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Abstract

We define the scaling supersymmetric Yang—Lee model with boundary &%, B)eperturbation
of the superconformal minimal mod&AM(2/8) (or equivalently, the(1,5) perturbation of the
conformal minimal modelM (3/8)) with a certain conformal boundary condition. We propose
the corresponding boundary matrix, which is not diagonal for general values of the boundary
parameter. We argue that the model has an integral of motion corresponding to an unbroken
supersymmetry, and that the proposerhatrix commutes with a similar quantity. We also show by
means of a boundary TBA analysis that the proposed bouriengtrix is consistent with massless
flow away from the ultraviolet conformal boundary conditian.2001 Elsevier Science B.V. All
rights reserved.

1. Introduction

A (1+ 1)-dimensional massive integrable quantum field theory without boundary (i.e.,
on the full line x € (—o0, 00)) is characterized by its factorizable bulk scatterifg (
matrix [1]. It can also be characterized as a perturbation [2] of a bulk conformal field
theory (CFT) [3]. For example, a perturbed minimal model is the renormalization group
infrared trivial fixed point of the action

o0 o0
A=ACFT+)»/dy/dX Dia,n(x,y), (1.1)

—0o0 —0o0
where Acrr is the action of ac < 1 minimal modelM(p/q), @4, ) is a spinless
degenerate primary field with (right, left) conformal dimensioas A) which is relevant
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(A < 1) and “integrable”, and. is a parameter of dimensioftengti?4—2. One link
between these two descriptions is provided by the thermodynamic Bethe Ansatz (TBA),
by means of which the central charge of the CFT can be computed froitarix [4,5].
The integer-spin and fractional-spin [6,7] integrals of motion of an integrable field theory
are manifested in both it§ matrix and perturbed CFT descriptions. These features of
integrable field theory are by now relatively well understood, due to the great number of
examples which have been worked out in detail. (See, e.g., [8] and references therein.)
For an integrable field theory with boundary (say, on the half-line (—o0, 0]),
the above framework has a nontrivial generalization [9]. The theory is characterized by
a factorizableboundaryscattering matrix, together with the butkmatrix. It can also be
described as a perturbation of a boundary CFT. The boundary generalization of (1.1) is
given by

(o) 0 00
A=ACFT+CBc+)»/dy/dX‘D(A,A)(x,y)-l-)»B f dy @(a)(y). (1.2)
—0Q —0Q —0o0

The boundary CFT is specified [10] by a conformal boundary condit@®Q), which

for ¢ < 1 minimal models corresponds to a céll, m) of the Kac table. A CBC is also
characterized by the so-called boundary entropy or ground-state degengrfacydr [11],

which (roughly speaking) is a measure of the number of bulk vacua which are compatible
with a given CBC. This is well illustrated in the unitary minimal models [9,12]. As can
be seen from (1.2), the boundary CFT in general has perturbations by both#ulk )

and boundary®,)) relevant primary fields. The boundary parametgrhas dimension
[lengti4~1. Note that the boundary perturbation has the same conformal dimension as
the bulk perturbation, and therefore, presumably it is integrable [9]. Furthermore, the
CBC and the boundary perturbation must be compatible [9,10]. By means of a “boundary
TBA’ [13-15], ratios ofg factors of the boundary CFT can be computed from the bulk
and boundarys matrices. (See also [16,17].) Fractional-spin integrals of motion should
be manifested in both the bounda$ymatrix and the perturbed CFT descriptions [18].
These features of integrable field theory with boundary have been studied in relatively few
examples and are less well understood, in comparison to the case without boundary.

In an effort to provide more such examples, we consider here the boundary version of
the bulk scaling supersymmetric Yang—Lee (SYL) model [19-21]. This model is arguably
the simplest nontrivial supersymmetric quantum field theory. Its spectrum consists of one
Boson and one Fermion of equal mass, and the Bullatrix is factorizable and hag = 1
supersymmetry. This model is the supersymmetric generalization of the scaling Yang—Lee
(YL) model [4,22,23], which describes the scaling region near the Yang—Lee singularity of
the two-dimensional Ising model [24,25]. The SYL model is the first member of an infinite
family of integrable models witlv = 1 supersymmetry [19].

