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We study S-matrices of kinks and breathers of the restricted sine-Gordon theory using the thermodynamic Bethe ansatz method. 
We found that the underlying conformal field theories at the massless limit are minimal/,[p/q theories, including the non-unitary 
as well as the unitary ones. This result confirms the identification of the restricted sine-Gordon theory with integrable perturba- 
tion of minimal J/p/q theories. 

1. A large class of  2D quantum field theories (QFTs)  has been associated with conformal field theories (CFTs) 
[ 1 ]. The CFTs correspond to the fixed points o f  the renormalization group o f 2 D  QFTs. Hence, these QFTs can 
be thought o f  as CFTs perturbed by the appropriate relevant operators. Therefore, these 2D QFTs can be com- 
pletely defined by the "CFT data":  the underlying CFTs and their perturbing relevant operators. Of  particular 
interest are the integrable QFTs whose S-matrices can be solved exactly. 

Two important  questions can be raised. One is what kind of  CFTs and relevant operators can generate inte- 
grable QFTs and the other is whether we can identify the CFT data if we know the exact S-matrices o f  a given 
integrable QFT. The original approach to the first question by Zamolodchikov was to construct the conserved 
charges explicitly using conformal perturbation theories [2 ]. While this approach has been successful for a 
certain class of  CFTs and corresponding perturbations, it is difficult to see the general relationship between 
CFTs and integrable QFTs. Another approach is to start with a known integrable QFT like the sine-Gordon 
(SG) theory. Using the quantum group structure o f  these theories, one can truncate the multi-particle Hilbert 
space while keeping the integrability o f  the theory. The resulting restricted integrable QFTs have been related 
with a certain perturbation of  a wide class of  CFTs [ 3-9 ]. The corresponding S-matrices are expressed in RSOS 
form which was introduced in 2D lattice models to construct RSOS models from vertex models [ 10 ]. In this 
paper, we are particularly interested in the restricted sine-Gordon (RSG)  theory. It has been claimed that this 
theory is minimal CFT [ 1 ] perturbed by a ~1.3 operator [ 3-7 ]. 

The thermodynamic  Bethe ansatz (TBA) approach has been very successful as an answer to the second ques- 
tion for a restricted class o f  factorizable S-matrices. The TBA method consists in computing the free energy of  
many-particle systems in the thermodynamic  limit. By computing the free energy at a very high temperature 
limit, one can derive the CFT data, i.e. the central charge of  the underlying CFT and the conformal dimension 
of  the perturbing operator. This approach was limited to diagonal S-matrices [ 11-15 ]. For non-diagonal S- 
matrix theories, Zamolodchikov partly derived the TBA equations for pure RSOS theory [ 16 ]. He conjectured 
TBA equations based on S-matrices of  the RSG [ p / ( p  + 1 ) ] theory that correctly reproduce the CFT data of  
unitary CFT ~gp/tp+ ~). The next obvious question to ask is whether the TBA method can cover the whole RSG [p/ 
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q] theory, which is claimed to be the integrable perturbation of minimal CFT ~'p/q [ 7 ]. In this letter we address 
this question and show that we can derive TBA equations that reproduce the CFT data correctly. 

2. The minimal CFT perturbed by the least relevant operator is claimed to be the RSG theory, obtained by 
truncating the SG multi-soliton Hilbert space. The action of the SG theory is 

1 f ~SG---- ~ d2x(10u~ 0u~q-m2 cos ~) . (1 )  

The particle spectrum of the SG theory includes soliton (A), anti-soliton (A) and breathers (Bn) which are 
bound states of A and A with n = 1, 2, ... ~ 8 n/y, where y = (f12 / 8 n ) / ( 1 -/32 / 8 zc). Due to the integrability of the 
SG theory, the multi-particle S-matrices can be factorized into products of two-particle elastic S-matrices be- 
tween A, A, Bn. These two-particle S-matrices have been derived by solving the factorization (or Yang-Baxter) 
equations [ 1 7 ]. 

