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We use the thermodynamic Bethe ansatz to study the nonrelativistic scattering theory of low-
energy excitations of the 1D Hubbard model using the S-matrices proposed by Efller and Korepin.
This model can be described by two types of excitation states, holons and spinons, as asymptotic
states. In the attractive region, the spinon is massive while the holon is massless. The situation is
reversed with a repulsive coupling. We show that the central charge of the Hubbard model in the
IR limit is ¢ = 1 due to the massless degree of freedom, i.e., the holon for the attractive region, and
the massive mode decouples completely. This result is consistent with various known results based
on lattice Bethe ansatz computations. Our results make it possible to use the S-matrices of the
excitations to compute more interesting quantities like correlation functions.

There has been considerable interest in the interplay of
integrable quantum field theory and statistical mechan-
ics [1]. In particular, a lot of progress in this relationship
has been made in two-dimensional models. One of the
most useful methods in these models is the factorizable
S-matrix theory [2]. In 1+ 1-dimensional integrable field
theories where an infinite number of conservation laws
exist, the S-matrices are factorizable into two-body elas-
tic S-matrices, which satisfy the Yang-Baxter equation.
With known particle spectra and additional symmetries,
one can determine the S-matrices exactly [2] by solving
the Yang-Baxter equation. Another method is to diago-
nalize the Hamiltonian using Bethe ansatz and find phys-
ical particle states and their S-matrices [3]. In addition
to their importance as physical amplitudes of scattering
between asymptotic particle states, exact S-matrices can
give other interesting quantities like the central charges
of underlying conformal field theories (CFT’s) from the
finite size effects, conformal dimensions of the operators,
and even the correlation functions.

Our motivation is to establish the S-matrix approach
for studying the non-relativistic lattice models like the 1D
Hubbard model [4]. Although the Bethe ansatz method
is quite useful in finding eigenvalue spectra, excitation
states, and their thermodynamic properties, it is not so
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useful in finding other important quantities, in particu-
lar, correlation functions. Recently, EBler and Korepin
derived the S-matrices for low lying excitations of the
1D Hubbard model [5]. What concerns us here, as a first
step towards the complete S-matrix bootstrap of the low
lying excitations of the Hubbard model, is how to con-
firm the validity of these matrices. For this purpose,
we employ the thermodynamic Bethe ansatz (TBA) for
2D quantum field theory (QFT) which is now a stan-
dard tool [6] for checking the S-matrices. In the original
formulation of factorizable scattering theory, one is in-
terested in the scattering of relativistic excitations. In
interacting 1-D quantum systems, such as the Hubbard
model, there are in general several low-energy excitations
with complicated dispersion relations and with different
Fermi velocities. However, as T goes to zero, the rela-
tivistic invariance is recovered with the Fermi velocities
as the effective speed of light [7]. Therefore, we can ap-
ply the relativistic TBA to our non-relativistic scattering
problem in the IR limit. In this letter, we will compute
the central charge in the IR limit and compare it with
the result of the finite size effect [8]. The central charge
is related to the specific heat of the system [7].

Among the lattice models of strongly correlated elec-
tron systems in low dimensions, it is believed that the
two-dimensional Hubbard model provides some of the
properties of high-T, superconductivity [9]. Furthermore,
a strong quantum fluctuation in low dimensions suggests
common features in the 2D and the 1D Hubbard models.
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Fortunately, the 1D Hubbard model can be exactly diag-
onalized via the Bethe-ansatz technique [4]. Its thermo-
dynamic properties, such as the susceptibility, the mag-
netization, and the low-temperature specific heat, for the
repulsive (U > 0) and the attractive (U < 0) on-site in-
teractions have been studied in the literature [10]. It is
noticeable that the excitation spectrum is described by
the spin and charge excitations, i.e., spinons and holons,
and that the spin (charge) excitation possesses a gap in
the attractive (repulsive) Hubbard model as long as the
on-site interaction U exists. The low-energy charge (spin)
excitations for the attractive (repulsive) case are propor-
tional to those for the antiferromagnetic Heisenberg chain
irrespective of the strength of the interaction and of the
electron filling. Woynarovich and Eckle [8] have analyzed
the finite-size corrections in the Hubbard model for the
repulsive and half-filled case, and their analysis yields the
central charge of the Virasoro algebra ¢ = 1 which is con-
tributed by the spin excitations, while the contribution
of the charge excitations is negligible only if the on-site
repulsion U is not so weak.