In particular, we define the boundary SYL model as a perturbed boundary CFT, and we
propose the corresponding bounddrynatrix, which is not diagonal for general values
of the boundary parameter. We support this picture by identifying a supersymmetry-like
integral of motion, and by studying massless boundary flow using the boundary TBA.
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Some related work was done by Moriconi and Schoutens in [26]. These authors proposed
two diagonalboundaryS matrices for the boundary SYL model, without reference to any
specific boundary conditions. For a special value of the boundary parameter, our boundary
S matrix differs from one of theirs by a CDD factor.

The outline of this article is as follows. In Section 2, we briefly review some necessary
results about the YL model, and we clarify a few subtleties of the boundary TBA. In
Section 3, we review some necessary results about the bulk SYL model. We also recall
the useful observation [27] that the critical SYL model can be formulated as either the
superconformal minimal modé&AM (2/8) or the conformal minimal modeW1(3/8). This
is completely analogous to the well-known fact that the tricritical Ising model can be
formulated as eitheS M (3/5) or M (4/5). One consequence of this fact is that the SYL
model can be regarded, following [28,29], as a restriction of the ZMS model [30-32], as
we discuss in an appendix. Section 4 is the heart of the paper. There we first define the
boundary SYL model as a perturbed boundary CFT, and we argue that it has an integral
of motion corresponding to an unbroken supersymmetry. We then propose the bosindary
matrix for the boundary SYL model. Our approach is to restrict the bounslamatrix of
the boundary supersymmetric sinh-Gordon model [15], by imposing the various boundary
bootstrap constraints [9]. We then show that the proposed bousdangtrix commutes
with a supersymmetry-like charge. Finally, we perform a boundary TBA analysis, and
show that the proposed boundafynatrix is consistent with massless flow away from the
ultraviolet conformal boundary condition. In Section 5 we present a brief discussion of our
results.

2. The YL model

We now briefly recall the basic results of the scaling Yang—Lee model which we shall
need in subsequent sections to formulate the supersymmetric generalization. We also
clarify a few subtleties of the boundary TBA.

2.1. Bulk

The critical behavior of the Yang—Lee singularity is described [33] by the minimal
modelM (2/5). This is a (nonunitary) CFT with central charge- —22/5. There are only
two irreducible representations of the Virasoro algebra, and the corresponding conformal
dimensionsA, ) of the primary fields are organized into a Kac table in Table 1.

The scaling Yang—Lee model (without boundary) is defined [22] by the perturbed action
(1.1), where the CFT is\(2/5), and A = A(13) = —1/5. Arguments developed by

Table 1
Kac table forM (2/5)
1 1
0 —E - 0
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Zamolodchikov [2] imply that this model is integrable. The spectrum consists of a single
particle of mass:, with energyE = m cosh¥ and momentun® = m sinhd, whered is the
rapidity. The two-particleS matrix for particles with rapiditie8; andds is given by [22]

sinhé + i sin(%)

SyLO) = ————5~> 2.1
v sinhd — i sin(%) @1)

wheref = 61 — 62. This S matrix has a direct (s) channel poletat i27/3, since the
particle is a bound state of itself. Hence, thenatrix obeys the bootstrap equation

im

Syt <9 n §>SYL (9 . %) — Sy (6). 2.2)

The TBA analysis [4] demonstrates that tifismatrix correctly reproduces the central
charge of the unperturbed CFT. The YL model can be regarded [23] as a restriction of
the sine-Gordon model in which the solitons are projected out and only the first breather
remains. Indeed, th& matrix (2.1) coincides with that of the first sine-Gordon breather [1,
34], withy = 16m/3.

2.2. Boundary

Following [14,35], we consider the boundary YL model which is defined by the
perturbed action (1.2), where the CFTA4(2/5), the CBC corresponds to the céll, 3)
of the Kac table, and\ = A(1,3) = —1/5. The(1, 3) conformal boundary condition and
the (1, 3) boundary perturbation are compatible, since the fusion rule coeﬁm(%@(ls)
is nonvanishing. The boundaymatrix Sy, (0; b) is given by [35]*

swen=(3)()E) (5) (F))C) - e

where

sinh(4 + Zx
(x) = M (2.4)
sinh(3 — )
andb is a parameter which is related ¢ . This S matrix obeys the boundary bootstrap
equation [9]

i i
SvyL (6’ + 3" b>SY|_ (20)SyL (9 -3 b) =SyL(0;b). (2.5)

This model can be regarded as a restriction of the boundary sine-Gordon model. Indeed,
the boundany matrix (2.3) coincides with that of the first sine-Gordon breather [36] with
y = 16m/3, and with the parametens ¥ of [9] taking the values [14) = Z (b +4), i =
Z(b+2).