As is well known [ 3 ], the solution of the Yang-Baxter equations can be expressed in terms of the ~-matrix of 
SLq (2) for the SG theory. The quantum group SLq (2) denotes the group SL (2) deformed by the parameter q. 
The deformation parameter is 

q =  -exp( - i8~r2 /7 )  = - e x p ( - i n / P ) ,  with P=_7/8~r. (2) 

Therefore, (A, A) and the Bn form a spin-½ and singlet representations of SLq(2), respectively. This means that 
one can decompose the multi-soliton and anti-soliton Hilbert space of the SG theory into subspaces represented 
by higher spins: 

~ut~=1½, m~)®1½, m2)®...®1½, mN)= ~ IJ, M ) .  (3) 
J 

In the I J, M)  basis the soliton and anti-soliton are replaced by kinks Kab with [ a -  b l = ½. The decomposed 
Hilbert space in eq. (3) can be truncated while preserving the integrability if q is a root of unity. The resulting 
Hilbert space which consists of subspaces with spin J satisfying 0 ~< J~< Jmax defines the Hilbert space of the RSG 
theory. From eq. (2), i fP  is an irrational number, the RSG theory is equivalent to the SG theory because q is 
not a root of unity [ 5 ]. If P is a rational number (P = p~ (q-  p) with two coprime integers p, q (q > p) ), & = + 1 
and "]max = ½P-- 1. The particle spectrum of the RSG theory is 

Kinks:Kab, l a - b l = ½ ,  a,b=O, ½,...,½p-1, Breathers:Bn, n=l,2,...,<~q/p-1. (4) 

We refer to this theory as RSG[p/q]. This theory is claimed to be the ~1,3 perturbation of the minimal 
~p/q  CFT.  

The kink-kink S-matrices are expressed in terms of an RSOS form [10,7,6]. The S-matrices of the kink- 
breather and breather-breather are the same as those of the SG soliton-breather and breather-breather [ 17 ] 
because the breathers are singlets of SLq (2). The complete S-matrices of the RSG theory, as functions of rapidity 
0, are summarized as follows: 

Kink-Kink: Kda "t- Kab ---', Kdc "[" K~b , 

ab [2a+l][2c+l])-°/2ni[Oab ' "{O'~f[2a+l][2c+l 1/2+fiacsinh(--~)], (5a )  
Sa~(O,=a(O,([2d+l][2b+l] j smn~ ~ ]  ~,[2d+ 1 ] [2b+ 1 ]]) i n - 0  

Kink-Breather: K~b + B,--, B, + K~b , 

sinh 0+i  cos[½ (nnP) ] ~,_v~ sin2[ ¼ (n-21)nP- ¼n+ ½i0] 
S¢")(0)= sinh O-i cos[ ½ (nnP) ] 11l=~ sinZ[ ¼ (n-2 l )nP-  ~n- ½iO] ' (5b) 
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Breather-Breather:  Bn + Bm--*Bm + Bn, 

sinh 0 + i  sin[ ½ ( n +  rn)nP] sinh 0 + i  sin[ ½ ( n -  m)reP] s ( n ' m ) ( o ) =  
sinh 0 - i  sin[½(n+m)nP] sinh 0 - i  sin[½(n-m)ztP] 

min(i~n)-- 1 sin2 [ ~ ( m - n - 2 l ) n P +  ½i0] cos2 [ ~ (m+n-2 l ) rcP+ ½i0] 
× l=1 sin2[~(m_n_2l)rcP_½iO] cosZ[~(m+n_2l)~rP_½iO] , (5c)  

where the q -number  [ n ] is given by [ n ] = ( q " -  q -  ~) / ( q -  q -  1 ) and the prefactor a (0 )  satisfies f rom unitary 
and crossing symmetry  

a(O) = a ( i n - 0 ) ,  a ( O ) a ( - 0 )  = (2 cos 2re~P-2 cosh 20/P) -~ (6)  

The RSOS kink-k ink  S-matrices satisfy unitari ty only when the parameter  P has the following values [ 7 ]: 

