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Abstract

We compute the boundary scattering amplitudes of the breathers of the supersymmetric sine-
Gordon model using the fusion of the soliton-antisoliton pair scattering with the boundary with
a known result of the soliton boundary scattering amplitudes. We also solve the boundary Yang-
Baxter equation of the eight-vertex free fermion models to find the boundary reflection matrices.
The former result is confirmed by the latter since the bulk S-matrices of the breathers can be
identified with the trigonometric limit of the Boltzmann weights of the free fermion models. Our
dual approach can answer a few questions on the relationships between the free parameters in the
boundary potential and those in the scattering amplitudes.

1. Introduction and motivation

The study of two-dimensional integrable models of quantum field theories and statis-
tical models based on the Yang-Baxter equation (YBE) has provided important under-
standings of non-perturbative aspects of these models and technical tools for applications
to real physical problems. The YBE plays essential roles in establishing the integrability
and solving the models. In the field theories, the YBE provides a consistency condi-
tion for the two-body scattering amplitudes ( S-matrices) in the multi-particle scattering
processes since the scattering is factorizable. With unitarity and crossing symmetry, the
YBE can determine the S-matrix completely. In addition, the correlation functions may
be obtained by computing multi-particle form factors. The lattice models, which are de-
fined by the Boltzmann weights, can have well-defined transfer matrices if they satisfy
the YBE and can be diagonalized by independent technologies, such as the algebraic
Bethe ansatz to extract exact properties of the model.
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Recently great efforts have gone into extending these approaches to models with
boundaries. They are motivated by the fact that these models with a boundary have
a wider applicability to real physical systems than those without one. For example,
three-dimensional spherically symmetric physical systems can be effectively described
on the half-line if s-wave element becomes dominant. The one-channel Kondo problem,
monopole-catalyzed proton decay, etc., are frequently cited examples. Also one can
generalize the conventional periodic boundary condition of the statistical models to
other types like the fixed and free conditions.

The existence of a boundary adds new quantities like boundary scattering amplitudes
and Boltzmann weights, and one needs to extend the YBE to include these objects.
The boundary Yang-Baxter equation (BYBE) (also known as the reflection equation)
[ 1] plays the role of the YBE for the integrable statistical models [2,3] and quantum
field theories [4] in the presence of a boundary; it is the necessary condition for the
integrability of these models.

The supersymmetric sine-Gordon model (SSG) preserves the integrability in the
presence of the boundary [5] and the scattering amplitude of the SSG solitons with it
has been computed [6]. In this paper we compute the boundary scattering amplitudes of
the SSG breathers, the bound states of the soliton and antisoliton pair, in two independent
ways. The first one is to consider the eight-vertex free fermion models with a boundary
and to solve the BYBE. This is related to the SSG model since the breather S-matrices
are the trigonometric limit of the free fermion models in certain regimes. The second
is to compute the two-particle (a SSG soliton and an antisoliton) boundary scattering
amplitudes and to take the limit of two rapidities so that they can form a bound state.
This ‘fusion procedure’ can give an independent check of our results. In addition, these
two approaches can answer a few questions raised in the previous study; how the
supersymmetry of the SSG lagrangian with a boundary can be realized in the scattering
matrix context and how the parameters in the lagrangian and those in the boundary
scattering amplitudes are related.

2. SSG breathers on a half line

The action of the SSG model is given by
2

S = /dxdt [g(aﬂfp)z — iy Y - %coszqﬁ —2m (cos 32—"5) W] , (2.1)
where ¢ is a real scalar field and ¢ is a Majorana fermion. 8 is a coupling constant and
m is the mass parameter denoting the deviation from the massless theory. This theory
has a soliton spectrum lKlﬁ(ﬂ)), where ‘ab’ and ‘+’ are the RSOS spins (a,b=0,1,1)
and the topological charges (‘+ for the soliton and ‘—’ for the antisoliton), respectively
and @ is the rapidity. The exact S-matrix of the SSG (anti-)solitons has the factorized
form of [7]

SssG (8) = Sk (8) @ Ssi(6).
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Fig. |. Bulk S-matrix of the kinks.

