantum field theory
with N = 1 supersymmetry [9]. A generic Lagrangian
including one scalar superfield can be expressed in
terms of the component fields as

L(Φ) = 1

8π
(∂aφ)

2 − 1

2π
(ψ∂̄ψ + ψ̄∂ψ̄)

(3)− i

4π
ψψ̄W ′′(φ)+ 1

32π

[
W ′(φ)

]2
.

The ordinary SShG model is a particular case of
Eq. (3) with the superpotential

(4)W(φ) = −8πµcosh(bφ).

The SShG model and its imaginary coupling version
(b → iβ), the supersymmetric sine-Gordon (SSG)
model, are integrable since they can be mapped into an
affine Toda theory based on the twisted super-Lie alge-
braC(2)(2) [10]. This model preserves the supersym-
metry and the boson and fermion remain massive. Ex-
act factorized nondiagonalS-matrices have been ob-

tained from the integrability and on-shell supersym-
metry in [11,12]. This model is analogous to the TIM
with λ < 0.

Another SShG model, which is our main concern
in this Letter, is defined by a slightly different super-
potential, namely,

(5)W(φ) = −8πµsinh(bφ).

The supersymmetry and integrability are all preserved.
If we consider an imaginary couplingb = iβ , the two
supersymmetric sine-Gordon models become equiv-
alent since one can shift the scalar field byφ →
φ + const. However, with a real couplingb, the new
SShG model shows the RG flows from the UV super-
LFT to the critical Ising model at the IR. With the
superpotential Eq. (5), the ground state energy does
not vanish so that the supersymmetry is spontaneously
broken. While the bosonic fieldφ remains massive,
the fermion field becomes massless and is identified
with goldstino. Supersymmetry prohibits the quan-
tum corrections from generating mass. Meanwhile, the
bosonic fieldφ is unstable and decays into the mass-
less fermions. After the massive bosonic field is inte-
grated out, the low energy effective action is described
by the Volkov–Akulov action Eq. (2).

Stable on-shell particle states of this model are
composed of massless left- and right-moving fermi-
ons, ψL and ψR , respectively. This model can be
thought of as a perturbed super-LFT analogous to the
perturbed TIM withλ > 0. TheS-matrix between the
ψL andψR can be conjectured from the unitarity and
crossing symmetry as well as a perturbative computa-
tion. In this Letter, we propose theS-matrix with the
assumption of strong-weak coupling duality.

Non-perturbative confirmation of the conjecture is
provided by the TBA analysis. For the cases of per-
turbed rational CFTs, the UV limit of the TBA pro-
vides the central charges and conformal dimensions
for the UV CFTs. For the perturbed SLFT, one can ex-
tract out an additional information, namely, the reflec-
tion amplitudes from the TBA. We analyze the UV be-
haviour of the TBA equations of the new SShG model
with the conjecturedS-matrix and compare it with
the reflection amplitudes of the super-LFT. Numeri-
cal agreement with very high accuracy will establish
the correctness of theS-matrix. We also provide the
IR analysis of the TBA equations and relate them to
the IR action Eq. (2).
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2. S-matrix and TBA

Without any mass degeneracy, theS-matrix of the
new SShG model is diagonal. The only interaction
term,ψLψR sinh(bφ), if expressed with chiral fermi-
onsψL andψR , gives trivial scattering between the
two ψL’s (and twoψR ’s), i.e.,

(6)SLL(θ) = SRR(θ) = −1.

Nontrivial S-matrix arises between aψL and aψR .
Since the particle is massless, the scattering amplitude
satisfies the crossing-unitarity relation,

(7)SLR(θ)SLR(θ + iπ) = 1.

This equation is solved by the CDD factor

(8)SLR(θ) = sinhθ − i sinπB

sinhθ + i sinπB
,

where we fix the rapidity by choosing a scaleM in
such a way that the energy–momentum is given by
(for theψR ) E = P = M

2 eθ . Apparently Eq. (8) is not
the unique CDD choice. It is the minimal CDD factor
which contains the proper resonance pole in thes- and
u-channels with the resonance massm2 = M2e−iπB .