This picture is supported by the boundary TBA, which implies that the boundary entropy
is given (up to an additive constant) by

1 we make an effort to distinguish boundary quantities from the corresponding bulk quantities by using sans
serif letters to denote the former, and Roman letters to denote the latter.
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o0
1 1
Ing = . / de |:KYL (0;D) — DyL(20) — §®YL (9)}L(9), (2.6)
—00
where
19 10
DyL(0) = ~—InSyL(©0), kyL(0:b) = - —InSy(6; b), (2.7)
i 060 i 00
and
L©O) =In(1+e @), (2.8)
Moreovere(0) is the solution of the bulk TBA equation [4]
1
€(0) = r coshp — o (P x1)(0), (2.9)
T
wherex denotes convolution
o
(f *£)(6) = / a6’ (6 —6)(8"), (2.10)
—00

andr = mR, with R the inverse temperature. Note that our expression (2.6) for the
boundary entropy differs in the third term in the brackets from the one given in Refs. [13]
and [14]. This term originates from the exclusion [37,38] of the Bethe Ansatz root at zero
rapidity.

For simplicity, let us consider the case of massless boundary4ibhat is, we consider
the bulk massless scaling limit

m=un, G:éqzln%, n—0, (2.11)
wherey andd are finite, which implie¥ = Meié, P = i/wié. Moreover, we consider
/6
b=—3—’—<93—|nﬁ), n— 0, (2.12)
b4 2

where the boundary scabg is finite. For the sign- in the limit (2.11), the boundary
matrix reduces t&(9 — 63) 1 [14], and we obtain

o
2 R R .
Ing:—4—/d9q>YL(e—93)L(9), (2.13)
JT

—00

whereé(@) = €@ —In%), andL(@) = In(1 + ¢=¢®)_ Note the factor of 2 appearing in
(2.13), which accounts for the contribution from the signn the limit (2.11). That is, it

can be shown that right-movers and left-movers give equal contributions to the boundary
entropy. In the UV limit9g — —oo0, the integrand is nonvanishing fér—> —oo; similarly,

the IR limit 63 — oo requiresh — oo. Using the resultd. (—oo) = In(1+—2‘/5), L(c0)=0

which follow from the TBA equation (2.9), we obtain

2 The bulk-massive case seems to have several complicated issues which remain to be resolved [14].



C. Ahn, R.l. Nepomechie / Nuclear Physics B 594 [FS] (2001) 660-684 665

g (1+«/§).

In R = In( =5 (2.14)

This is precisely the ratio ofy factors corresponding to the conformal boundary
conditions(1, 3) and(1, 1)

145
In 8@3 _ |n<+7f>, (2.15)
gL 2

which have been computed [14] from thé (2/5) modularS matrix. Hence, the boundary

S matrix (2.3) is consistent with massless flow away from the UV conformal boundary
condition; namely, from the CBCL, 3) to the CBC(1, 1). In Section 4.3 we shall find a
generalization to the supersymmetric case.

3. The bulk SYL model

We turn now to the supersymmetric generalization of the scaling Yang—-Lee model,
which was first defined in [19] as a perturbation of the superconformal minimal model
SM(2/8). This (nonunitary) CFT has central charge- —21/4; and the corresponding
dimensionsA, ,, of the primary superconformal fields are given in Table 2. These fields
are of Neveu—Schwarz (NS) or Ramond (R) type # m is even or odd, respectively. We
recall [3] that the superconformal symmetry is generated by the right and left supercurrents
G(z) andG(z) of dimensions{%, 0) and (O, g), respectively. The NS fields are local with
respect taG (z) andG(z), while the R fields are semi-local with respect to these currents.