The first S-matrix factor which acts on the supersymmetry (SUSY) charges is the RSOS
S-matrix for the tricritical Ising model perturbed by the &3 operator:

Sksg = S52(60)
- i . 9 . ] —0
=U(8) (X2) o2 [\/Xé’g sinh (;) 84 + sinh (EZP——> 6“} , (2.2)
for |Kuga(61)) + [Kaup(62)) — |Kac(62)) + |Kep (81)) where

Xab=<[20+l][26+1]>
cd [2d +1][2b+ 1]

with g-number [n] = (¢" —q~")/(g—q~") and g = —e~™/* (Fig. 1). The second one
is formally the sine-Gordon (SG) (anti)soliton S-matrix with the parameter given by
y=48%/(1-p%/4m)." The factorized form of the S-matrix implies that the SSG soliton
can be formally written as IKaib(H)) = |Kup(8)) ® | & (6)). The charge conjugation of
the SSG solitons is defined by

CIKE) = |KE). (2.3)

For n < 87/y < n+ 1, the second factor, the SG S-matrix, has n poles in the physical
strip corresponding to the SSG breathers. The threshold value of the SSG 8 to have any
bound state is 8% = 47r/3 compared with that of the SG, 8% = 4.

The bulk S-matrices of the breathers have been obtained by considering the residues
of two solitons and two antisolitons scattering and taking appropriate limits on the
rapidities. Due to the factorized form of the soliton S-matrix, the SSG breather S-
matrices are also made up of two factors. The factors coming from the SG sector have
been computed in Ref. [8] and they are completely diagonal since the masses of the
SG breathers are non-degenerate. The second one comes from the four-kink scattering
fusion processes of the RSG(4) [9]. It is obvious that this factor is non-diagonal
since the SUSY makes the mass spectrum degenerate and the breathers form N = 1
supermultiplets.

Since two kinks can scatter only when they share a common RSOS spin, the two-kink
states which form the SSG breathers can be written as

! Notice that the S-matrix of the SG model depends on y = 82/(1 — 8%/8m).
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4, (6)) = ia\/—% (IKO%(gl)K%l(ﬁzn - |K1%(91)K%0(02)>> ,

|¢L(e>>=% (1Koy (61K 40(82)) + 1K, (61K, (62))) |

070) = 75 (K408 Koy (8)) = Ky (00K, 62)))

|¢§(0>>=—}—2-(|K.;o<e[>l<0%<e2>>+rK%lwl)Kl%wm) , (2.4)
where the rapidities are related as

0=%(91+02), 6, — 6, =9,
and

oy = tan<%ﬁé’"), Ao,,:m-’%,

with A@, corresponding to the mass pole of the breathers.

Notice that the bound states come in two sets distinguished by their superscripts 1,2
and only particles with the same superscripts can scatter. Each pair (¢7, ¢?2) forms an
N =1 supermultiplet (see Eq. (4.1)) and has the same bulk S-matrices [9]

$(8) = p(8)
. ony i ..oy . 8
L — _ - h_
sin 16+25mh0 . , isin 16sm >
_L sinh@ sin ny cosh —
2 16 2
X oy P P , (2.5
sin 16 cosh 3 3 sinh @
—isin%sinhg sin% — ésinhﬂ

where the columns and rows are arranged in the order of y2yd, yad?, iy, iy for
a = 1,2. The states in Eq. (2.4) are invariant under charge conjugation C, implying
that they are real scalar particles and Majorana fermions. The least massive bound states
(n = 1) are identified with the ¢ and ¢ fields in the Lagrangian equation (2.1) and,
indeed, the above S-matrix is identical to that obtained in Ref. [ 10] if we identify sin T%
with f. Since there is only one fundamental field pair (¢, #) in the lagrangian, the
two sets of the bound states which have the same S-matrices should be identified, i.e.
[, () = |#7(6)) and [#,(8)) = |¢7(6)).
The function p(8) satisfies the unitarity and crossing relations
2 1y

/] 7]
p(8)p(—0) (sin 6 + sinh? 5) cosh? 3 =1,

p(0) = plim—6). (2.6)



C. Ahn, WM. Koo /Nuclear Physics B 482 [FS] (1996) 675-692 679

The minimum solution to these equations have been given as [10]

2i )
P(9)=-mz(0)z(m—0), (2.7)
where
26y = P Ci8/2m)

r(1/2—i0/2m)

ﬁ I'(ny/16m — i6/27 + DT (—ny/16m — i0/2m 4+ 1~ 1)
F(ny/16m —i02m + 1+ 1/2) (—ny/16m — i0/2m + 1~ 1/2)

=1
r*(—i/2mw+1-1/2)
I (—i82m+1-1) |~

Now we introduce a boundary potential which preserves the integrability. The SSG
boundary potential that gives conserved charges at the first order has been derived as

(5]

B(d — o)
2

B(é,y.) = Acos + My + e + & (2.8)