Without any bootstrap procedure, we cannot fix the
location of the resonance pole. Our conjecture for the
parameterB is

(9)B(b) = b2

1+ b2
.

This is consistent with perturbation theory up to
the second order and preserves the dualityb → 1/b
enjoyed by the ordinary SShG model. The duality
has root in its UV CFT, namely the super-LFT which
is dual. Since the new SShG model can be also
considered as a perturbed super-LFT, it is plausible to
assume the duality in our case. Subsequently, we will
provide nonperturbative confirmation of theS-matrix.

For this purpose, we compute the effective central
charge of the SShG model using the TBA analysis. It
is straightforward to write down the TBA equations
from theS-matrix.

(10)

εL(θ) = 1

2
MReθ

−
∞∫

−∞
ϕ(θ − θ ′) ln

(
1+ ηe−εR(θ ′))dθ ′

2π
,

(11)

εR(θ) = 1

2
MRe−θ

−
∞∫

−∞
ϕ(θ − θ ′) ln

(
1+ ηe−εL(θ

′))dθ ′

2π
,

where the parameterη is either+1 for the Neveu–
Schwarz (NS) sector or−1 for the Ramond (R) sector
and the kernel, the logarithmic derivative of theS-
matrix, is given by

(12)ϕ(θ) = 4 sinπB coshθ

cosh2θ − cos2πB
.

The effective central charge is given by

ceff(R) = 3MR

2π2

∞∫
−∞

[
eθ ln

(
1+ ηe−εL(θ)

)

(13)

+ e−θ ln
(
1+ ηe−εR(θ)

)]
dθ.

This TBA equation can be solved analytically in the
UV regionMR � 1. Here, theceff(R) has logarithmic
corrections of 1/ log(MR)n as leading contributions
and subleading power corrections. In particular, the
R2 term in ceff(R) can be interpreted as the vacuum
energy contribution. The analysis gives

(14)E0 = M2

8 sin(πB)

which is the same as that of the sinh-Gordon model.
This result is somewhat expected since the vacuum
expectation value of the interacting potential can
be determined by the (NS) reflection amplitude of
the N = 1 super-LFT, which is the same as that
of the LFT. To compare the TBA result with the
reflection amplitude, one needs a relation between
the dimensionful parameterµ and the mass scale
parameterM for the SShG model. We conjecture that
this is the same as that of the ordinary SShG model
given in [13],

(15)
π

2
µb2γ

(
1+ b2

2

)
=

[
M

8

πB

sinπB

]1+b2

with γ (x) = Γ (x)/Γ (1 − x). These conjectures will
be confirmed by numerical analysis of the TBA
equations in Section 4.
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3. Reflection amplitudes and quantization
condition

The SShG model can be considered as a perturbed
super-LFT whose Lagrangian is given by

LSL = 1

8π
(∂aφ)

2 − 1

2π
(ψ̄∂ψ̄ + ψ∂̄ψ)

(16)+ iµb2ψψ̄ebφ + πµ2b2

2
e2bφ.

With the background chargeQ

(17)Q = b + 1/b.

This model is a CFT with the central charge

(18)cSL = 3

2

(
1+ 2Q2)

and primary fields in the (NS) and (R) sectors. A (NS)
primary fieldeαφ has dimension

(19)∆α = 1

2
α(Q − α)

and becomes degenerate withe(Q−α)φ. The two-point
functions of the primary fields give the reflection
amplitudes [14,15]. For the (NS) field, it is given by

SNS(P ) = −
(
πµ

2
γ

(
1+ b2

2

))−2iP /b

(20)× Γ (1+ iPb)Γ
(
1+ iP

b

)
Γ (1− iPb)Γ

(
1− iP

b

) .
Similarly, for a (R) fieldσ (ε)eαφ the reflection ampli-
tude is given by

SR(P ) =
(
πµ

2
γ

(
1+ b2

2

))−2iP /b

(21)× Γ
( 1

2 + iPb
)
Γ

(1
2 + iP

b

)
Γ

( 1
2 − iPb

)
Γ

(1
2 − iP

b

) .
To derive quantization conditions, one can consider

the super-LFT acting on the space of states

(22)A0 = L2(−∞ < φ0 < ∞,ψ0) ⊗F ,

where the fermionic zero-mode appears only for the
(R) sector andF is the Fock space of bosonic and
fermionic oscillators. The appearance of bosonic and
fermionic zero-modes in Eq. (22) is well known from
the super-CFT results. In the (NS) sector, there is no

fermionic zero-mode since the fermion field satisfies
the anti-periodic boundary condition while it appears
in the (R) sector with periodic one. The primary
state vP can be expressed by a wave functional
ΨvP [φ(x1)] which can be expanded in the asymptotic
limit φ0 → ∞ as