N 3 
P = - -  for N =  2, 3, ..., o r P = - -  w h e r e l = 0 , 1  . . . . .  (7)  

NI+ 1 3•+2 

Therefore,  we concentrate only on these values of  P. From eq. (4) ,  the number  of  kinks is N - 2  and that of  
breathers is l. In particular, if  l=  0, only kinks are left in the spectrum and the S-matrices in eq. ( 5 ) reduce to 
the pure RSOS S-matrices derived in ref. [6].  On the other hand, if  N =  2, there is no kink in the spectrum but 
breathers are. The corresponding S-matrices are exactly the same as those derived from the factorization equa- 
tion along with the boots t rap ansatz [ 18 ]. 

This RSG theory is claimed to be the following perturbat ion of  BPZ minimal  models [ 1 ]: 

~p/q~-~/[p/q+ ~ d z  2 ~l,3(z,  z) . (8)  

The central charge and the lowest d imension of  the pr imary  fields are 

6 ( p - q )  2 1 - (q_p)2 
c =  1 - - ,  /~min= (9)  

pq 4pq 

This identification of  RSG [p/q] theory with 5ep/q is justified by considering the ultraviolet limit o f  the Green 
functions of  the RSG theory [ 7 ]. For the case of  no breathers ( l =  0),  the RSG [p/(p+ 1 ) ] theory has been 
claimed to be a perturbed unitary CFT by comparing the topological charges of  the pr imary fields with the 
allowed spins of  the RSOS theory [ 3,6]. 

3. To formulate the thermodynamic  Bethe ansatz (TBA) for the RSG [p/q ] theory, we consider a state vector  
o f  Nk inks  of  mass m ( N e v e n  for simplicity) and Nb breathers {Bn} of  mass mn ( n =  1 ..... l) in a periodic box of  
length L: 

[ ~"/~{:an22:::: ({fli }, {Oj}) ) ~ ]ga,a2(fll )ga2a3(fl2) ...n,,l (01)Bn2(02) ...) • (10) 

When the exchange two adjacent particles, the state vector  is multiplied by the corresponding S-matrix. For 
L >> Re (Re is the Compton  wavelength of  the particles),  if  we taken one particle and exchange with all the other 
particles, we obtain the periodicity condit ion of  the state vector: 

Nb 
exp(imLsinhflk) ~ a'~,a~ .... n,,,2 .... Sal,a2,... (ill, ]~2, " ' )  E S(nJ ) (OJ- -~k ) l  ~'/an~:n~'-'-({fl/}, {Oj}) ) = ] ~"¢an,.a2,... ((/~t }, {Oj}) ) , 

ai .... j= 1 

N 
exp(imn~L sinh Ok) 1-[ S~'"k)(Ok --0~) 1-I S~k)(Ok --flJ) J T~{:~::i:({fl~}, {Oj}) ) = I T~:~Z({fl~}, {Oj}) ) . (11) 

i,i~ k j= 1 

The first equation in eq. ( 1 1 ) is expressed in terms of  elements of  the RSOS transfer matrix and we need to 
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diagonalize it. If we call the eigenvalue of the RSOS transfer matrix A (flklfl~ .... , flU), eq. ( 11 ) reduces to 

Nb 
exp(imL sinh flk)A (ilk Ira, ..-, fiN) l-I SU'J)( Oj-- ~k) = 1 , 

j = l  

N 
exp(im,kL sinh Ok) I]  SU'""~)(Ok--Oi) 1-I SU'k)(Ok--flJ) = 1 . (12) 

i,i#k j= 1 

The explicit expression of the eigenvalues of the RSOS transfer matrix is given in refs. [ 19,16 ]. In eq. (12), the 
S-matrices given in eq. (5) are diagonal; it is straightforward to write down the TBA equations except for the 
RSOS sector. For the RSOS sector, Zamolodchikov analyzed (RSOS)3 (two kinks, no breather) and conjec- 
tured the TBA equation for a general number of kinks [ 16 ]. What we notice here is that if the number of the 
breathers is even, the deformation parameter q is independent of l as one can see in eq. (2). This simplifies the 
derivation of the TBA equations for two kinks and an even number of breathers. 