With the assumption of complete integrability, one can use the BYBE to solve this
model. For this purpose, we use an important property of the S-matrix in Eq. (2.5),
namely that it satisfies the free fermion condition [11,9]. Therefore it should be a
special limit of the Boltzmann weights of the eight-vertex free fermion model given in
Appendix A. Indeed, consider the regime |h| > 1 and take the following trigonometric
limit:

k— 0 with kcoshd=ksinhd = —— l

T
sin 16

We obtain the breather S-matrix if # = —if. An immediate consequence of this obser-
vation is that the boundary S-matrix of the SSG breathers is given by the trigonometric
limit of the boundary Boltzmann weights derived in Appendix A. The trigonometric
limit of Eq. (A.16) becomes

R(0) =R(#)
é ... 0 .
cosh =G, (8) — isinh=G_(80) —ie sinhé
X 2 2 9 o , (29
—isinh @ cosh 5G+(0) + isinh EG_(B)
where

6
Ga(0) =ay — L TF Gpp2 7 (2.10)

sin<t — € 2

16
and
ai—a?_=2<6———l—>, €=+l1. (2.11)

in &
Sin 1¢
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The overall factor p(8),R(#) are functions that ensure the unitarity and crossing
symmetry of the S- and R-matrices, respectively.
The equations that determine R(#) are given by

0
R(OYR(—6) (cosh2 gci(e) + sinh? EGi(a) + € sinh? 9) =1,

im .ony _ ij_
p(20)72<2 +6) cosh@(sm 6 —tesmh@)—R(z 9) .

(2.12)
As usual we define
R(8) =Ro(6)R,(6)
such that
Ri(8) =Ry (i — 6),
Ri(OR1(—8) (co+c| sinh2§+czsinh4§) =1, (2.13)
where
2 2
_ + _
w=at, oq=SlEter) o0 late)
€ —SIn ¢ (E—Sin %)
and
im ™ iesinho) <o (7 _
0(26) Ry ( ; +9) cosh @ (sm 7 tesmhﬂ) =R ( : 9) ,
Ro(8)Ro(—6) coshf=1. (2.14)

The factor R (#) carries information about the boundary conditions that are determined
by the free parameters a., and its minimum solution is given by

1
Ri(0) = a—a(,\/,é’)o(n,t‘)), (2.15)

where the function o(x,#) is an infinite product of I" function defined as
H(x,m/2+i0)T(—x,7/2+i0) Iy, —m/2 —i®)(x,—m/2 — i)
Ty, 7/ I~ x,7/2) ’

'+ x/m+i6/27)
i+ 1+ x/m+i6/2m)’

a(y,0)=

o0

Iy, —ie) =[]

=1

with the parameters y, 7 defined by

2

COS_Q)(+COS*27)=61/CO, cos_z,\/cos_ n=cy/co.



C. Ahn, WM. Koo/Nuclear Physics B 482 [FS] (1996) 675-692 681

Fig. 2. Boundary kink S-matrix.
The relations that determine Ry(#) can, similarly, be solved with minimum solution
given by
Y(&)Y(imr —8)
m\/iesinh(28) p(—m/2 —2if)

Ro(6) = (2.16)

where

oc

Y(6) _H (1 —I1+eny/36m+ 1/4+i0/2m) (I — eny/36m — 1/4 —i0/2m)
Al p—1 - eny/36m + 1/4 —i02m) (1 + | — eny/36m — 1/4+i6/2m)

=1

3. Soliton fusion

In Ref. [6] we studied the scattering theory of the SSG model on a half line based
on its soliton states. Essentially, in the presence of a boundary, integrability of the SSG
model requires that the boundary S-matrix of the solitons satisfy the BYBE, Eq. (A.1).
We can assume naturally that this boundary S-matrix is also factorized into two parts:

Rss () = R (0) ® Rsc(0) , (3.1)

where Rsg and R;zdé)c are the SG and RSOS(4) boundary scattering matrices, respec-
tively. Writing it in this form, we can solve the BYBE separately. The SG part has been
obtained in Refs. [4,12] and the kinks part has been found in Ref. [6] to be of the
form (Fig. 2)

It -\ —0/2mi
2.(6) =R(8) (Xbe) ™"
X [&baﬁc gc(a) + 5hc (317—-]/2.aUu(0) + 5b+l/2,uDa(0))} ’ (3.2)
where a, b, ¢ are the RSOS(4) spins. The explicit solutions are given by
1 1 UL() 6 Di(8) B 0
X(;21=SX];0, ——51—=.—B—9+CCOSh—‘, 2—1‘= - H—CCOSh—,
ped sinh § 2 X2, sinh 5 2

Dy(#) 1—Asinh§
Uo(6) ~ 1+ Asinh g

(3.3)

with A, B,C being the free parameters of the boundary, and the off-diagonal terms
XO%1 X |%0 are independent of the spectral parameter and differ from each other by a gauge
factor 5. The overall function R(#) that guarantees boundary crossing and unitarity is
given in Ref. [6].
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Fig. 3. Boundary scattering of the two-kink states.