The action of the SYL model is given by [19]

o0 oo

A=AsM@/8 + A / dy / de,%a,%fp(A,m(x, V), (3.1)
—00 —00
whereA = A1 3) = —%, andG, (G,) are operators appearing in the operator expansion

of the supercurrenG(z) (G(z)) with DA, 4)(z,2). An interesting feature of this model
is that it has fractional—;() spin integrals of motion. Indeed, the perturbation preserves
supersymmetry, since [6,19]

3G =03,W, ¥ =12A— 1)6_%¢(A,A),
9.G = d: ¥, V=124 -1DG_1P4 4. (3.2)

The corresponding integrals of motion are given by

Table 2
Kac table forS M (2/8)
3 1 7 1 3
0 -3 -2 -3z 2 =32 0
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Table 3
Kac table forM (3/8)

N

5 1
1

s
IS
& g~

o Nw
§
N
N
W\
Nl
Nw O

Q
I

dx[G(x,y) + ¥ (x,y)],

0= | dx[G(x,y)+¥(x, )] (3.3)

é\g é\g

We now recall the important observation [27] that there is an equivalent formulation
of the SYL model as a perturbation of the ordinary minimal mati(3/8).2 Indeed,
M (3/8) also has central charge= —21/4. The corresponding dimensions of the primary
fields are given in Table 3. Note that these dimensions either coincide with those for
SM(2/8) or else correspond to their super-descendants. Indeed, the fields of dimension
711 and% correspond tw7%®(1,3) and Gi%L_lqb(l,l) respectively; and the field of

dimensiong—g corresponds t@_1 P (1, 4).

The SYL model can therefore also be formulated by the action (1.1), where the
CFT is the minimal modelM(3/8), and A = A5 = %. This is an integrable
perturbation, since [39] th, 5) perturbation ofM (p/q) is integrable if < ¢. There is
a corresponding formulation of the conservation laws (3.2), with the supercuearisl
G replaced by the chiral primary fields,1y,(1.1) and®(1,1),(2,1) respectively, etc.

The spectrum of the SYL model consists of one Boson and one Fermion of equal mass
m. Following [1,9], it is convenient to introduce the Zamolodchikov operaty®) =

(’;.((?)) which create the corresponding Boson and Fermion asymptotic particle states,

|Aay (01) Aay (02) - - - Agy (ON)) = Aay (01) Ay (02) - - - Aay (O8)]0). (3.4)
This is an “in state” or “out state” if the rapidities are orderedbas- 02 > --- > Oy or

01 <02 < --- < 6Oy, respectively.
The two-particleS matrix is defined by

Aay (01) Aay(02) = SP2(01 — 02) Ay, (62) A, (62). (3.5)
For the SYL model, th& matrix is given by [19]

S(6) = SyL(0)Ssusv(0), (3.6)
whereSy (0) is given by (2.1). Moreover,

Ssusv(0) =Y (0)R(6), (3.7)

3 As mentioned in introduction, this is completely analogous to the well-known fact that the tricritical Ising
model can be formulated as eith8M (3/5) or M(4/5).
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whereR(9) is the 4x 4 matrix*

al(® 0 0 d®
0 b ¢® O

R(0) = 0 c® b 0 , (3.8)
d®) 0 0 a_(®)
with
@) =414 2i sin% b1 isin% sin% (3.9)

axt)= sinho ~ - T sinhg” ~ coshg’ '

The scalar facto¥ (0) is given by
sinh% T dt sinhi10/7) sinhZ sinhL
Y(0)=——F>—2——exp /—t it0/m) sinhg sinhs , (3.10)
sinh§ +ising t costy costt &

which we find has the following infinite-product representation:

MG+ )G~ 5)

Y o) = 0 0
F(=2:)T (14 27)
3 i0 )2 i0\2
5 10_"[{ I(3+k-— Z.Z)zr(l+k+ ’3)2
=0\ F(3 +k+22)T(1+k— 5
2 i0 \1(5 i0 0\ (7 0
FQ+bﬁﬂNr%+ﬁﬁu+kéﬂNv%+ﬁw
P3+k+ 30T (@+k— 30T (3+k+ 30T (G+k = 57)
(3.11)
It is convenient to denote the total scalar factordiy)
Z(6) = SyL(9) Y(0)
. 00 . . A -
sinh§ ox / dt sinh(itf /) sinh% sinh
~ sinh§ —ising P t costr cosit § '
0
(3.12)
Hence, the SYL bullS matrix is given by
S@) = Z(©O)R(®), (3.13)

where the matrixR (0) is given by Egs. (3.8), (3.9). TBA analysis [20,21] shows that this
S matrix correctly reproduces the central charge of the unperturbed CFT.