Since P--- 4 / M  (M= 4l+ 1 with / even ) in eq. ( 2 ), q = - exp ( - ~ in), the RSOS transfer matrix has the follow- 
ing simple form: 

( ln2mZ ) N/2 
A(flkl{fli}) =const. 'exp --i ~ i=~ (fl2i-, --/~2i) i=l f i  a(flk --fli) i=lI-I sinh[ ½M(fl k - x i ) ] ,  (1 3) 

where the positions of the zeroes of A (Pk), the x,, are determined by the following constraint equation: 

f i  sinh[½m(Y~-/~k) + kin] = + 1 (14) 
k=t s inh[½M(Yi -~k) -¼in]  - ' 

in terms of real numbers y~---x~+ ½in [ 16,19]. 
In the thermodynamic limit (N, L ~  oo), we introduce the rapidity densities of the kinks and breathers p (fl), 

p ¢") (0). For each of these we introduce the actual densities p t (//), p I n) (0). Furthermore we have to introduce 
also the densities of the eigenvalue zeroes P+ (y). The joint density P(y)  =P+ (y) +P_  (y) is the density of the 
solutions to eq. ( 1 4). 

From eqs. ( 1 2 ), ( 1 4), we derive the relation between these densities, 

I 
2np(/~) = m L  cosh//+ tOo*P, l (~8) + ½M[f~t* (P+ - P _  ) ] (/~) + ~ [~ ,  *p[")] ( / /) ,  

n = l  

2nP(y) =M[0 ,  *Pl ] (Y) , 

2nptm (0) =m,,L cosh 0+ 

where 

01(0) = 1/eosh(MO), 

l 
[O,m*p]"O](O)+[~,*p ,] (O)  , (15) 

m = l  

l d  1 O,,(,e)= 7d--# ogcr(b'), 

*,m(0) = 1~--~9 1 ~001ogS'")(0) (16) i- l ogs  { . . . .  ) ( 0 ) ,  O n ( O ) =  T 

The star denotes the rapidity convolution [0*f] (0) =f~_~q~(O- 0 ') f (0 ' )  dO'. 
Following the standard procedure of minimizing the free energy f ( R )  (R = inverse temperature) [ 11-14 ], 

we obtain TBA equations in terms of the following pseudo-energies e, E, en: 

Pl e - ~  P+ e - e  p[") e - "  (17) 
p l + e - , ,  p - l + e - E '  p C - ) -  l+e-*""  

332 



Volume 271, number 3,4 PHYSICS LETTERS B 

The TBA equations are 

1 
Rm cosh fl= O(fl) + ~ [ (0~ -  [0l*01] ) , l n ( l  +e-~) ] (#) 

M 1 t 
+ ~ [0,* In(1 + e - e ) ] ( f l ) +  .-,,~-g~= [ tp, ,  In(1 +e- , - ) ]  (fl) 

M 
0 = E ( y ) +  ~ [0~* In(1 + e - ' )  ] (Y), 

1 1 
Rm, coshO=e,(O)+ ~ [ ~ , ,  l n ( l + e - Q ]  (0)+ 2-nn~ [(1)nm* ln(1 + e - " ' )  ] (0) " 

In terms of these pseudo-energies, the ground state energy is 
oo oo 

mR f ~ m,R f E(R) = ~ a dfl cosh fl In ( 1 + e-'(#) ) + .=~, ~ _J dO cosh 0 In ( 1 + e -"(°) ) . 
0 0 

21 November 1991 

(18) 

(19) 

Performing the standard procedure to evaluate E(R) in terms of the solutions of the TBA equations (18) in the 
high temperature limit (R~0)  [ I 1-14], we get 

E(R) 1 r ' t ~ ' d e ( l n ( l + e _ , ) +  e e - ' ~  
4nR Lifo) 1 + e - ' ]  

E ( o o )  en(OO) 