Let us now examine the dispersion relations of the ex-
citations in the attractive case. Note that the results for
the repulsive case can be obtained from the attractive
case by interchanging the roles of holons and spinons.
The holon energy in terms of the rapidity A is given by

_ o [T dw Ji(w) cos(w])
E(3) = 2_/0 w cosh(wU) ~’ M

whereas the momentum is given by

_ ® dw Jo(w)sin(w) T T
F-() = -/0 w 0cosh(cuU) ©T2 S P < 2

(2)

In the above, U is the coupling constant of the on-site
interaction of the 1D Hubbard model. Notice that the
holon is massless and E, = v.P. as A — oo, where v,,
the Fermi velocity, is given by v, = E/(00)/ Pl(c0).

The spinon has the following dispersion relations for
the energy and the momentum, respectively:

E;(k)=2|U|— 2cosk

+2/°° dw Ji(w) cos(w sin k)
0 w cosh(wU)

exp(—|wU]), (3)

and momentum,

_ * dw Jo(w) sin{w sin k)
P’ik) =k- /0 ‘w  cosh(wl)
—3 SPKk <3 )

exp(—|wU1),

We see that the spinon stays massive for finite U for all
values of the rapidity.

Recently, using these dispersion relations, Efler and
Korepin derived the scattering matrices of the Hubbard
model from the Bethe ansatz solution by generalizing the
method of extracting the S-matrix from the asymptotics
of the wave functions of the scattering state [5]. These S-

matrices of the excitations on the lattice are well-defined
as long as the wave packets of two excitations are well-
separated. The complete scattering matrix is 16 x 16
dimensional and is in a block diagonal form consisting
of 4 blocks. Each of the blocks describe holon-holon,
spinon-holon, holon-spinon, and spinon-spinon scatter-
ings, respectively, as follows:

Scc(u) 0 0 0

_ 0 S;(w) 0 0

S= o 0 s.w o |’ (5)
0 0 0 Sy(v)

where the holon-holon scattering amplitude is

P ()T ( —%)( u i )
() = = 2 . 1 P,
Sl = "FEm T ey \awd
_’\_____’! (6)
4T o

with T' being the gamma function. In the above I and
P are the 4 x 4 identity and permutation matrices, re-
spectively. This S-matrix has the same form as that of
the spin-1 Heisenberg antiferromagnet and of the SU(2),
WZNW model [11]. The spinon-spinon scattering ampli-
tude is -

() ria+y j
Sys(v) = (}_f_w) ( +ﬁ;)( vy ,P),
- rEmTy e
sink — sin
v = —W’ (7)
and can be obtained from S.. by setting u — —v. The
spinon-holon scattering amplitude is

A —sink

.1+ iexp(mw)
i U] (8)

1 —dexp(rw) w=

Sac(w) =
We have the same form for the holon-spinon scattering
amplitude S,.,. Notice that S,. and S.,; approach con-
stant values as w — oo.

Let us now apply the TBA to non-relativistic scatter-
ing as T — 0. The TBA computes the Casimir energy
of a theory on a circle of length R with S-matrices and
the particle spectrum as input data [6]. With a tem-
perature T = 1/R, the configuration of minimizing free
energy gives the ground state energy of the system, which
is again related to the central charges of the underlying
CFT by

ey
Eground(R) ~ =

: 6v; R (©)

where v; are Fermi velocities for excitations in the system
and ¢; are the corresponding effective central charges.
Consider N particles in a box of length L with a pe-
riodic boundary condition(PBC). Moving a k-th particle
of type a with energy E,;(8;) and momentum P,(8;) all
the way by exchanging with other particles and coming
back to the original configuration using a PBC, we get

N
e Pl T] Saa, (6 - 6) = 1 (10)
i=1,i2k
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where the index a; specifies species of the i-th particle.