As we have shown that the bound states of the RSG(4) kinks give rise to the
U, (0), ¢, (0) fields, whose bulk scattering matrix is given by Eq. (2.5), the scattering
of these ¢, , ¢, fields with the boundary is governed by the matrix given in Eq. (2.9).
Hence we expect that by fusing the boundary scattering matrices of the kinks given
above we should reproduce Eq. (2.9). Before proceeding with the computation, it
is worth recalling that the fermionic and bosonic bound states come in two types:
(P}, dL), (42, $2), which are, nevertheless, identified in the bulk since the scattering
matrices of these two sets of particles have exactly the same form and are hence
indistinguishable from each other. It would be natural to wonder whether the same
holds true in the presence of a boundary. In fact, more intriguingly, notice that the
boundary scattering matrices of the kinks carry more than one free parameter, while the
scattering matrix given in Eq. (2.9) has only one. From the fusion equation it is clear
that the R-matrix of 3,(153), which will be built out of Uy, D;, will contain one free

parameter as in Eq. (2.9). However, that of (], ¢!), which will be built from XO%I , Xxlio’
Uy, and D, will contain more than one free parameter, and this will be incompatible
with Eq. (2.9), as they have the same bulk S-matrix given by Eq. (2.5). Also interesting
is to try to clarify the relation of the two classes of solution, distinguished by € = %1,
with the fused boundary S-matrix of the kinks.

We represent the boundary scattering K (01)Kpc(62)) — |Keg (—01)Kge (—62))
in Fig. 3. Let us begin with the bound states (42, ¢2). Using the fusion equations
Eq. (2.4), we can construct their boundary S-matrix by combining Uy, D and the bulk
S-matrix of the kinks as follows:

1 1 1
Ry (0) =5 (Uo(81)Us(82) 15 (61 + 62) = Uo(81) D1 (82) Sy (81 +62)
2 2

+D1(81)D1(8:)5,} (81 +02) — Dy (9 Uo(82) S} (61 +62) ) .
1 1 1
Rs(0) = 5= (Uo(0))Un(82) S}5 (01 +62) + Dy (81)Up(62) Sy (81 +62)
~Up(81)D1(8)51 (61 + 02) — Di(6) D (628} (61 +6)) .
R, (8) =5 (Uo(61)Ug(02) 3561 + 62) + Uo(81) Dy (62) S} (61 + 62)

—Dy(8)Un(8)Sy3 (01 + 62) ~ Dy(6)D1(62)S)1 (81 +62) )
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1 1 1
Ry (0)=3 (Uo(e.)uo<0z)S§g(01 +62) + Uo(61) D (62) Sy (61 + 62)
+D1(01)Uo(82) S5 (6, + 62) + Dlwl)D](oz)S‘j(ox +6), (34)

where the superscript 2 on the boundary S-matrix refers to the second set of bound
states.

As an example, the explicit computations for Ri‘lﬁ(()) and ng look as follows:

R, (6) = Uo(61) Uy (62)
v \/5 1+ Asinh®) (1 + Asinh &
2 2

6t NG
X [cosh 5 (1 — AZsinh® Tn + AZsinh? g)

0 n . 0
—isinh > (—1 — A’sinh’ —Af + A% sinh? E)] ,

@ ienAsinh8Uy(61)Uo(62) (coshM"—isinhM">
7 V2 (1 + Asinh %) (1 + Asinh %) 4 4 )

Comparing them with the elements in the first column of the boundary S-matrix given
in Eq. (2.9), and after dividing by an overall factor

a1 AUy (61) Up(62) ( Al A >

6
_ h n i h——-—ﬂ
VZ(1+Asinh %) (1+ Asinn2) \" 4 "

we see that the above Révw has the form

cosh g—G+(¢9) — isinh gG_ ()

(3.5)
with
Gi(0)=—(ajA)” (cosh _A_;ﬁ _isinh A40,,>—1
" (il A S i ). (36)