E e - e \  den (In(1 + e - " )  + e, e - "  ~] + j" dE ( l n ( l+e -e )+  1--~-~S~e-E)+ ,,=,k j" 1--~--~e_%//. (20) 
E(O) en(O) 

The pseudo-energies become constant in the region 101 << - I n  (mR) and can be replaced by the values at 0 = 0. 
Then the TBA equations become pure algebraic equations for the constants x = e  -'(°), w=e -E(°), and 

z n ~ e - e n ( O )  

1 I 
x = ( l + x )  V(l+w)~/2I-[ ( l + z . )  ~ ,  w = ( l + x )  '/2, Zn=(1-t-x) "vh ]7 (1-I-Zm) "~nm" (21) 

n = l  m = l  

From eq. ( 18 ), the first exponent Y is 

.;V= ~ {O~(0) - [O,* 0,1 (0)}. (22) 
- -oo  

Using eq. (6) and the relation [20] 

In a(0) = ~ dz ln[a(z )a( -z )]  (23) 
s inh(z -0 )  

we find Y =  - ½ L The other exponents Xn, ~.,~ can be evaluated directly from eq. (5) to be 

Y ~ = - n ,  JV~, .m=[J(2-J )  - t ]  . . . .  (24) 

where J is the generalized incidence matrix of A} 2) in the same way as the TBA equations with breathers only 
[14]. 

From eq. (18), as the rapidities go to infinite, e(~) and en(oo) become infinite because of the mass terms. 
For the TBA equations without a driving term (mass term) like the second one in eq. ( 18 ), the pseudo-energies 
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~e(x)=½ i dt(!n(1-t)t 
0 

like E do not  diverge. For  the above case, E ( ~ )  = 0  ( y = e x p [  - E ( ~ )  ] = 1 ). Us ing  the Rogers d i logar i thmic  
func t ion  

l n t ~  
- -  + i - - S t / '  ( 2 5 )  

we can evalua te  E(R) with the solut ions  of  the TBA equat ions .  Us ing  eqs. (7 ) ,  (9 )  and  E(R)~ 
-2zc/R (l~ c -Ami  n -  J m i n  ) [21 ], one  can der ive  the fol lowing cond i t i on  to be satisfied i f  TBA should  work for 
two kinks  and  an  even n u m b e r  ( l )  o f  breathers:  

1 1 1 I S ° ( 1 - ~ x ~ + ~ S g ( l - ~ w ~ - S a ( l ~ y ) ] +  ~ L/'( z ,  ) }  ( 2 6 ,  
12 8 ( 4 l + 1 )  2~2{. \ +x} [_ \ + J ,=1 l + z ,  " 

We solved eq. (21 ) us ing  M a t h e m a t i c a  T M  a n d  checked eq. (26)  for a large enough n u m b e r  o f / ' s  so tha t  we can 
conc lude  that  the TBA gives the correct  answer;  the R S G theory reproduces  the correct C F T  data  of  pe r tu rbed  
m i n i m a l  CFTs  J/4/~4~+ 5). We show numer i ca l  results in  the first three rows of  table 1. 

It is possible to general ize the above analysis  for any  n u m b e r  of  kinks. Apar t  f rom a diff icul ty in  eva lua t ing  

Table 1 

N 1 Solutions ofeq. (27) ~c-2A,,i . 

4 2 x=0.540263 2..,L3 312 
w2= 1.24107 
zl =0.360892, z2=0.149747 

4 4 x=0.321259 ~_k3 
w2= 1.14946 
zt =0.343508, z2 =0.133784, z3=0.0752709, z4=0.0504372 

4 6 x=0.228285 ~_..L7 232 
w2= 1.10828 
zl =0.338677, Zz= 0.12952, z3=0.071017, z4=0.046006 
z5=0.0329726, z6=0.0253451 

5 2 x=0.619914 3.__L 390 
w2=2.11652, w3= 1.76537 
zl =0.351153, z2=0.140652 

5 4 x=0.362677 3_2_7 480 
w2= 1.9214, w3= 1.70921 
zt =0.339933, z2= 0.130642, z3=0.0721279, z4= 0.0471472 

