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Abstract

The boundary supersymmetric sinh-Gordon model is an integrable quantum field theeyylin 1
dimensions with bulkv = 1 supersymmetry, whose bulk and bound&matrices are not diagonal.
We present an exact solution of this model. In particular, we derive an exact inversion identity and
the corresponding thermodynamic Bethe ansatz equations. We also compute the boundary entropy,
and find a rich pattern of boundary roaming trajectories corresponding<t8/2 superconformal
models.00 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The supersymmetric sinh-Gordon (SShG) model [1-6] is one of the simplest examples
of a (1+ 1)-dimensional integrable quantum field theory with= 1 supersymmetry.
Indeed, the particle spectrum consists of one boson and one fermion which have equal
mass and which enjoy factorized scattering [7,8]. As such, SShG is a valuable toy model.

In this article, we consider the boundary SShG model, with boundary conditions that
preserve the bulk integrability, but not necessarily the bulk supersymmetry [9-13]. In
addition to its usefulness as a simple prototype, we expect that this model may also have
applications to quantum impurity problems [14].

An interesting feature of the boundary SShG model is that Shmatrices which
have been conjectured for both bulk and boundary scattering are not diagonal. Our main
objective is to perform a thermodynamic Bethe ansatz (TBA) analysis [6,15-19] for this
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model, using these conjectur§dmatrices as inputs. Such analysis can provide checks on
the inputS matrix data, as well as information about the underlying boundary conformal
field theory [20,21].

Conventional wisdom suggests that the problem of determining the necessary Bethe
ansatz equations is intractable, due to the fact that both the bulk and bouhiieatyices
are not diagonal. Nevertheless, we succeed to determine the Bethe ansatz equations and
carry out the TBA analysis for the boundary SShG model. This is the first example of
a model defined on an open interval whose both bulk and bourflargtrices are non-
diagonal for which Bethe ansatz equations are obtafned.

We also obtain an expression for the boundary entropy [19,26] for the boundary SShG
model. Moreover, we find a rich pattern of boundary roaming trajectories corresponding
to ¢ < 3/2 superconformal models [27,28], thereby generalizing previous work on bulk
[29-31] and boundary [32,33] roaming.

The outline of this article is as follows. In Section 2 we review the scattering theory
of the boundary SShG model, which serves as our input. Here we also show that the
strong—weak duality symmetry of the bulk model (see, e.g., [34]) extends also to the model
with boundary. Moreover, we introduce the notations and conventions which are used
throughout the paper. In Section 3 we formulate the so-called Yang matrix [35] and relate it
to a commuting transfer matrix, which is the true starting point of any TBA analysis. For the
problem at hand, we require a boundary version of the Yang matrix [36,37], which presents
an interesting complication with respect to the more familiar case of periodic boundary
conditions. In Section 4 we use the open-chain fusion formula [38] to derive an exact
inversion identity, using which we obtain the eigenvalues of the transfer matrix in terms of
roots of certain Bethe ansatz equations. That such an inversion identity exists is presumably
due to the fact that the bulik matrix satisfies the so-called free fermion condition [39-41].

In Section 5 we use these results to derive the TBA equations. Certain remarkable identities
lead to very simple formulas, in particular for the boundary entropy. In Section 6 we use
our result for the boundary entropy to obtain boundary roaming trajectories. Finally, in
Section 7 we discuss our results and describe some possible generalizations.

2. Review of boundary SShG scattering theory

In this section, we review the bulk and bound&ryatrices which have been proposed
for the boundary supersymmetric sinh-Gordon model. As mentioned in the introduction,
theseS matrices will be used as inputs in the calculations that follow. We also show that the
strong—weak duality symmetry of the bulk model extends also to the model with boundary.

1 For the multichannel Kondo model [22—24], the corresponding transfer matrix is that of a closed spin chain
with an impurity, rather than an open spin chain with boundaries. For the boundary sine-Gordon model with
non-diagonal boundar§ matrix [9], certain exact results have been obtained [25] by analytic continuation from
a regime with diagonal bulk scattering; however, the corresponding Bethe ansatz equations have not yet been
determined.
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2.1. Bulk

In order to understand the SShG scattering theory, it is essential to first consider a related
model, namely, the supersymmetric sine-Gordon (SSG) model, whose Euclidean-space
Lagrangian density is given by

Look= —( 0.9 + V.V + Yoz ) +zM1/f1/fCOSﬂ¢+ sm2ﬁ¢ (2.1)

where¢ (z, 7) is a real scalar fieldy (z, 7) and/(z, 7) are the components of a Majorana
spinor field, andg is the dimensionless coupling constant. The Lagrangian density for
the supersymmetric sinh-Gordon (SShG) model is obtained by analytic continuation to
imaginary coupling, i.e., setting =i 8 with A real:

E5SRO= 300+ 0+ ) + MY coshio + sntfo. (22

Both of these models havg = 1 supersymmetry (without topological charge) [1,2] and
are integrable [3,4F

Observe that SSG has a periodic potential, which admits classical soliton solutions that
interpolate between neighboring minima. Correspondingly, it has been proposed [42—-44]
that the SSG quantum spectrum consists of supersymmetric multiplets of kinks of mass
m and breathers (bound states of kinks) of mags= 2m sin(nar),n=1,2,...,[1/2«],
where

p?/4n
S 1@y #2)
and[x] denotes integer part of. Hence, breathers can be present only ¥ @ < 1/2.
The lightest ¢ = 1) breathers are identified as the elementary particles (boson, fermion)
corresponding to the fields in the Lagrangian density (2.1).

Upon making the analytic continuation to SShG (which is the model of primary interest),
we see that the potential is no longer periodic, and hence, there are no longer any classical
soliton solutions. Thus, the SShG quantum spectrum does not contain kinks; it consists
only of the elementary particles of some masgscorresponding to the fields in the
Lagrangian density (2.2), i.e., corresponding to ithe 1 SSG breather. Setting = i
in Eq. (2.3), we obtain

42
oo PN _ g (2.4)
1+ (B?/4m)
where we have introduced the SShG paramater

20f course, a similar relation exists between the usual (non-supersymmetric) sine-Gordon (SG) and sinh-
Gordon (ShG) models. It is more straightforward to infer the scattering theory for the trigonometric (SG, SSG)
models than for the hyperbolic (ShG, SShG) models, because the former have kinks with topological charge,
whose non-diagona$ matrices must satisfy highly restrictive constraints [7,8,42,43]. Jhmatrices for the
hyperbolic models are inferred by analytic continuation of the corresponding breSathatrices, as is explained
in more detail below.
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Since the SShG spectrum corresponds torthe 1 SSG breather, we infer that the
SShGS matrix S(6) for two particles of rapidities1, 6, (and corresponding enerds =
m coshy; and momentun®; = m sinhd;, i = 1, 2) is given by the analytic continuation of
then = 1 SSG breathe$ matrix,

S(0) = Ssha(6)Ssusy(6), (2.5)
wheref = 61 — 02. The scalar factofshc(0) is given by
sinh® — i sin(2Bw)
sinhg + i sin(2Bm)’