In analogy with the YL model, the SYL model can be regarded as a restriction of the
supersymmetric sine-Gordon (SSG) model in which the solitons are projected out and
only the first breather multiplet remains. Indeed, thenatrix is that of the first SSG

4 Our conventions are such thatdfand B are matrices with matrix elements;, 4, and Bpbys then the tensor
productC = A ® B has matrix eIement@Ziﬁf = Aayay Bbyby-
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breather [40,41] withw = 1/3. In particular, it coincides with the expression for thie
matrix of the supersymmetric sinh-Gordon model given in [15] wite —1/3.

In view of the alternative formulation of SYL as thi#&, 5) perturbation ofM (3/8), the
SYL model can also be regarded as a restriction [28,29] of the Zhiber—Mikhailov—Shabat
model [30—32]. Details of this identification are given in Appendix A.

We recall [6,19] that the supersymmetry charges are assumed to act as follows: on one-
particle states,

0 i
QAL(0) = qup(6) Ap(0), q(m:ﬂe?(_- “>,

e

INH
o

s3O
Q
o I
INH
N~

0Au0) = Gur@Ap(®),  GO) = me? < '

e

(3.14)

and on multiparticle states,

QlAay(01) - -~ Aay (On))

N -1
=3 ( ]‘[(—1)Fak> |Aay 61) -+ Aq_ (B1-1)(Q A (B1) Aay 1 (B111) -~ Aay ().

=1 \k=1
O|Auy (1) -~ Agy (BN))

N -1
=> ( [JDr ) Ay (61) -+ Ay 1 01-1)(QAu (0)) A1 B1+1) -+ - Aay (),
=1 \k=1

(3.15)

where (-1)f is +1 for a Boson and—1 for a Fermion. These charges obey the
supersymmetry algebra

Q’=E+P, Q°=E-P,
{o.0}=0, {0.-D"}={0.(-D"}=0 (3.16)
It can be shown [19] that the SYE matrix commutes with the supersymmetry char@es
andQ, as well as with(—1)*".
To conclude this section, we demonstrate that the alfoweatrix satisfies the bulk
bootstrap equations. We do this in preparation for our investigation in Section 4.2 of the

boundary bootstrap equations, which will help determine the bour§iargtrix. Near the
direct-channel pole & = i 2 /3, the bulkS matrix is given by

3 0 0 43
iv32 |l o 11 o0
SO=——"13 11 ol (3.17)
3
V3 00 1
where

1 [ dr sintR(2t/3) sinh/3)
c=exp|-= | — .
2 )1 cosh cost(1/2)

Hence, the nonvanishing three-particle couplings are given by
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fh=icy3va,  fh=fl = fl,=icVB, (3.18)
where b and f denote Boson and Fermion, respectively. Using the infinite-product
representation for the scalar facto@) (3.11), one can prove the identity

Y(0+3)Y(0—5) _ 2sinf( — ) cosi(5 + F)
Y(0) sinh6 '

Recalling the YL bootstrap relation (2.2), it follows that the total scalar fag(@n (3.12)
satisfies

Z(0+'3)2(0 —'F) _ 2sinh(3 — F) cost(3 + F)
20 sinhg '

With the help of this identity, it is now straightforward to verify the bulk bootstrap
equations

(3.19)

(3.20)

im
FirarSea3 () = f,e, S5 (9 +3 )Sggzz (9 - 3). (3.21)

4. The boundary SYL model

We now address the main problems of defining the boundary SYL model and
determining its boundar§ matrix.