In general, the product of S-matrices is a large size ma-.

trix called a transfer matrix, and one should diagonalize
this by some technique. However, we consider a diago-
nal scattering theory first because the non-diagonal case
can be understood as a slight modification. Taking loga-
rithms on both sides of Eq. (10) gives

N
—LPG(Hk)'i'Z%lnSaa,(ak —01) :27|'n]¢, (11)

i=1

with an arbitrary integer ny. In the thermodynamic
limit, N, L — oo, one can express Eq. (11) in terms
of the density of states as

2mpa(8) = —LP,( +Z/d9/ (6")dar(8 ~ ') (12)

where p,(8) and pl(8) are the densities of the allowed
and the occupied states, respectively, and ¢, is the log-
arithmic derivatives of S-matrices S,;;. In terms of the
‘pseudo-energies’ ¢, defined by e~ = pl /(p, — pl), one
can express the ground state energy by

Eground(R) = Z / ” ggRP’(() )Le, (6) (13)

where L(8) = In[l+e~(®)]. ¢, is determined by the min-
imizing condition of the free energy which is the following
set of nonlinear equations:

€a(6) = RE4(8) — ) bab * Le,(6) (14)
b

where * denotes rapidity convolution, f* g(0) f de’
f(6—0)g(6"). As we mentioned above, the sum in Eq. (13)
for non-diagonal theories has to been taken with care. Di-
agonalization of the transfer matrix brings in additional
‘massless’ particles, which do not contribute to the cen-
tral charge directly in the sum due to their massless-
ness, but which, nevertheless, affect the massive particle
distributions. Additional care must be taken for non-
relativistic scattering because the participating particles
can have different Fermi velocities, unlike the relativistic
case where all have the light speed as the Fermi velocity.
For the non-diagonal theories, the product of the S-
matrices in Eq. (10) is replaced by the eigenvalues of the
transfer matrix. For the 1D Hubbard model the non-
diagonal matrices S,. and S,, are of the six vertex model
type:

a, 0 0 O
0 by cq O

Sy = 0 c b 0| =0 (15)
0 0 0 a,

The eigenvalues of the transfer matrices and the associ-
ated constraint equations can be derived by the algebraic
Bethe Ansatz method to be

As(6) = Haa(ﬂ 0)HZ°((3’_0
+Hba(0 9)]‘[:"&3 z’) (16)
and

ba(yk — 6:)
Haa y:_a)H

i=1

yr = Yk aa(yk Ur) _
aa(yr — k) balye —yr)

~1.(17)

From the S-matrices Egs. (6) and (7), one can read off
the corresponding matrix elements to evaluate the ex-
plicit eigenvalues. The holon and the spinon sectors are
coupled by the diagonal scattering matrix S,,.

We have two kinds of the periodic conditions for the
Bethe wave functions of holons and spinons in terms of
Ac, A;, and S;, and two sets of the constraint equa-
tions. For simplicity, we concentrate on the holon sector
first and will generalize the argument to spinons. From
Egs. (6) and (17), the constraint equation for the holon
sector becomes

[[E=boiUpfe=fr2iU]
B =0+ ilUI L B = U] T

where we have introduced the shifted rapidities §; =
yi — {|U| to have the unitary form. It is well known from
the analogy in the antiferromagnetic Heisenberg chain
that in the thermodynamic limit, N — oo, the general
solutions of these equations are the strings consisting of
n-pseudoparticles of roots g% = B2 + i|U|(n + 1 — 2j),
where % isreal, j=1,---,n,andn=1,---,00. Such a
string is a bound state of n-pseudoparticles and can be
interpreted as a fictitious massless particle of real rapid-
ity 8%. Since the length of the strings can be infinitely
long, there are an infinite number of such massless parti-
cles. Similarly the constraint equations for spinons can be
understood in the context of another kind of pseudopar-
ticles designated by the rapidities a’s which also form the
string-solutions in the thermodynamic limit. Therefore,
what we have is a diagonal scattering theory of holons,
spinons and an infinite number of massless particles asso-
ciated with them. The scattering amplitudes of the n-th
massless particle with a holon is

6 —in|U|

5O = 5oy

(19)

and the scattering amplitudes between the massless par-
ticles are
8+ ijln — m||U]|
nm 0 = T T
Som 0= | 7l
[0+z(|n m|+2)|U]|
6—i(ln—m|+2)|U]
9 [9+ i(n+m)|U|
6 —i(n+m)U]||"

b+i(n+m-2)|U|1°
6—i(n+m—2)|U|

(20)
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For the spinons, the corresponding scattering amplitudes
are obtained by the replacement § — —8.