This is theS matrix of the usual (non-supersymmetric) sinh-Gordon model [45,46], which
is the analytic continuation of the = 1 SG breatheS matrix [47], but with a different
dependence on the coupling constant. It satisfies

Ssha(f) =

(2.6)

Ssha(#) Ssha(—0) =1, Ssha(f) = Ssha(in — 0). (2.7)
The factorSsysy(9) is given by?
Ssusy(0) =Y (0)R(9), (2.8)

whereR(0) is a 4x 4 matrix acting on the tensor product spa¢e V, whereV is the
2-dimensional vector space of 1-particle states. We chfo&®)), | £ (6))} to be the basis
of V (corresponding to a boson, fermion with rapidityrespectively); and hence, the basis
of V.® Vis given by{|b1, b2), |b1, f2). | f1, b2), | f1, f2)}, Where|bi, ba) = |b(61), b(62)),
etc. In this basisR () is given by

ar(®) 0 0 d®)

R©) — 0 b c® O ’ 2.9)
0 c@ b 0
d@) 0 0 a_(0)

with
2i sinBx
f)=+1— ———— b=1
a+(6) sinhg ’ ’
i SinB sinB
(= _isinbx -, __sinbx, (2.10)
sinh3 coshs

Itis important to note that the matrix elementskip) satisfy the “free fermion” condition
[6,39]

ara_ +b>=c?+d> (2.11)
The matrixR (9) is a solution of the Yang—Baxter equatibn

3The matrix Ssysy(f) for SSG was first obtained [5] in terms of an unknown paramgtdry solving the
constraints coming from supersymmetry and factorization. The identificatiof iofterms ofa was made in
[44].

4 We use the very useful convention (which is standard in the spin-chain literature [48-50], but unfortunately
not in the field theory literature), wherel®; (6) acts nontrivially on théth andjth vector spaces. For instance,
in the Yang—Baxter equation, tematrices act orv®3, and thereforeR12(6) = R(9) ® 1, R23(0) =1® R(9),
etc., wherdl is the unit matrix.
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R12(01 — 62) R13(61 — 03) R23(62 — 03)
= R23(02 — 03) R13(61 — 03) R12(61 — 62). (2.12)
This matrix is bothP andT invariant,
P12R12(6)P12= R12(6), R12(0)"*"? = R12(6), (2.13)
wherer; denotes transposition in thith space, an is the permutation matrix
1000
0010
P= o100l (2.14)
0001
Moreover,Y () is a scalar factor given by
)
sinh3

Y@)=— 2
©) sinh —isinBr

X exp _7)@ sinh(iz6 /7) sinh(z (1 4+ B)) sinh(z B) ’ (2.15)
)1 cost costt 5
which is a solution of the unitarity and crossing constraints
Y (0)Y(—0) sint? 5 YO)=Y(imr —0) (2.16)
~ sint? g +siP Br’ - ’ '
Let us denote the total scalar factor Byp)
Z(0) = Sshc(0)Y (0). (2.17)
One can show that (9) has the integral representation [6]
sinh}
ZO)=—5————
sinh3 +isinBr
% ex ]Oﬂ sinh(iz6 /7) sinh( (1 — B)) sinh(z B) ’ (2.18)
t costv costt &

0

which is the same as the expression in Eq. (2.15), exceptBvith —B. It has no pole8
in the physical strip (&< Im6 < ), providedB lies in the range

O0<B<l1, (2.19)

which corresponds to @ 42 < co.
In short, the proposed SShG bukmatrix S(0) is given by

5 Although Y (9) has a pole a# = i2Br, itis canceled by a corresponding zeroSef,g(0)-
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S) = Z©O)R(0), (2.20)
where the scalar factaZ (6) is given by Eqg. (2.18) and the matriR(9) is given by
Egs. (2.9), (2.10).

It is known (see, e.g., [34]) that the SShG bulknatrix is invariant under the strong—
weak duality transformatio — 4 /8, which implies

B— 1-—B. (2.21)

Indeed, this invariance can be checked by inspection of the matrix elements (2.10) of
R(6) and the expression (2.18) fa@n0). (The factorsSsnhe(0) andY (6) are not separately
invariant.) Note that this transformation maps the range (2.19) into itself.

2.2. Boundary

We turn now to boundary conditions and boundary scattering, following the framework
developed by Ghoshal and Zamolodchikov [9]. An investigation of which boundary terms
can be added to the bulk SShG model (2.2) without spoiling (classical) integrability has
led to the following results [10]: the boundary Lagrangian

LESIC, = AcOShB(¢ — do) + My +ey + &, M#EL (2.22)

breaks supersymmetry but preserves integrability; and
M N _
Lioumdary= 3 coshBe + Iy (2.23)

preserves both supersymmetry and integrability. Notice that the boundary terms (2.22)
involve a total of 5 boundary parametets ¢o, M, ¢, €. If €, € are nonzero, then fermion
number is not conserved.

The proposed boundatyy matrix S(9) for a particle of rapidityd is given by (compare
with Eq. (2.5)F7

S(0) = Ssh(®: 1. 1) S§sy(0: ¢). (2.24)
The scalar factossha(0; 1, ), which depends on two boundary parametgns, is given
by

4nB 4i9 B
SShG(Q;n,ﬂ)=Xo(9)X1<9;nT)X1<9; - ) (2.25)

where
1

Xo0) = (V(1+2B)2=2B).  Xa0:F)= a5

(2.26)
with

6 \We make an effort to distinguish boundary quantities from the corresponding bulk quantities by using Sans
Serif letters to denote the former, and Roman letters to denote the latter.

7 The boundaryS matrix is obtained in terms of a set of boundary parameters, ¢, ¢) by solving the
boundary Yang—Baxter equation. The relation of these parameters to thbgﬁm:aary(z.ZZ) is not known.
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_ sinh(5 + %)
" s - )
This is the boundan$ matrix of the usual (non-supersymmetric) boundary sinh-Gordon

model, which is the analytic continuation of the= 1 boundary sine-Gordon breathgr
matrix [51]. It satisfies

(x) (2.27)

Ssha(f; 1, 1)Ssha(—0; n, ¥) =1,

i i
SShc-;(? + 065, ﬁ>SShG(29) =SShG<7 —0;n, 19). (2.28)

The factorS(SgL)JSY(e; @) is given by [11,12]
SSUsy(0: @) = YO (0: ) RO (0: ), (2.29)

wheree is a discrete parameter which can be eithdr or —1, andg is a continuous
boundary parameteR®) (6; ¢) is a 2x 2 matrix acting on the vector spateof 1-particle
states, which is given by

0~ | ainhf ) eiqi
RO@: ) — cosh; G’ +isinh5G* ei sinhg (2.30)
’ e 0~ a8 () )] '
i sinhg cosh;GY’ —isinh3G™
where
sink? ¢
r coshp+e€‘/’7_2), if & =¢,
GO _ ( l+esinBr (2.31)
¢ sini? '
sinh £ if & =—
r( ¢ +ee 1+ssian>’ ¢ ¢
and
2 sinB 172
rz(i(”_ ”)) . (2.32)
sinBw