(23)ΨvP

[
φ(x1)

] ∼ eiPφ0 + S(P )e−iPφ0 .

The amplitudeS(P ) is either SNS(P ) or SR(P )

depending on the sector.
The ordinary SShG model defined by Eq. (4) can

be considered as the super-LFT (16) perturbed by

(24)Φpert= iµb2ψψ̄e−bφ + πµ2b2

2
e−2bφ.

In the wave functional interpretation, the perturbing
potential provides another potential wall which con-
fines the wave functional. This leads to the quantiza-
tion condition for the momentum and the energy of the
system in the limit that the size of the cylinderR goes
to 0. The quantization condition and comparison with
the TBA based on the nondiagonalS-matrix of the or-
dinary SShG model have been worked out in [16].

The new SShG model, being considered as another
perturbed super-LFT by

(25)Φpert= −iµb2ψψ̄e−bφ + πµ2b2

2
e−2bφ,

can be analyzed in the same way. One can obtain the
quantization condition ofP for the (NS) sector,

(26)δNS(P ) = π + 2QP ln
R

2π
,

whereδNS(P ) is the phase factor of (NS) reflection
amplitudes. Similarly, the quantization condition for
the (R) sector becomes

(27)δR(P ) = π

2
+ 2QP ln

R

2π
.

Notice that the main difference arises from the extra
−1 factor in front of the perturbing potential in
Eq. (25). Both conditions are invariant underb → 1/b.

In terms of the quantized momentumP , the effec-
tive central charge is given by

(28)ceff(R) =
{

3
2 − 12P 2 + 6

π
R2E0 (NS),

−12P 2 + 6
π
R2E0 (R),

where we added the vacuum energyE0 to compare the
same ground-state energy.
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This quantization condition can be solved itera-
tively by expandingδ(P ) in powers ofP and be com-
pared with the numerical TBA solutions

(29)δK(P ) = δK
1 P + δK

3 P 3 + δK
5 P 5 + · · · ,

where K stands for either NS or R. Explicitly, the
coefficients for the (NS) are given by

δNS
1 = −2

{
1

b
ln

[
πµ

2
γ

(
1+ b2

2

)]
+ γEQ

}
,

δNS
3 = 2

3
ζ(3)

(
b3 + 1

b3

)
,

(30)δNS
5 = −2

5
ζ(5)

(
b5 + 1

b5

)
,

and, for the (R),

δR
1 = −2

{
1

b
ln

[
πµ

2
γ

(
1+ b2

2

)]
+ (γE + 2 ln2)Q

}
,

δR
3 = −1

3
ψ(2)

(
1

2

)(
b3 + 1

b3

)
,

(31)δR
5 = 1

60
ψ(4)

(
1

2

)(
b5 + 1

b5

)
.

4. TBA analysis

To derive the coefficientsδ’s from the TBA equa-
tions, we derive the momentumP as a function ofR
from the scaling functionceff(R) and compare with the
quantization conditions to determine the coefficients.
In Tables 1 and 2, we show the first three coefficients
in the expansion in powers ofP obtained by numer-
ical analysis and compare with the corresponding co-
efficients from the reflection amplitudes Eqs. (20) and
(21) withM = 2.

Our numerical analysis shows the consistency of
the TBA equations along with such conjectures as the
scattering amplitude, theM–µ relation as well as the
reflection amplitudes of the super-LFT Eqs. (20) and
(21). Also one can see from Fig. 1 that the vacuum
energy Eq. (14) improves the agreement with the TBA
result much better than without it (dotted lines) up to
the range of 0.1<MR < 1. This observation provides
the validity of the conjectured vacuum energy.