4.1. Definition of the model as a perturbed CFT

As in the bulk case, we can define the boundary SYL model in either of two ways.
One way is to define the model as a perturbation of the superconformal minimal model
SM(2/8) (cf., Eq. (3.1))

o0 0

A= ASM(2/8)+SCBO(1,3)+)»/dy / de,%E,%q)(A,A)(x,y)
—00 —00
[e¢)
+)»B/dyG,%<P(A)(y), (4.1)
—00
where A = A3 = —;11. Indeed, the arguments of [9] suggest that this boundary

perturbation is integrable. Following [10], we observe that for the boundary CFT,
superconformal invariance requires that the stress-energy tensors and supercurrents obey
the boundary conditions

(T=T)|,_o=0, (G-G)|,_o=0. (4.2)

We assume that for a superconformal minimal model, a superconformal boundary
condition (SCBC) corrgmonds to a cell of the Kac table, which in (4.1) we take to be
(1, 3). (See below.)
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Although for the case with boundary the supersymmetry charges

0 0
Q=/dx[G(x,y)+u7(x,y>], §=/dx[5(x,y)+u/(x,y>] (4.3)

(cf., Eq. (3.3)) are not conserved, it is plausible that some combination of these charges
(plus a possible boundary term) survives. Indeed, following [9], let us first consider
the massless case= 0, and compute the operator product expangiGiy + ix)—

G(y— ix)]G%(D(A)(y’). We conclude that the quantity

0
Q:/dﬂwa+5uJﬂ+ww, (4.4)

—00

with ©(y) «x Ap(1 — 2A)P4)(y) is an integral of motion. It is plausible that, for the
general massive cage# 0, this becomes

Q=0+0+0, (4.5)

whereQ andQ are given in (4.3).

Alternatively, we can define the boundary SYL model as a perturbation of the minimal
model M (3/8). That is, we can define the model by the action (1.2), where the CFT is
M(3/8), A= Ans = 3, and the CBC is eithe(l, 3), (1,4), or (1,5). Indeed, these
three conformal boundary conditions are compatible with(1)8) boundary perturbation,
since the corresponding fusion rule coefficieh‘(%g)) (1.3) N&’i’f (1.4) andN&’é’f (1.5 are
all nonvanishing, as can be seen from Table 4. Presumably, only the(CBCpreserves
superconformal invariance, since only for this CBC does the corresponding dimension
Aaz = —;11 appear in theS M (2/8) Kac Table 2. Hence, here we shall consider only the
CBC (1, 3), for which case the corresponding action is presumably equivalent to (4.1).

We have obtained thé\1(3/8) fusion rule coefficients given in Table 4 using the
corresponding modulas matrix. Indeed, we recall (see, e.g., [42]) that fot(p/q) the
modularS matrix elements are given by

Table 4

Fusion rule coefficients faM (3/8). Here we list all the tripletsi, j, k) with i < j < k for which
(1,0 ; iahi ; ) ; ;

N(Lj)(l,k) is nonvanishing, and in fact, equal to 1. Note théﬁj)(l,k) is symmetric under the

interchange of any pair of indicés j, k)

(1,1, 1) 2, 2,3) 3, 3,3) (4,4, 5) (5, 5, 5)
1,2 2) 2,3, 4) (3,3, 5) (4,4,7)

(1,3,3) (2, 4, 5) (3, 4, 4) (4,5, 6)

(1,4, 4) (2, 5, 6) (3, 4, 6)

(1,5, 5) 2,6,7) (3,5, 5)

(1,6, 6) (3,5,7)

@,7,7) (3,6,6)
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2 rs'+r's+1 qr r' npss’
Strs) (.sh =2,/ — (=1 sin——— sin ,
pPq 4 q
1<rr<p-1, 1<s,8'<qg—1 (4.6)
Settingr =’ = 1, for M(3/8) we obtain the result
1 3 1 1lainm 1 lainm 1 1ain37
Zsm 3 Z_ﬁ §sm§ -3 ismg Z_ﬁ —Qsm@
1 1 1 0 _ 1 _1 _ 1
Zﬁ 2 2&3 2¢; 2 22
lain® 1 1ain3m 1 u4 1 1lainm
zsmg 2_\/5 ESIH? 5 2Sln 2_\/5 zsmg
S=1 -3 0 3 o -3 0 3 . (47)
iA T 1 1 in 37 1 371 1 1lainT
2sing  —35 3Sing —3 2sm 55 2Sing
1 _1 1 0 1 1 1
12«/é 3 i 1 22 1 1 Zﬁ 21 1 ZﬁS
T in 7T n T H T
—§S|n 3 _2_«/2 §sm§ 5 ismg _Z_ﬁ —Qsm@

where the matrix elemert, s”) corresponds t6 ) (1,5)- This matrix is real, symmetric,
and unitary,s ST = 52 = 1. Finally, the Verlinde formula [44] implies that the fusion rule
coefficients are given by