The matrixR®) (6; ¢) is a solution of the boundary Yang—Baxter equation [52]

R12(01 — 62) Ry (01: 0) R1a(01 + 02)RY (62: )
= RS (62: ) R12(61 + 62) Ry (61; ) R12(61 — 62). (2.33)
We remark that fop — o0, the matrixR®) (6; ¢) becomes diagonal and commutes with
linear combinationg + Q of the supersymmetry charges [11-13].
In order to determine the scalar factot®) (9; ), we recall that the full boundary

matrix must satisfy boundary unitarigy(9)S(—6) = 1 and boundary cross-unitarity [9],
which can be written in matrix form as

. to .
tro so<% n 9) PorSo1(20)' = sl<% - 9). (2.34)

We observe that the matriX®)(9; ¢) satisfies
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R®(0; 9)RE (—0; 9) = h(O)L, (2.35)
where
. 0 . 0
h) = <co+clslnhz§ + cosintt E) coshp, (2.36)

and

o r2costf o, if e =+1,
r2sinff g, ife=—1,

rZee‘Zgo rZeEZ(p
= 472 R 2.37
AT 1 esinBr e 2 (1+esinBm)? (2.37)
Also,
o in
tro Réf“( 5+ ¢> Po1Ro1(20)"* = () Ri”(; —6; ¢), (2.38)
where
esinhd —isint B
0)= - . 2.39
8©) sinho ( )
Setting
Y 6: ) =Y O)Y ;). (2.40)
it follows thatY(g)(e) andY(f) (0; ¢) must satisfy
Y§ )Y (—6) coshy =1,
Yg>( 5 +9)Y(29)g(9) Yg”(7 —9> (2.41)
and
. 0 . 0
Yge)(9§ (P)Ygg)(_@; ®) <co + ¢y sint? > + ¢ sintf 5) =1,
Yﬁ”( 5+ w) Y(€)<7 —6; w) (2.42)

respectively.

For simplicity, we shall henceforth restrict our attention to the easet1, and so we
shall drop the superscrigt). We propose the following integral representationsvig©)
andY1(0; ¢):

Yo(®) = 1 [ dr sinh2i16/x) sinh(t (1 + B)) sinh(1B) )

i
— expl= | =
V2sinh(§ + &) p<20/ t costt cosit 5
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Y1(05¢) =

1
r coshy

X exp(4/% cosk(t;/yr)cosf(%(l— 23))

0
(1 AN AY S i\t
X smh(é <1+ ;>> smh<g> <smht coshé) )
(2.43)
where¢ is a function of the boundary parametedefined by
¢ =cos(1+e % (1+sinBn)). (2.44)

In order to streamline the notation, let us denote the set of boundary parafmettrs}
by &, and denote the total scalar factorby; &)

Z(0;&) =Sshe(@; n, M)Y(O; @)
=70(0)Z1(0; §). (2.45)

The proposed SShG boundafynatrix is then given by
S(O:;8) =2(0; 6)R(0; ¢). (2.46)

We now observe that the bounda$ymatrix is also invariant under the strong—weak
duality transformation (2.21). Indeed, it is evident that the maii&; ¢) (2.30) has this
invariance, if we assume that the parameteemains invariant under this transformation.

Let us now consider the scalar factor. The part of the scalar factor that does not depend on
boundary parameters can be written in the form

Zo(0) = Xo(0)Yo(0) (2.47)
" Vasin(5 - §)
costt cosit 5

X exp(—%/dT Sinh(2i6/7) [cosh(1—2B))(1+ 2cosh) +coshf]>,
0

(2.48)

in which the duality invariance is manifest. (The fact®ss0) andYo(0) are not separately
invariant.) Finally, the part of the scalar factor which does depend on boundary parameters,

4nB 4i9B
71(0: s)—x1<9 "7> x1<9; ’n )Yl(e;ga), (2.49)

is also invariant under duality, since each of its factors are separately invariant (provided
the boundary parametey® and® B are assumed to remain invariant).
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3. Yang equations

Having specified the bulk and boundasymatrices, we are ready to start the TBA
program. The first step is to formulate the Yang matrix and relate it to a commuting transfer
matrix. Since this is not obvious for the case of boundaries, we begin by reviewing the more
familiar case of periodic boundary conditions.

3.1. Closed

We considerN particles of mass: with real rapiditiesd, ..., Oy and two-particleS
matrix S(0) (2.20) in a periodic box of length > 1/m. The Yang equation [18,35] for
particle 1 (which has momentuf = m sinh61) is given by

(eEmsiMiy ) —T)161, ..., 65) =0, (3.1)
whereY(q) is the “Yang matrix’®

Ya) = Siv (01— On)S1,n-1(01 — On—1) - - - S12(01 — 02), (3.2)

which acts onV®V . There are similar equations, and corresponding mattiggsfor the
other particles =2,3,..., N.

The objective is to diagonaliz&(;,. The key to this problem is to relat;, to
an inhomogeneous closed-chain transfer matrix, for which there are well-developed
diagonalization techniques. (For reviews, see, e.g., [48-50].) Indeed, consider the transfer
matrix (see Fig. 1)

Telosed 0101, - . .. On) =tro{ Son (0 — On) - - - S02(6 — 62) So1(6 — 61) }, (3.3)

with inhomogeneitie®;, ..., 0y. Notice that we have introduced an additional (“auxil-
iary”) 2-dimensional vector space denoted by 0. The produStroitrices inside the trace
(the so-called monodromy matrix) acts B# N +D; but after performing the trace over the
auxiliary space, one is left with an operator which acts on the (“quantum”) §p&te Be-
causeS(9) satisfies the Yang—Baxter equation, the transfer matrix commutes for different
values of9

o | | |]

N 2 1

Fig. 1. Closed-chain transfer matrix.

8 \We remind the reader that we are using the convention explained in footnote 4.
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[Tclosec(9|91, -.»ON), Telosed 0161, .. ',QN)] =0. (3.4)
Let us now evaluate this transfer matrixéat= 6;. Using the fact thas(0) = P (the
permutation matrix (2.14)) an@? = I, we see that

Tclosed 01101, . .., ON)

= tro{ (Po1Po1) Son (01 — On) - - - (Po1Po1) So2(61 — 62) Poa}. (3.5)

Finally, usingPo150; Po1 = S1; and tp Po1 = 1, we conclude thatciosed 01161, - - -, On) =
Y(1). In general, we have

Y(i) = Tclosed®il61, .., On), i=1,...,N. (3.6)

This is the sought-after relation. In order to diagonalize the Yang matriggst suffices
to diagonalize the commuting closed-chain transfer matgj¥sed €161, . ..,0y). That
calculation, as well as the corresponding bulk TBA analysis, is described in [6].

3.2. Open

We now turn to the case with boundaries, which is our primary interest in this paper. We
therefore consideN particles of mas#: with real rapiditiesds, ..., 6y in an interval of
length L > 1/m, with bulk S matrix () (2.20) and boundar§ matrix S(6; &) (2.46).