We want to point out that a similar analysis for the
ordinary SShG model in [16] could not give any non-
perturbative confirmation for the (R) reflection am-
plitude as well as the vacuum energy since the scal-
ing function for the (R) sector and the vacuum energy
vanish identically. The new SShG model provides the
unique “experiment” for these quantities.

Table 1
First three coefficients ofδNS(TBA) in the expansion in powers ofP obtained by numerical analysis in comparison with the corresponding
δNS(RA)

B δ
NS(TBA)
1 δ

NS(RA)
1 δ

NS(TBA)
3 δ

NS(RA)
3 δ

NS(TBA)
5 δ

NS(RA)
5

0.3 0.276167 0.276167 3.08111 3.08111 −3.49936 −3.49933
0.35 0.823499 0.823499 2.34480 2.34480 −2.03777 −2.03774
0.4 1.17240 1.17240 1.90842 1.90842 −1.29352 −1.29349
0.45 1.36725 1.36725 1.67590 1.67590 −0.936165 −0.936139
0.5 1.42998 1.42998 1.60274 1.60274 −0.829567 −0.829542

Table 2
First three coefficients ofδR(TBA) in the expansion in powers ofP obtained by numerical analysis in comparison with the corresponding
δR(RA)

B δ
R(TBA)
1 δ

R(RA)
1 δ

R(TBA)
3 δ

R(RA)
3 δ

R(TBA)
5 δ

R(RA)
5

0.3 −5.77412 −5.77412 21.5677 21.5677 −108.480 −108.479
0.35 −4.98943 −4.98943 16.4136 16.4136 −63.1708 −63.1699
0.4 −4.48712 −4.48712 13.3590 13.3590 −40.0991 −40.0982
0.45 −4.20586 −4.20586 11.7313 11.7313 −29.0212 −29.0203
0.5 −4.11519 −4.11519 11.2192 11.2192 −25.7167 −25.7158
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Fig. 1. Plot ofceff for the (NS) and (R) sectors atB = 0.5.

As suggested by numerical analysis, the SShG
model flows into the Ising model in the IR limit,
R → ∞. The effective central charge in this limit is
given bycNS = 1/2 for the (NS) sector andcR = −1
for the (R) sector where the Ramond vacuum with the
conformal dimension 1/16 is contributed.

In the IR limit MR � 1, the main contributions
comes from the rapidity regions where pseudo energy
ε(θ) � 1. The asymptotic expansion can be obtained
straightforwardly for the (NS) and (R) sectors as
follows:

(32)

cNS = 1

2
+ 1

4
t + 1

4
t2

+
(

5

16
+ 147π2

400

(2 cos2πB + 1)

sin2πB

)
t3

+O
(
t4

)
,

(33)

cR = −1+ t − 2t2

+
(

5+ 4π

15
+ 12π2

25

(2 cos2πB + 1)

sin2πB

)
t3

+ O
(
t4

)
,

where

(34)t = 4π sinπB

3(MR)2
.

This IR behaviour can be described in terms of
the Ising model withT �T perturbation, Eq. (2). The
perturbation contributes toceff

(35)ceff = c − 12

(
c

24

)2

α + 12

(
c

24

)3

α2 + O
(
α3)

with α = −32π3g/R2 whereg is the coupling coeffi-
cient in Eq. (2). Higher order term is ambiguous due
to the UV regularization. Two results for the (NS) sec-
tor, Eqs. (32) and (35), are consistent up to orderα2

andt2 if we identify c = 1/2 andg = 2 sinπB/π2M2.
For the (R) sector, Eq. (33) is consistent with Eq. (35)
whenc = −1 andg is the same as before. Notice that
the RG flow from the TIM to the Ising model is de-
scribed by Eq. (2) withg = 1/π2M2.

In summary, we have considered the SShG model
with spontaneously broken supersymmetry with a
massless goldstino which generates the RG flows from
the super-LFT to the Ising model for the (R) and (NS)
sectors. We propose a set of conjectures such as theS-
matrix,M–µ relation, and the vacuum energy. These
conjectures are eventually justified by the indepen-
dently drived effective central charge based on reflec-
tion amplitudes of the super-LFT.
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