Comparing Eq. (3.6) with Eq. (2.10), we deduce that this fused S-matrix corresponds

to the € = 1 case since the coefficients of sinh? % are the same. Moreover, considering
#-independent terms in both equations, we find

—1
A8
ay = —(a1A)”! <coshA—40'1 — isinh%) (il — AZsinh? 4") . (3.7)

Notice that the coefficient of the sinh? %-term in Eq. (3.6) is given by

a++a_

.
sin ¢ 1
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Substituting the expressions for a4 into this, we can produce the corresponding coeffi-
cient in Eq. (2.10). In addition, the a4 satisfy

1
2 _ar =21 = ——
F T ( sin ’—;g) ’

which is consistent with Eq. (2.11). The same computations for the other two compo-
nents R} 4, R , also lead to the same conclusion as above. We therefore confirm that
this fused boundary S-matrix indeed reproduces Eq. (2.9) with € = | and the mapping
of the boundary parameter is given by

a, +a_

1 — (sm T}ﬁi)

iA = (3.8)

When (¢, $)) scatter with the boundary, the out-states are linear combinations of
(¢}, #)) and two other states. For example we have

R(8)|6,(0)) =R}, 4(8) by (—0)) + Ry, 4(6)[thy (—6))

7 )
+ BC sinh @ cosh A—;— (cosh 3 isinh = ) [42,(—6))

1 YA/} A8,
—5 sinh @ (cosh _IE + isinh T)

X [B(l +5) + i% (1 —s) (coshé — coshA&,,)} [h(-8)).
(3.9)

where R} 4. R}, , are amplitudes to be given later. The two new states are given by
1
2(0) = 75 (Kot (00K go(62) ~ Ky (0)Ky1(62)))

12200)) = = (IKoy (60Ky, (0) + K, (00K y06)))

which are orthogonal to (¢, $}) states.

These new states do not scatter with (¢}, ¢) ) at all in the bulk and their bulk S-matrix
is different from Eq. (2.5). Moreover, the boundary potential in Eq. (2.8) contains only
the (¢, @) pair and we should not expect any new particles to be created by the action of
the boundary. Therefore, we should eliminate these extra states appearing in the fusion
procedure so that the out-states are the linear combinations of only (i), ¢)). This is
possible if we choose

B=0 and s=1 or C=0 and s=—1. (3.10)

The same conclusion can also be reached when the scattering of |¢}(6)) with the
boundary is considered.
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With the above restriction we can reproduce Eq. (2.9) by fusing the boundary and
bulk S-matrices of the kinks as follows:

1

Lo i
Ry (6) =5 (U{,(QI)U%(BZ)SIQ%(GI +6) + D%(BI)D,_}(QZ)S(;;(HI +63)

+5S

11 10
(81 +62) 45501+ 62) )

1
—i 1 1
R, 5(6) =327 (D405}, (61 + 62) +su%(0.)s;%'(01 +6,)
1 L
~Dy(6)S; (1 +62) ~ Uy (0S5 (6, + 0 ) |
RL,(0)="2" (D, (615} (8 ;|
by (@)= (Dy(B) S} 0+ 62) + Uy (851 (6, +0,)
=sDy (02)5) (61 +62) = Uy (61)S}7(0y +02) ) .
1 } \ :
Ry 4(6) =3 (U%(BI)U%(02)S]';(01 +62) + D%(el)D%(ﬁz)So‘:(()l + 62)

1
50
14

1
5817 (61 +02) + 5SH (81 +02) ) (3.1

Repeating the analysis given for Riw before on the above amplitudes for the two cases,
we can show that these scattering amplitudes coincide with those obtained in Eq. (2.9).
We can summarize these in the following mappings:

—i(a, —a_)
(sin ’7’%)1 — (sin '%)“%
4 . -1
or C=0, s=-1 B=(sin|—’g)'—(sm%) i
’ ’ a. + a_

either B=0, s=1, C=

» €=-1;

(3.12)

, €=1.

The two classes (e = £1) of solutions presented in Eq. (2.9) are indeed compatible
with the boundary S-matrices obtained from the bound states.