The Yang equation for particle 1 is given by [36,37]
(eZLmsnMiy ) —T)|6y,...,0n) =0, (3.7)
where the Yang matriX(q) is now given by

Y1) =S1(01; §-)822(01 + 02) - - - Sn1(01 + On)
x S1(01; §+)S1n (01 — On) - - - S12(61 — 62), (3.8)
where the subscripts denote the left and right boundaries. (There are similar matFiges
for the other particles.) In analogy with the case of periodic boundary conditions, the key
to diagonalizing the Yang matrix is to relate it to an inhomogeneous open-chain transfer
matrix [53] (see Fig. 2)
T(0161, ..., 0n) =trof{So(—6 +im; £1)Son (0 — On) - - - So1(6 — 61)
X So(6; £-)S01(6 + 61) - - - Sow (6 + On) . (3.9)

which commutes for different values é6f

N 21

Fig. 2. Open-chain transfer matrix.
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[t(0161,....08), T(0161,...,0N)] =0. (3.10)
Using the boundary cross-unitarity relation (2.34) as well as the Yang—Baxter equation
(2.12), (2.33), one can show that

Yioy=t(ilb1,....0n), i=1...,N. (3.11)

A proof for the caseV = 2 is presented in Appendix A. Hence, in order to diagonalize
the Yang matrice§;, it suffices to diagonalize the commuting open-chain transfer matrix
(0161, ...,0x). Itis to this task that we devote the following section.

4. Inversion identity and transfer-matrix eigenvalues

In this section, we consider the problem of determining the eigenvalues of the
inhomogeneous open-chain transfer matrix (3.9). Our approach will be to first derive an
exact so-called inversion identity. This approach has been used in the past to diagonalize
simple (e.qg., Ising) closed-chain transfer matrices [6,17,54].

4.1. Inversion identity

Instead of working with the “dressed” transfer matrix (3.9), it is more convenient (see
footnote 10) to strip away the scalar factors from the bulk and bour§iergtrices, and to
work instead with the “bare” transfer matrix

(0161, ..., 0n) = tro{Ro(—6 + im; ;)" Ron (0 — On) - - - Ro1(6 — 61)
x Ro(0; p—)Ro1(6 + 61) - - - Ron (6 + 6n) }, (4.1)

whereR (6) is given by (2.9) an®R(6; ¢) is given by (2.30) withe = +1.

There are two key points involved in obtaining the inversion identity. The first key point
is to observe that the bulk matrix degenerates into a one-dimensional projector for a
certain value o (= —ix):

100-1

. 1l o000 o
5(-m)o<E 000 0 (4.2)

-100 1

Hence, it is possible to “fuse” [48,55,56]in the auxiliary space, and thereby obtain a fusion
formula of the form [38]

(0101, ..., 0O +im|6n, ..., 0N8) X U001, ...,08) + A, (4.3)

wheret(0|61, ...,0y) is a “fused” open-chain transfer matrix (see Fig. 3), and h&re
represents a product of certain quantum determinants [57,58]. The fused transfer matrix is
constructed from the fused bulikmatrix R () and the fused boundatymatrix R(9; ),

using the “fused” 3-dimensional (instead of 2-dimensional) auxiliary space.

9 We therefore fill a gap left open in [36], where it was first observed that the open-chain Yang matrix is related
to the Sklyanin transfer matrix; but neither the precise form of the relation nor its proof was given.
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Fig. 3. Fused open-chain transfer matrix.

The second key point is that boff(9) andR(6; ¢) can be brought to upper-triangular
form by af-independent similarity transformation. This remarkable fact is presumably due
to the fact thatR(0) satisfies the free fermion condition (2.11) (cf., [40,41]). As a result,
the fused transfer matrix is proportional to the identity matrix

6161, ... 0n) L. (4.4)

It follows from the fusion formula that the transfer matrix obeys an exact inversion
identity

0161, ..., 00O +im|O1, ...,08) = F(OL, (4.5)

where f(0) is a calculable scalar function. We find (see Appendix B for more
details)

£6) = 16sinit o
 sinh@ — i Brr) Sin(@ + i Brr)(1 + sinBr)2sin Brr
y aﬁ cost(3( —6;) —iBr) cosh(3(6 +6;) — i Br)
i cosh{(3(6 - 6))) cosi(3(0 +6)))
L ﬁ sinh(3(6 — 6;) — i Brr) sinh(3(6 +6,) — i B)
i1 sinh(3(0 —6)) sinh(3(0 +6)))
5 ﬁ cosi(2(0 —6;) +iBr) cosi(3(0 +6;) +iBx)
i1 cost{z(6—6)) cosH(3(0 +6)))
—Oﬁ sinh(3(6 — 0,) +iBr) sinh(3 (0 + 6;) +iBx) 4.6)
i1 sinh(30 —0)) sinh(3(6 +6,))
where

a:sink?(%(inB + % - 9))
X [e—‘ﬂ sinh2<%<inB + %)) + ¥~ sinh2<%<—inB + % +9))}

X [p— — @41,
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b:sink?(%(—inB + % +9))

X [ew sinh2<%<inB + %)) + ¥~ sinhz<%<inB + % — 9))}

X [p— — ¢4],

c=sin|’?<%(inB + % +9>>
X [e—‘ﬂ sinh2<%<inB + %)) + ¥~ sinh2<%<inB - % +9>>}

X [o— — @4],

Y =Sin|’?<%<inB — % +e>>
x [eﬁ" sinh2<%<inB + %)) + ¥~ Sinh2<%<inB + % +9>>}

X [p- = ¢4 ]. (4.7)

Notice that the functiorf (9) is invariant under the duality transformatidn— 1— B. This
inversion identity is one of the main results of this paper. We have checked it numerically
uptoN =3.

4.2. Eigenvalues

We now proceed to determine the eigenvalues of the transfer matrix. First, observe that
by virtue of the commutativity property (3.10), the bare transfer matéijo4, . . ., On) has
eigenstate®, ..., Ox) which are independent &f,

L0101, ..., 0N)101, ..., ON) = £(0101, ...,0N)101, ..., ON), (4.8)

where£(0|01, ..., 0y) are the corresponding eigenvalues. Acting/@n. . .0y ) with the
inversion identity, we obtain the corresponding identity for the eigenvalues

£(0101, ...,00)L0 +ir|br,....0n8) = £(O). (4.9)

Moreover, one can show that the bare transfer maii@o1, ..., 0y) is a periodic
function of with period 2ri 1°

t(0 + 270|601, ..., 0n) = t(0]01, ..., 0N), (4.10)
whose asymptotic behavior for largds given by
@161, ..., 0n) ~ 3ize39]1, for g — oo, (4.11)

where
4j e?-T9+

c= - - . (4.12)
(1+sinBr)sinBx

Correspondingly, the eigenvalues obey

10 This is not the case for the dressed transfer matfiioq, . .., 6y), due to the presence of the scalar factors.



C. Ahn, R.l. Nepomechie / Nuclear Physics B 586 [FS] (2000) 611-640 625

L0 + 270161, ..., On) = £©O161, ... 08),
L0161, ..., 0y5) ~ 3ize39, for § — oo. (4.13)