6 2 x=0.665401 3~ 
w2 = 2.70218, w3 = 3.3844, w4 = 2.0939 
zl = 0.345824, z2 = 0.135839 

5 6 4 x=0.385662 6-~ 
w2 = 2.42247, w3 = 3.23507, w4 = 2.05793 
Zl =0.337967, z2 = 0.128937, z3=0.0704515, z4= 0.0454328 

7 2 x=0.693756 3_2_7 462 
w2= 3.10099, w3=4.67739, w4=4.33481, ws= 2.30972 
zl =0.342581, z2= 0.132967 

8 2 x=0.712635 9__2_7 1200 
w/= 3.381, w3=5.67459, w4=6.35014, ws= 5.04146 
w6=2.45794 
zz =0.340472, Zz=0.131121 
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the eigenvalues o f  the RSOS transfer  matr ix,  the der iva t ion  of  the TBA equations is almost  the same as before. 
I f  the number  o f  kinks increases, the RSOS sector should contain  more "pseudo-par t ic les"  which act as massless 
part icles because contra in t  equat ions like (14)  have more  solutions which have different imaginary  components  
for the same real part  [ 19 ]. This leads to the conjecture given in ref. [ 16 ] that  the exponents  in k ink -k ink  parts  
of  the TBA equat ions are given by an AN_2 incidence matr ix.  This conjecture must  be equally valid for our  case 
because the quan tum group structures o f  the two cases are exactly the same provided  the number  of  species o f  
breathers  is even. The only difference is the exponent  X which is 0 for the case o f  no breather  [ 16 ]. For  the 
more  general case, X =  - ½ l as we showed in eq. (22)  (~t(0)  = 1/cosh ( 4 0 / P ) ) .  

Including the pseudo-energies E~ o f  the "pseudo-par t ic les"  (Wa = e -Ea~°) ), the most  general equat ions for the 
pseudo-energies at zero rapid i ty  are given by 

N - - 2  / N - - 2  

x = ( l + x )  -t/2 I-[ ( l + w a )  L'°/2 H ( l + z n )  ~", w , ~ = ( l + x )  L'°/2 I-I ( l+Wb) La~/2, a = 2 , 3 , . . . ,  
a = 2  n =  I b = 2  

/ 

z n = ( l + x )  '~  1--[ ( l + z m )  ~ ' ,  (27)  
m = l  

where Lab are the elements  of  the AN_ z incidence matr ix,  and at infini te rap id i ty  Ya = e -Ea(~) should satisfy 

N - - 3  

Ya = H (l"]-Yb) £'b/2' a = 2 , 3  .... , N - 3 ,  (28)  
b = 2  

in terms o f  the reduced incidence matr ix  of  AN_3, Eab. Eq. (26)  is changed to 

1 l 
1 [ ~ ( 1 - ~ x ) +  . ( 29 ,  

12 N ( N I + N + I )  - 2n 2 a = 2  k l + w ~ ]  ~=: \ l + y ~ J  ,=~ k l + z , J _ ]  

We have checked eq. (29)  using Mathemat ica  T M  for several cases (see table 1 for numerical  results) .  While  the 
solutions o f  eq. (27)  are not  s imple numbers ,  it is remarkable  that  the sums of  the Rogers d i logar i thmic  func- 
t ions reproduce the ra t ional  values of  the left-hand side o f  eq. (29)  correctly. This may mean that  there exists a 
new kind o f  sum rules. This concludes that  min imal  CFT ~/p/q (p=N,  q = N I + N +  1, I even)  per turbed  by ~ , 3  
is the RSG [p/q] theory that  has N - 2  kinks and l breathers  in the spectrum. 

We would like to thank Professor Doochul  K im and Dr. Kong-Ju-Bock Lee for helpful discussions and C.A. 
thanks Professor H.S. Song for hospi ta l i ty  at CTP where this work has been done. 
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