Another aspect of the result is that the two N = | supermultiplets distinguished by the
superscripts 1,2 scatter differently with the boundary since the scattering of ( 1 o)
is given by the S-matrices with € = 41, while that of (2, $2) by the S-matrix with
€ = 1. Again we can require that the boundary potential should not add any new particle
states in the theory and the identification of |y)) = |y2) and |¢)) = |¢2) made in the
bulk should hold for the boundary as well. This dictates that the boundary scattering

amplitudes for these two multiplets be identical. Thus we can find that
C=0, s=1, and iAB= sin’]’—z

with € = 1, and there is only one free parameter associated with the boundary.
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4. Boundary supersymmetry

The SSG model has a supersymmetry and the bound states (¢,,¢,) (we will drop
the superscripts from now on) transform into each other under the action of the SUSY
charges @, Q in the following way [9]:

Olba(8)) = Vime 2|y, (8)), Olda(8)) = v—ime |y, (9)),
Ol (8)) = V—im,e”?|$,(6)), Ol (0)) = Vime 2|¢,(8)),

where m, = 2sin % is the mass of the nth bound state and we have not included the
bound states of the SG sector since the SUSY charges act trivially on them.

One can show that the bulk S-matrix of the bound states is invariant under the action
of the SUSY charges, namely

$12(6)Q12(6) = 021 (—~60)S12(8) . 512(0)012(8) = 0y (=0)S12(8) . (4.2)

It is interesting to examine the action of these SUSY charges on the boundary S-matrix
to see whether SUSY can be maintained with the presence of the boundary. In fact, it
is argued that one can retain only ‘half’ of the supersymmetry Q + Q in the presence
of a boundary [13]. We shall see that this is the case for the SSG model.

One can write the SUSY charges Q and Q as 2 x 2 matrices when acting on one-
particle states as

o i 1 X
0 el T — 0 e I”
Q" (eg+% 0 ) > Q = (e_g_'ﬁ%r 0 ) s (43)

where we have arranged the basis in the order of ¢,, ¢,.
Consider the action of the linear combination of charges Q(8) + BQ(8) on the
boundary S-matrix:

R(8) [Q(8) + BO(0)] — [Q(—0) + BO(—-6)]| R(8).

Using Eq. (2.9), we deduce that for the above to vanish, we have either

(4.1)

=I5

B= 1 for a;,+a_=0 (4.4)
or
B=—-1 for a,—a_=0. (4.5)

From Eq. (2.11) we see that for the relation @, = +a_ to be true, we must have
|a+} — oo. In this limit, the boundary S-matrix becomes diagonal

Z 0
cosh — + i sinh — 0
R(6) = Ro(6) 2 2, P (4.6)
0 cosh 37 ifsinh 0
and there is no boundary free parameter left, a conclusion which is in agreement with

Ref. [5] that uses a different approach.
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We would like to comment that this SUSY preserving boundary S-matrix, when
regarded as the boundary reflection matrix of a lattice model, is the one that gives rise
to a spin chain that possesses the quantum group U; ,gI(1]1) symmetry.

5. Discussion

In this paper we considered the SSG model with a boundary from two points of view.
One is to consider the BYBE of the SSG breathers which are related to the eight-vertex
free fermion model and the other is to use fusion of two kinks which are related to
the RSOS(4) model. By matching the boundary S-matrices obtained from these two
approaches and requiring that there is only one N = 1 supermultiplet for the bound
states, we reduced the four parameters s, A, B, C in the SUSY sector of the SSG soliton
scattering with a boundary to one, and also constrained the solutions of the BYBE to
the free fermion model to that with € = 1.

If we change B to i in the SSG model, we get the supersymmetric sinh-Gordon
model with the difference that (¢, ¢,) are the only particles which are not soliton-
antisoliton bound states, as there are no solitons (anti-solitons) in the theory. Therefore
the above argument for the sine-Gordon theory does not apply here and both of the € =
+1 solutions are allowed. Since these solutions are mutually exclusive and associated
with boundary potentials, they must be two different classes of the boundary potential
which preserve integrability. In addition, each of these potentials should have at least
one boundary coupling parameter which is related to that in the boundary S-matrix.

The SSG boundary potential in Eq. (2.8), derived from the condition that there exist
conserved charges at the first order, contains five parameters. If we compare this with
the SSG boundary soliton S-matrix, which has only three parameters (two from the sine-
Gordon [14] and one from the SUSY sector), we can think of two possibilities. One is
that two of the five parameters in (2.8) should disappear when higher order conserved
charges are constructed. The other possibility is that all the five parameters survive and
the soliton boundary S-matrix introduce two more parameters in its overall CDD factor.