The eigenvalue£ (6161, ...,0y) are uniquely determined by the zeros and poles of
f(0), together with periodicity and asymptotic behavior. Indeed, observeftttatis a
product of two factors. Lefl = z,f, 7, be zeros of the first, second factors, respectively.
Thenz;" obeys

ﬁ tanh(3(z — 6)) —iBn) tanh(3 (¢ +6;) —iBn)

tanh(3 (" —6)) tanh(3 (" +06))
SinfP(3(in B + & — z}1))
sintP(i(—in B+ 2 + 7))
e ¥~ Sinhz(%(inB + %)) + e?- Sinhz(%(—inB + % + Z;:))
|: e~ Sinhz(%(inB + %)) + e¥- Sinl’?(%(inB + % — Z,:r)) :|
X [p- = ¢q], (4.14)

andz, obeys

j=1

ﬁ tanh((z; — ;) +iBxn) tanh(3(z; +6)) +iBn)

ik tanh(3(z; —6))) tanh(3(z; +6)))
_ sinf(3(inB+ % +2))
sintP(3(inB - Z 4 7))
e - Sinhz(%(inB + %)) +e¥- Sinhz(%(inB — % —i—z,:))
[e—‘ﬂ SintP(3(in B + F)) + e¥- sintP(3(in B + Z + zk_)):|
x [p- — @] (4.15)

These are our “magnonic” Bethe ansatz equations.
It follows 11 that f(0) can be represented as

2 N
1) = —i—(ssinlf?e (l—[ sinh(6 — z;) sinh(é + z;7) sinh(6 — z;") sinh(6 + z[))
k=0

N -1
X <]‘[ sintf (6 — ) sintf (6 + ek)> . (4.16)

k=1
It now follows by similar arguments that

11 |ndeed, let us denote the right-hand side of Eq. (4.16F ). We observe that botfi(9) and F(9) have the
same periodicity (namelyy, which is half the period o£(0161, ..., 0n)), the same zeros and poles in the strip
—in/2 <0 < ix/2, and the same asymptotic behavior. (The apparent polgstofatd = +i Bz are canceled
by corresponding zeros.) Hence, the functigd) = F(0)/f (0) is regular everywhere in the compléxplane,
and thus must be constant by Liouville’s theorem. By considering the #imit oo, we see that this constant
must be 1.
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£(6161, ...,0N)

_ csinhg (ﬁ) sin( 30 —<5) ) s 30 + 1))
conn{ o)) s o+
«([Tom50-)smn(z+)
< cost{ 5(0 — ) ) cost{ 30+ ek)))l (4.17)

is the unique solution to the inversion identity (4.9) with the properties (4.13). Note that
there areV + 1 pairs of root&ki, whereas in the case of periodic boundary conditions [6]
there are onlyV. The appearance of the additional pair of rmj;*sis due to the fact that
the boundany matrixR(0; ¢) is not diagonal. The existence of these roots is essential for
obtaining the correct asymptotic behavior; and it can be easily checked for th& cafe

In summary, the eigenvalues of the bare transfer matrix (4.1) are given by (4.17), where
zF satisfy Egs. (4.14), (4.15).

4.3. Structure of Bethe ansatz roots

Before performing the thermodynamity (— oo) limit (which is the subject of the next
section), it is necessary to first understand the structure of the Bethe ansatz roots. Following
[6], we observe that the Bethe ansatz Egs. (4.14), (4.15) have roots of the form

+_ |xx+iBm, - ) xk—iBm, 418
Zk_{xk+iBrr+irr, Zk_{xk—iBrr—irr, (4.18)

wherex; are real and satisfy

l—l[tanr(z(xk—e ; —iBm)) tanh(3 (e + 6; —an))}smhz(% '
tanh(3(xy — 6 +iBm)) tanh(3 (xx + 6 + i B7r)) !

~¢-sint?((in B+ Z)) 4 ¥ sint?(3(Z —
X[e - (i(l. ii)) : (2 xk))}[w——><p+]=1,
e=¢- sintP(3(in B+ F)) + e~ sint?(3(F + xx))
k=0,1,...,N. (4.19)
Evidently, for eachxy, there are 4 possible combinations of ro(ﬂﬁ, z; ). However, by

considering the limitB — 0, one can argue that only 2 of these combinations are allowed,
which we denote by, = +1 ande; = —1, respectively:

=+1 (g =xx+iBm, g =xx—iBr —im),
a=-1 (i =xx+iBn+in, zy =x —iBn). (4.20)

Hence, the eigenvalues are specified by ¢}, k =0, ..., N:



C. Ahn, R.l. Nepomechie / Nuclear Physics B 586 [FS] (2000) 611-640 627

TV g hee (0 — xi) A—e, (O + x1)

£0101,...,0N)e.cy = cSINhY , 4.21
. Nicoew [TV, Lsinh® — 6;) sinh6 + 6;) (4-21)
where
. 1 . 1 .
Ae(0) = smh(E(G — €l Bn)) cosk(E(e +€i Bn)), (4.22)

€r = 1, andx; satisfy (4.19).
To close this section, we observe that the “dressed” transfer matrix (3.9) is simply related
to the “bare” transfer matrix (4.1) by

(0101, ....60N)
N

=Z(—0+im; E)Z(0;E) ]_[[Z(e —O)Z©O + 00 |t(0161, ..., 0n), (4.23)
k=1

where the scalar factos(9) andz(6; &) are introduced in Egs. (2.17), (2.45). Hence, the
eigenvaluesi (061, ...,0x) of (0161, ..., 0x) are given by

Z(0; 20;E_)Z(—20
A(9|01,...,9N)eo~~~eN = ( éJr()g(En : )) ( )
Z—

N
< [120 =602 +00L0101. ... 00epey.  (4.24)
k=1

whereL(0101, ..., 0n)ey-ey IS given by (4.21). Here we have used the fact

2(-6 +im )= 28 D)
g(7 —0)

which follows from the bulk unitarity (2.7), (2.16) and boundary cross-unitarity (2.28),
(2.41), (2.42) relations.

(4.25)

5. Thermodynamic Bethe ansatz analysis

Having obtained the eigenvalues of the transfer matrix and the Bethe ansatz equations,
we can proceed to the derivation of the TBA equations and boundary entropy. We begin
by briefly reviewing the general framework. Following [9,19] we consider the partition
function Z, _ of the system on a cylinder of lengthand circumferenc® with left/right
boundary conditions denoted By(see Fig. 4)

AR
= (Byle "r|B_)
~ (B4|0)(0|B_)e LFo,  for L — oo. (5.1)
In the first line, Euclidean time evolves along the circumference of the cylindeit/and

is the Hamiltonian for the system with spatial boundary condititngn passing to the
second line, we rotate the picture, so that time evolves parallel to the axis of the cylinder;
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R

+ LT

- L

Fig. 4. Cylinder on which the partition functiof— is defined.

Hp is the Hamiltonian for the system with periodic boundary conditions, |#1d are
boundary states which encode initial/final (temporal) conditions. In the third line, we con-
sider the limitL. — oo; the statg0) is the ground state dfp, andEy is the corresponding
eigenvalue. The quantity {8.|0)(0| B_) is the sought-after boundary entropy [19,28].
Taking the logarithm of the above expressions for the partition function, one obtains

—RF ~ —LEqg+In(B|0)(0|B_). (5.2)

Whereas the free enerdy has a leading contribution which is of order here we seek
the subleading correction which is of order 1.