The minimizing condition of the free energy, using the
above mentioned S-matrices, leads to an infinite set of
non-linearly coupled equations. It is a standard proce-
dure to use Fourier transformation on the TBA equations
and to simplify the equations in terms of a unified kernel

p= (4|U|cosh %)—1 [12):
REc(o) = 60(0) +* (L€1 + L')o)(a)

0= E"1(0) + p* (qu—x + L¢n+l)(0)’ n Z 1 (21)
RE,(8) = 10(6) + ¢ * (L, + L, )(6)
0=na(8) + 9 *(Ly,_, + Ly, )(6), n>1

These TBA equations have the incidence structure of
an infinite chain, where a pair of semi-infinite chains

of SU(2)-invariant, factorized scatterings are joined to-’

gether as shown in the following picture:

€2 31 €0 o m 2
~O0—0O0—0—0—0-
E, E,

These TBA equations can be solved easily as R — .
When U is finite, the spinons become massive and do
not contribute to the central charge because the pseudo-
energy no(8) ~ RE,(0) — oo for all values of §. After de-
coupling the spinon sector, we have only the semi-infinite
chain of the holon sector. For a finite value of 8, E.(6)
is non-zero, and from Eq. (21), €o(#) becomes infinite.
Therefore, only non-vanishing contribution to the cen-
tral charge comes from the § — oo limit. In this limit,
taking a derivative on Eq. (14) and substituting P, with
E!/v. into Eq. (13), we can now invoke the standard
TBA analysis to evaluate the central charge in terms of
the pseudo-energies at § = 0 and oo. Note that the Fermi
velocity in the denominator of Eq. (9) is canceled by the
v, in the above substitution. The final result for the cen-
tral charges is

6 — 2 z?
o = Fg[‘: () "‘(1+x3)] @2)

where £(z) is the Rogers dilogarithmic function

6(3):_%/:# [ln(lt—t)+(llritt)] (23)

and we have defined z¥ = exp[—e,(o0)] and 28 =
exp[—€,(0)]. The TBA equations, Eq. (21), can be
rewritten as a set of algebraic equations for z,’s:

2 = (1+29)}

n>1,
TP = (1+33°—1)%(1+z:°+1)% } -

1 +zg_1)%(1+zg+1)§ } nzl (24)

These have solutions z° = (n+2)?—1 and 28 = (n+1)?—
1. Since z3 = 3 |, only £ survives to give ceg = 1
after using £(1) = %2.

As we claimed in the beginning, the central charge we
computed comes from the holon sector while the spinon
sector decouples. This is what happens for finite U, but
seems valid even for vanishing U as long as U > 1/R. In
the literature, a discontinuity between U — 0 and U = 0
has been predicted such that if U = 0, the central charge
will be 2 because the model is nothing but a theory with
four free fermions. Physically, this discontinuity arises in
the specific heat since the central charge is proportional
to it and is due to a gap in the excitation spectrum [10].
Discontinuities in the excitation spectrum around U =0
have previously been reported by Woynarovich [13]. In
our analysis, we use the holon and the spinon S-matrices
which are valid for non-vanishing U. Within this valid-
ity, our result is what has been seen in the literature
from different computations. With this confirmation for
the EBler-Korepin S-matrices, we have established the
S-matrix program for non-relativistic models where the
massless degree of freedom survives and gives the cor-
rect central charges in the 7' — 0 limit. We hope our
result can be a starting point for the application of the
S-matrices to various lattice problems. We are partic-
ularly interested in computing the correlation functions
using the form-factor approach [14]. In this scenario, the
correlation functions of any local operator are expressed
in terms of the form-factors which can be computed from
the exact S-matrices. Although one needs to sum an in-
finite number of terms, this can be realized as the sum
converges very fast. We hope to report this result else-
where.
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