Furthermore, boundary SUSY is realized only when the five parameters are fixed as

A=48,  M=+1, ¢y=0, e=€=0. (5.1)

So there are no free parameters and the + are related to the “half” SUSY Q + O,
respectively. For the boundary S-matrix, we found that indeed only “half” SUSY can
be realized, in which case the boundary S-matrix becomes diagonal given in Eq. (4.6)
without any parameters, but it also comes in two classes which possess the “half” SUSY,
respectively. This means there is no off-diagonal (¢ — ¢, — ¢) scattering amplitude
and this can be understood from the fact that the boundary potential does not include
any fermion number violating term as far as € = € = 0. This SUSY, however, acts
trivially on the sine-Gordon soliton sector, which contains two free parameters, leading
to the conclusion that at the SUSY points these two parameters become unphysical.
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Note added

After we completed and submitted our paper, we have noticed that the authors of
Ref. [22] obtained result similar to ours on the boundary supersymmetry covered in
Section 4. We thank the authors for this information.

Appendix A. The eight-vertex free fermion model with boundary

Here we present solutions to the boundary Yang-Baxter equation for the general
eight-vertex free fermion model.
Recall that the boundary Yang-Baxter equation takes the form [1,2]

Ki(up) Rya(uy + uz) Ko (uz) Ry (up — 1)
= Rpp(uy — ) ) Ko (up) Roy (uy +u2) K (uy) (A.1)

where R(u) and K(u) are, respectively, the bulk and boundary R-matrices.
The eight-vertex free fermion model has been studied by a number of authors [11,15-
19]. The bulk R-matrix takes the form

ay d

b, ¢

c b_ ’
d a_

R(u) = (A2)

where a+, by, c, d denote the usual vertex weights that depend on the spectral parameter
u and other parameters of the model. These weights satisfy the free fermion condition

asa_+b.b. —c*—d* =0 (A3)
and the R-matrices with the same parameters I" and h given by

2cd I (Ad)

B a+b_ + a_b+ ’ 2 (a+b- + a_b+)

commute.
The extreme anisotropic limit of the bulk R-matrix commutes with the quantum spin
chain with the local Hamiltonian given by

- _ _ hyo. .
Him =00 +0; oin+r (afaj +0; U”,) -3 (0'_*]: + cr‘*j“) . (A)S)
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Thus £ can be interpreted as the bulk magnetic field of the spin chain. Using duality
transformation or other arguments, one can show that critical points must occur for
|h{ = 1. Here we shall adopt the parameterization given in Ref. [15]. For |A| < 1 the
vertex weights are given by

u__ u . u
ai=cosh7cn§¢smh58n~dn—,

2 2
u o u u
= — dn = £ sinh =,
by cosh55n2dn2:t:sm yens,
u
= dn~,
c¢=dn
d=ksn§cn§ (A6)
with
k
h =tanh (v + §) , (A7)

- cosh (y +8) "’

where k is the modulus of the elliptic functions. While for [ > 1?2

ai=coshydn;—ﬂ:kcosh5 sng cn-;i,

@:iﬁMymg~kmm6m%mg,

2
c=c¢n % dn g s
d=Hsn% (A8)
with
k/
h=coth(y +6) . (A9)

re—m7m———,
ksinh (y + 6)

where &’ is the complementary modulus of the elliptic functions.
These R-matrices satisfy the unitarity and cross-unitarity properties

R(u)R(—u) x1, R(W"R(2K —u)? x 1. (A.10)

So the crossing parameter is 2K, a half-period of the elliptic functions. In general, due to
the asymmetry, the R-matrices do not have crossing symmetry. For the regime |h| < 1,
when y = 6, we have

R(2K —u)® = o{R(u) oy , (A.11)

hence the basis of the C? space can be given an interpretation of up-down spins. As for
the regime |h| > 1, when ¥ = 0, we have instead

R(2K — )" = R(u) . (A.12)

2 The spectral parameter here differs from that in Ref. | 15] by a shift of K.
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A natural interpretation of this property can be given if we regard the basis of the C?
space as two distinct degrees of freedom such as a boson and a fermion.
Note also that for y = 0 these R-matrices are regular in that

R12(0) o< P2, (A.13)

where P is the exchange operator of the spaces 1, 2.