5.1. Thermodynamic limit

We proceed to computg using the TBA approach [6,15-19]. To this end, we introduce
the densitiesP+ () of “magnons”, i.e., of real Bethe ansatz rogig} with ¢, = +1,
respectively; and also the densiti@g0) andp(9) of particles{d;} and holes, respectively.
Computing the logarithmic derivative of the “magnonic” Bethe ansatz equations (4.19), we
obtain®3

e¢]

PL(O)+P_(8)= % f do' p1(0)[@ (O —0") + PO +6)]
0
1
to T [FeO +20O) + ¥, )+, )], (53)
where
tanh(3(0 — i B)) 4 costo sinB
q>(9)=}i|n<ar(2( or )z costo sinBr
i 80 \tani(1(6 +iBn))) cosh? —cosBx’
inh(4(iz
q/(e):%iln(sfnh(Z(? +9)))=_ o
i 00 s|n|'(%(%— )) coshy

12More precisely, we shall compute the dependence of the boundary entropy on the boundary parameters. The
term in the boundary entropy which is “constant” (independent of boundary parameters) seems to be difficult to
compute even for simpler models [19,59].

13 The term— ﬁ @ () originates from the exclusion [36,37] of the Bethe ansatz tpet 0.
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W, (0) = 19 |n<e_(p SintP(3(in B + F)) + e sint?(3(F — ))>
Y e ¢ sinhz(%(inB + %)) +e¥ Sinhz(%(% +9))
_ _4coslpcost

" cosh® +cos2’ (5.4)

where¢ is defined in (2.44). Defining1 (0) for negative values df to be equal tg1(16]),
we obtain the final form

1
P(0) + P_(0) = —(pl *@)(0) + oL
[—cp(e) + 20 (0) + Wy, (6) + W, ()], (5.5)
wherex denotes convolution
(fx2)0)= / do'f(0 —6")g®"). (5.6)

We next consider the Yang equations, which imply (see Egs. (3.7), (3.11))
2LmSk A (0161, ..., 00) =1, k=1,...,N, (5.7)

where A(0|61, ..., 0x) is the eigenvalue of the dressed transfer matiix|61, ..., 0y),
which is given by (4.24). Computing the logarithmic derivative, we obtain

p1(6) + p(0)

iﬂ {Zm coshy + / do' p1(0")[ @20 —0') + Pz (0 +6)]

0
00

+ / do'[ Py (0)D (0 —0") + P_(0)D_(0 — 6"
0
+ P_ (0D (0 +0) + P (0)D_(0 +6")]

1 0 0
+ ZI:—@Z(Q) —297(20) + Y ImInz@; &) + Y ImInz(®; é)j”v (5.8)
where
0 0
Dz(0) = 70 —ImInZ©®), ®4+0)= 30 ImIniy(®). (5.9)

Using the fact® (0) = i%(b(@), and definingP4 (0) for negative values df to be equal
to P-(|6]), we obtain

p1(0) + p(0)
m 1 1
= costy + — (p1 % D2)(0) + 7 ((Py — P_) x @) (6)
T 2 47

1 3 3
+ o L[ P7(0) = 207(20) + - 1M INZ(0: 1) + — - Im InZ(0: & )} (5.10)
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We now use (5.5) to eliminat®_, and use the expressions (2.45), (2.49) to separate the
various factors irz(0; &) to obtain

p1(0) + p(0)
m 1 1 1
=—cosh+ —Pr D+ —p1*%| Pz ——Dx®
T 2 21 47

1 1 1
— | (P ——DxD 2 Iminz —Dy(20)— —¥ x D
+271L|: ( 77 g * )-i- < m InZo(0) z(20) o * )
1
( ImInY1(0; o4) — — ¥, * @)
A

] 1
—ImInY1(0; ¢_) — — V¥, @
+(89 1( a(p ) 47_[ (pf* )

190 4n. B 4i9. B
+——| X1< s )X1<9; s )
P P
10 4n_B 4;9_B
+ 29 a0 =B Y i (0. 2 . (5.11)
1060 T T

Noting the “bulk” identity [33]

1
Pz(0) — —(@xP)(0) =0, (5.12)
47
and its boundary counterparts
0 ImInY1(0; @) 1 (W, xP)()=0
6 1(0F, (p 47_[ 4 * )
d 1 1
—ImiInZp®) — ®2(20) — — (¥ xP)(O) = —-DP () + ¥ (), (5.13)
20 A 4
we remain with the rather simple result

- m 1
01(0) + p(0) = — cosh + —(Py x D) (9)
T 21

n i[_}cp(@) 120 (0) +« < 4'7;B) +/<<9; 4ii+B)

oL
(9 48 B)+K<9; 4”9‘B>}, (5.14)
T T

4 cosh coqn F/2)
cosh? +cosnF

where

10
K(O; F)==— In X1(0; F) = (5.15)

The thermodynamic limit of the magnonic Bethe ansatz equations and the Yang
equations, given by (5.5) and (5.14), respectively, are the main results of this subsection.
Notice that the former depends on the boundary parametershile the latter depends
on the (boundary sinh-Gordon) boundary paramejetrs.. .
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5.2. TBA equations and boundary entropy

The free energy is given by
F=E-TS, (5.16)
where the temperature 5= 1/R, the energyt is

o]

N
L
E= mcoshy = 5 / do p1(6)m costhp, (5.17)
k=1 s
and the entropy is [15,17]
L o
s=5 [ d0{(or+ PInGer+5)— prinpy - pin
—0Q
+ (P4 + P)IN(Py + P_) — Py InPy — P_InP_}. (5.18)

Extremizing the free energy F = 0) subject to the constraints
1
SP_=—6PL + —6p1% @,
2

1
8p=—0p1+ —0P+* D, (5.19)
2

(which follow from Eqgs. (5.5), (5.14), respectively) we obtain a set of TBA equations which
is the same as for the case of periodic boundary conditions [6,33]

1
rcoshd) =e1(0) + — (@ x L2)(0),
2
1
0=e2(0) + — (@ % L1)(0), (5.20)
2

where

L[(9)=|n(1+€7€"(9)), r=mR,

€1=|n</%>, €2=|I”I<I;—;). (5.21)

We next evaluaté” using also the constraints (5.5), (5.14) and the TBA equations. From
the boundary (order 1) contribution, we obtain (see Eg. (5.2)) the boundary entropy

In(B.410)(0|B_)

o0
1 1 4n. B 49, B
= = [ aol|-Zo@) +2006) +(0: T2 ) 4 ic[0; £
47 2 b4 T
—0Q
4n_B 4i9_B
+xc(0; —— ) +«(6; L1(0)
T T

+[-®O) + 2 (0) + Wy, (0) + ¥,_(0)]L2(6) } (5.22)
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In particular, the dependence of the boundary entropy of a single boundary on the boundary
parameters is given by

sp(n, ¥, @)

_ 1 d9”x(6;m7—3)+/<<9;4iﬁB>}Ll(9)+%(6)L2(6)}’ (5.23)
47 T T

where the kernelg(6; F) andy,,(9) are defined in Egs. (5.15) and (5.4), respectively. The
term involving L1, which had previously been conjectured [33], depends on the boundary
sinh-Gordon parametetg . The term involvingL,, which had not been anticipated,
depends on the boundary paramegefwhich appears irR(9; ¢), i.e., the non-diagonal
part of the boundang matrix). This expression for the boundary entropy is another of the
main results of this paper.