With the bulk R-matrix given, it is straightforward to solve for the boundary K-matrix
using Eq. (A.1). We again find that in order for solutions to exist, the bulk parameter y
has to vanish. Essentially this is due to the asymmetry of the vertex weights by. With
this restriction, the most general solution is given as follows:

For |A| < 1,
G, (u) cnﬁdnE—G_(u) snE 2esnzcnﬁdnE
2 2 2 2 2 2
Koo = 2 ad EdnZ G()cnzdnﬁ—%G()snE
sn 3 cn 5 dn> +(u 5 dns _(u 3
(A.14)
where
k((1 — ekcoshd) ey +sinhda_) ,u
Gy = ot ecoshd — k Ny
k((l — ekcosh &) ar_ k’zsinh6a+) .
G_.=a_- .
@t ecoshd — k s 2
Here a are free parameters associated with the boundary that are related by
/2 )
k' +a’> =2 (k™' coshd —€) (A.15)
and € = 1.
For [h| > 1,
G, (u) cnﬁ+G_(u) snzdnE 2¢ssnzcnzdnz
2 22 2 2 2
R0 = 2sn%en an Gt -G (wysntan |
sn20n2 n2 +(u cn2 _usz 5
(A.16)
where

Ju apeksinhd + azk kcoshd
2 k' + €ksinhé

Again ay are free parameters associated with the boundary that are related by

5 ksinhé
ai—a‘_=26(1+e—sli?—> and e€==tl.

Gy(u) =a4 — sn
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Hence for each regime there are two classes of solutions distinguished by € = +1
with one independent parameter.

Below we shall list a number of properties of these K-matrices.

(1) Regularity.

K(O) x1. (A.17)
(ii) Unitarity.
KuwK(—u) x1. (A.18)

(iii) Corresponding quantum spin chains. With the boundary K-matrix and the bulk
R-matrix one can construct an integrable quantum spin chain with fixed boundary
conditions using the prescription given in Ref. [2]. The quantity that generates
the spin chain Hamiltonian and other commuting conserved charges is

t(u) =tr (K(K = u;a)T()K(u; @) T (—u))

where T (u) is the usual bulk monodromy matrix constructed out of the R-matrix,
and a, & denote, respectively, the parameters o, & that are associated with the
two boundaries of the spin chain. A new feature of the model is that tr (K(K; &))
vanishes, as a result of which we have

t(u) = (const.)ul + (const.)u’H + ...,

which is common in models with a supersymmetry.® In the |h| < | regime, we

find
| [coshé +k fcoshd — k
2 ¢ X X — Yoy
H x vV cosh™ & — k2 zl: i: maja‘HI + ma.qui
=
sinh & + ik’ . sinh& — ik’ . " a_ o
sinho T+ ek . /simho =ik . Al I
sinhd — ik 07~ sinhe + ik T 7, )
N 2 (o7 +e0l) + 1 — ekcoshd — ik sinh& [ it ) o
— (o €0 e —_—
a, N ! ' I — ekcosh 6 + = sinhé \ ay N
2 (k + ecosh §) _
. e A.19
+a+(l—ekcosh5)+a_sinh5(60”+0N) ( )

while for |h| > 1, we find

N—1 - ; . ,
[ksinhd — k [ksinhé+ k" | |
_ 2 s XX y )
H o< —V k? cosh 1?_, —ksinh5+k'q"0—"”+ ——ksinhﬁ—k’oj¢’+'
+< — — 1)0’?
+

* The same property is also observed in | 17] for a special case of this model.

kcosh6+lgz~ kcoshﬁ—](r
kcoshd —1 7 kcoshd +1 /*!

Q1|Ql
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2 _
+— (o7 +eoy) + (Z—-+ 1) o’;},—{——z—(ea'; +oy) . (A20)
+

a_ oy

(iv) Quantum group symmetry. These spin chains include, as a special case, the one
obtained by Ref. [17] which has the quantum group U, ,(gl(1]1)) (or CH,(2))
symmetry where p, g are related to k,d (see Refs. [17-19]). This can be seen
by taking the limit |a. |, |@_|(|&,]|,|@-]) — oo, which, from the relation satisfied
by them, implies that their ratio is finite. For the regime |A| < 1, taking @_/a, =
a._/a, = +ik’ gives the quantum group symmetric spin chain, while for |4| > 1,
we have to take &_ /&, = —a_ /. = +1. Note that in this limit the K-matrices
are diagonal.

(v) Symmetric limit.

It is well known that in the symmetric limit 6 = 0, (in addition to v = 0) the
R-matrix for the regime |A| < 1 is a special case of Baxter’s symmetric eight-
vertex model. Therefore, in the symmetric limit, the K-matrix in the || < 1
regime should also be a special case of that obtained in Refs. [20,21]. Recall that
there are three boundary free parameters £, A, i there, but we have only one free
parameter here. We find that indeed our solution corresponds to the case where
one of the above three parameters vanishes with the remaining two related. It is
intriguing that this way of approaching the symmetric free fermion gives rise to
K matrices of less boundary free parameters.
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