6. Boundary roaming trajectories

One application of our result (5.23) for the boundary entropy is to obtain boundary
roaming trajectories corresponding ¢o< 3/2 superconformal models. In order to best
explain this result, it is helpful to first recall earlier work on bulk and boundary roaming.

Zamolodchikov [29] first considered the TBA equations for the bulk ShG (non-
supersymmetric) model with the coupling constgnanalytically continued to complex
values,

g

The corresponding effective central chargg(r) interpolates (“roams”) between the
values

6
cp=1 ST D) p=3,4,5,... (6.2)

corresponding to the unitary < 1 minimal models [20]. Indeed, a plot @& (r) vs.
log(r/2) reveals a “staircase” with plateaus at values#{r) equal toc,,.

This result was later generalized [32] to the boundary ShG model: choosing the value of
r so thatces () lies on some plateau, the boundary entropyF) (whereF is a boundary
parameter) interpolates between values corresponding to various conformal boundary
conditions [21].

The original work [29] was also generalized [33] to the bulk SShG (supersymmetric)
model. The TBA equations with a similar analytic continuation of the coupling constant

7B = % +ifo, 60> 1 (6.3)

cause the effective central chargg(r) to interpolate between the values

14 For the case = —1, we obtain a similar result, except the parameteppearing in the kernek, (9) is now
given by = cos 1(—1+ 2 (1 — sinBx)) instead of by Eq. (2.44).
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3 1 8
= 2( p(p+2)
corresponding to the even unitary< 3/2 minimal models [27,28]. Precisely this set of
TBA equations had been conjectured earlier in [30], and then further generalized in [31].
Finally, let us consider the model of primary interest here, namely, boundary SShG.
For simplicity, we fix¢g = 0 in the boundary Lagrangian (2.22), which corresponds to
® = 0.1 Due to the roaming limit (6.3), we should rescale the remaining two parameters
n, ¢ so that the boundary entropy can be a function of well-defined (finite) boundary
parameters. For this purpose we get- 0 andg — oo while keepingfon andfy — 2¢
finite. Let us introduce new boundary parametgrand f» defined by (see Eq. (2.44))

26 1
S g Eeﬂo—Zw = coshfz. (6.5)
T

)7 p=436789"' (64)

We can reexpress the boundary entropy (5.23) in terms of these parameters as
s = sl(gl) + séz), where
1 o
S5 =4 / 6w ®; f)Li6), i=12, (6.6)
JT
—00

with
4 coshv coshf
cosh? + cosh2f’

v f)= (6.7)

To compute the roaming boundary entropy, we fix a value ofherecef(r) lies on a
plateau (6.4). Then, as we change the boundary roaming paranfetend f>, we check
if the boundary entropy interpolates between the values'f33]

sp(r.s) = |”[(j1n(g)) ) C:Engz;)}

=sg(r,D)+sp(l,s) (6.8)

corresponding to conformal boundary states) (which, in turn, correspont! to primary
fields ds(r,s))-

15 Consider the boundary SSG model first. Whign= 0 the total Lagrangian respeassymmetry due to the
Z symmetry¢ — —¢. Therefore, the boundary matrix should respedat symmetry, namely the soliton and
antisoliton should scatter equally on the boundary. Since the topological sector of thé ®&téx is encoded
in the SG part, the boundary parameteshould vanish as it does in the SG model [9]. This holds also for the
boundary SShG matrix because the two models are related by the fusion procedure.

16 Note that this expression satisfigg(1, 1) = 0. The correct expression for the conformal boundary entropies
has an additional “constant” term (i.e., independent of bo#ind s); we neglect this term here, since we are
mostly interested in differences; (r, s) — sg(+’, s”), for which the constant term cancels.

17 we recall [21] that for each bulk primary fieldl, ), there corresponds a conformal boundary stagg;) )
(which, for brevity, we denote here Iy, s) ) such that the partition functiod(y, 1), s) for the CFT on a cylinder
with conformal boundary stated, 1) and (r, s) is given byZ1 1y(-s) = X(-.5) (@), i.€., the character ab, ).

In particular, Z 1, 1)(1,1) = x(1,1)(¢) is the character of the unit operator.
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Fig. 5. Boundary roaming trajectorie%l) VS. f1.
Indeed, we can see clearly from Fig. 5 [33] théjt) interpolates between boundary
entropies of the conformal boundary states
(]-7 a)e (a_27 1)7

(a, 1), a odd. (6.9)
Similarly s'? generates the new flow (see Fig8)
(a - 27 1)7

LD @,

a even.

(6.10)
While these flows are generated by changing one parameter while fixing the other, we

can generate more general flows by changfingand f> simultaneously. In view of the
additivity property (6.8), these two sets of flows can be combined to generate additional
flows for the total boundary entropy

(s, 1),

(r,s) < (s =2,1),
’ (s,r +2),

(6.11)
(s—2,r+2), r—s=odd.

Note thatr — s = even/odd corresponds to the Neveu—Schwarz/Ramond sectors, respec-
tively.

18 For p > 4, we cannot associate any conformal boundary state to the final plateau (i.e., for asymptotically large
values of the boundary parametgr), since there is no stat@, 1).
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7. Discussion

We have presented the exact solution of the boundary SShG model — an integrable QFT
whose bulk and boundary matrices are not diagonal. In particular, we have derived an
exact inversion identity (4.5)—(4.7), as well as the TBA equations and boundary entropy
(5.23). Moreover, we have uncovered a rich pattern of boundary roaming trajectories,
which remain to be understood in detail.

Although the boundary SShG model has a special feature which allows it to be solved by
an inversion identity (namely, the butkmatrix satisfies the free-fermion condition (2.11)),
itis by no means the only such model. Indeed, there are infinite families of integrable QFTs
with N =1 or N = 2 supersymmetry [60—63] that have this property. These models have
bulk and boundary matrices which are similar to those of SShG, and therefore, we expect
similar inversion identities to hold. We hope to report on these models in the near future
[64].

Finally, we recall [53] that one can readily obtain the Hamiltonian of an integrable open

quantum spin chain withv spins from any homogeneous open-chain transfer mgtjg)
(4.1). Indeed, the HamiltonigH is given by

d
—1t(0|0 , 7.1
H 50 @l )6:0 (7.1)
which commutes witht(6|0). For the R matrices which we have considered here (2.9),

(2.30), the corresponding Hamiltonian is that of a certain anisotropic XY chain with both
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bulk and boundary magnetic fields. By determining the eigenvalues (4.17) of the transfer
matrix, we have evidently also solved the corresponding open quantum spin chain. It
would be interesting to exploit this solution to determine properties of this model in the
thermodynamic limit.
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Appendix A. Relation of Yang matrix to Sklyanin transfer matrix

In Section 3.2, we stated that the Yang matrix (3.8) is related to the Sklyanin open-chain
transfer matrix (3.9) in the following way (3.11):

Yiy=1(0:161,....68), i=1...,N. (A1)

We present here a proof for the caSe= 2. Evaluating the transfer matrix ét= 61, we
have

(0101, 62) =tro{So(—61 + im; £4)"0S02(61 — 62) S01(0)
X So(61: §-)S01(261) So2(61 + 62) }
= tro{So2(61 — 62) Po1So(1; £-)(Po1Po1) So1(201) (Po1Po1)
x So2(61 + 62) (Po1Po1)So(—01 + im; 1)} = -+ - (A.2)

In passing to the second line, we have used the cyclic property of the trace, as well as
§(0) =P andP? =1, whereP is the permutation matrix (2.14).

-+ =S1(01; £-) tro{ So2(01 — 62) S01(201) S12(61 + 62)
x Po1So(—01 +im; &4)0) =+ (A.3)
Here we have useBo1XoPo1 = X1, and theP symmetry of theR matrix (2.13).

-+ =81(01; §-) trof S12(01 + 62) S01(2601) So2(61 — 62)
x Po1So(—01 +im; )0} =---. (A.4)

Here we have used the Yang—Baxter equation (2.12).
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<o =S81(01; §-) S12(01 + 62)
x tro{ S01(201) (Po1Po1) So2(61 — 02) Po1So(—61 + i; £4)°}
= S1(61; §-)S12(01 + 62)
x tro{ S01(201) Po1So(—61 + i; £4)0} S12(61 — 62)
= S1(61; £-)S12(01 4 02)S1(61; £4) S12(61 — 62). (A.5)
In passing to the last line, we have used the boundary cross-unitarity relation (2.34) with

0= % — 61, and the crossing relatiospi(im — 0)"* = Sp1(#). Comparing the last line to
the expression (3.8) for the Yang matrix, we conclude that

7(01101, 62) = Y(1). (A.6)

For higher values ofV, the proof is similar.

Appendix B. Derivation of inversion identity

In Section 4.1, we give the important inversion identity (4.5)—(4.7). Here we explain in
more detail how we derived it. As already mentioned in text, the main idea is to formulate
the fusion formula, following Ref. [38], to which we shall refer a&’l.

Although the “dressed” bull§ matrix S(6) (2.20) is regular a# = 0, the “bare” bulkS
matrix R(6) (2.9) has a pole there. In order to avoid complications from this spurious pole,
in this appendix we rescalR(d) by the factor sin?; i.e., we takeR(0) to be given still by
(2.9), but now with matrix elements

a+(0) ==+xsinhd — 2isinBxw, b(0)=sinhg,

c(0)=—-2isinBrx coshg, d(®)=—-2sinBx sinh%. (B.1)
Keeping in mind the symmetries (2.13) of tRematrix, the unitarity relation (1 2.3) is
R12(6) R12(—0) = £ (0)L, c(0) = —4cosk g <sinh2 % + sir? Bn), (B.2)
and the crossing relation (I 2.4) is
R12(6) = V1iR12(—6 — p)'2V1, (B.3)
with 20
p=im, V:<é _2). (B.4)

The matrixR12(0) atd = —p is proportional to the one-dimensional projecf?f&

191n order to facilitate comparison with [38], we use here similar notations.
20 Alternatively, choosing = —ix, one hasy =1.
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100-1

~ 1 000 O ~ N2 _

P12=§ ooo ol (P12) —P12 (B.5)
-100 1

As explained in I, from the corresponding degeneration of the (boundary) Yang—Baxter
equation, one can derive identities which allow one to prove finsed (boundary)s
matrices satisfgeneralizedboundary) Yang—Baxter equations.

The fusedR matrix is given by (1 2.13)

Ra23(8) = PLR13(0) R23(6 + p) PLb, (B.6)

wherePlJf2 =1- P1*2. Animportant observation (which one can verify by direct calculation)
is that the fusedR matrix can be brought to upper triangular form by a similarity
transformatio®

X12R(123(0) X12 = upper triangular (B.7)

where the 4< 4 matrix X is independent of, and is given by

1 1
VA O %
0 —sinZZ cosZZ 0
2 2 2
X = b . X?=1. (B.8)
0 cos7 sinzg 0
1 1
7z 0 0 -

It follows that the fused monodromy matric&s(l 4.7), (1 5.4), (I 5.5)

T2 (@)= Razan(0)--- Ru21(0),
T+ p) = Rua1(0) - Raan (9), (B.9)

also become triangular by the same transformation.
Denoting (as in I) our “bare” boundayymatriceR(0; ¢_), R(—0 +in; ¢p+) by K~ (0),
KT (0), respectively, the corresponding fused matrices are given by (I 3.5), (1 3.9)

K15 (0) = PLKT (0)R12(20 + p) K5 (6 + p) P,
K5 0) = {PLKT (0) Ri2(—20 — 3p) K5 (0 + p)2 Po} ™, (B.10)

sinceM = V'V =1.
Remarkably, the fuse&l matrices are also brought to upper triangular form bystrae
similarity transformation

21 This observation is similar to, but not the same as, the one made by Felderhof [40,41]. Indeed, in our language,
he shows thaR13(0) R23(0 + p) (i.e., the expression for the fused transfer matvisthout the pl‘OjeCtOt’SPlz)
can be brought to triangular form by a (somewhat more complicatedyiependent similarity transformation.
Although for the case of periodic boundary conditions both approaches lead to the inversion identity, this appears
to be no longer true for the case of boundaries.

22 For simplicity, we consider here the homogeneous agse 0,i =1, ..., N).
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X12K 5 (9) X12 = upper triangular (B.11)
It follows that the fused transfer matrix9), which is given by (I 4.5), (I 4.6)

10) =tr12K {5 ()T (0)K 15 @) T2 (0 + p), (B.12)

is proportional to the identity matrix,

10) 1, (B.13)

where the proportionality factor is determined from the diagonal elements of the various
triangular matrices.

The fusion formula is given by (1 4.17), (1 5.1)
tO)tO + p)

— 1 + - 7

= @+ 2p) [10) + A{KT(O)}A{K~(O)}{T (0)}8(T (0)}], (B.14)
where the transfer matrit(0) is given by (4.1) (see also (I 4.1), (I 4.2)), and the quantum
determinants [57,58] are given by (I 4.15), (15.3), (15.7)

ST O) =8{T ) =0 +p)",
ALK~ (0)) =tri2{ PLKT (0)R12(20 + p)K5 (0 + p) Vi Va},
A{KF(0)) =tri{ PLVaVaK 3 (0 + p) R12(=20 — 3p) K (0)}. (B.15)

Reverting to the original normalization of the matrix by rescaling each of the transfer
matricest() in (B.14) by (sinh9) 2", introducing the inhomogeneitiésin the obvious

way, and factoring the result into a product of two factors, we arrive at the results (4.5)—
4.7).%3
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