(Li)
Najaw =

7
Z S, @wh S, HAnSAB LD

4.8
Sa,nan (48)

=1

We close this subsection with the computationgofactors for the various conformal
boundary conditions, which also relies on the mod@lanatrix. As shown in [10,14], the
g factor for the CBC(1, s) is given by

So (L5

1.‘ = b
809 = e ol

where 0 denotes the conformal vacuum (which has the prop%ﬂrf/) = 8;), ands2 is
the state of lowest dimension. Far((3/8), 0 is (1,1) and £2 is (1, 3). In this way, we
obtain

(4.9)

3
1 smg

814 =—F7T—— 813Y=8LH="T—"—:
/ZSII’]% /2 sm%

T

—sin—

1

1 .
812 =81Le = —F7——> 81D =8ELN= > 8"
2/sm%

It should also be possible to compugefactors from theSM (2/8) modularS matrix.
However, we do not attempt this he?e.

(4.10)

4.2. Boundans matrix
The boundarys matrix S(0) is defined as [9]

51t is not clear how to compute th&AM(2/8) modular S matrix directly from the cosetu(2); &
su(2)m /su(2)4, with m = —4/3 [43], since an additional coset field seems to be required.



672 C. Ahn, R.l. Nepomechie / Nuclear Physics B 594 [FS] (2001) 660-684

Aa(0)B =SL(0)Ay(—6)B, (4.11)

where hereB is the so-called boundary creation operator. We now try to deter8tifie

for the boundary SYL model (4.1). By analogy with the bulk SYL model, as well as with
the boundary YL model, we expect that the bound&rynatrix of the boundary SYL
model should be some reduction of that of the boundary supersymmetric sine-Gordon
model [45], or equivalently, the boundary supersymmetric sinh-Gordon model [15]. We
therefore consider

S(0) = SyL(0; b)Ssusy(@; @), (4.12)
where the scalar fact@y (0; b) is given by (2.3), an&sysv(0; ¢) is given by
Ssusy(0; ®) =Y (0; ®)R(O; ¢), (4.13)
whereR(6; ¢) is the 2x 2 matrix
(A B
roo=(75 4 ) (414)
with matrix elements
AL = COSh% Gy +i sinh% G_, B = —isinho, (4.15)
where
6o — ol sinh e? sint? § G e? sint? §
+—'C<S|n ¢+m) _—t<008m+m),
2(1—sinZ)\ /2
t= <(7n3)> . (4.16)
sing
Moreover,Y (0; ¢) is a scalar factor given by
Y(0:; ¢) =Yo(0)Y1(0; §) F(0; @), (4.17)
where
Yo(f) = ——F——
0(0) = ﬁsmt(e %
1]odt sinh(2it0 /) sinh(2¢ /3) sinh(¢/3)
xexpl —= | — ,
2 J t costf ¢ cost(r/2)
1 sin(% — $)sin(Z + %)
Y1(0: 9) = a 1272

esinhg sin(Z — § — Zysin + 5 — &)

y exp<_2/$ sinh(it0 /) sinh(t/3) Cosl‘(tg“/n))’

sinhz cosh(t/2) (4.18)
0

and¢ is a function of¢ defined by
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cost :1—e‘2¢<1—sin%>. (4.19)

The exponential factors ofp(#) andY1(6; ¢) do not have zeros or poles in the physical
strip 0< Imé < 7, provided|¢| < 2/3. Finally, F (9; ¢) is a CDD-like factor obeying

F(0; 9)F(—6; ) =1, F(% +9;¢)=F<% —9;¢>, (4.20)
which is still to be determined.

The above expression fe8sysy essentially coincides with the one for the supersymmet-
ric sinh-Gordon model given in [15] witB = —1/3,e =+1, 9o = ¢ + % with ¢ real, and
r = —it. The only differences lie in the CDD factdt(6; ¢) (which is absent from [15])
and the factoly;: the expression given here is an analytic continuation of the one given
in [15]. The former does not diverge fér= :I:%’, which is important for implementing
the boundary bootstrap equations, as we shall see below (4.27).

The alert reader will have noticed that, while the boundary SYL action (4.1) contains
only one boundary parameter (namely), the above boundary matrix seems to
contain two parameters, namely,and ¢. The key point to realize is that these two
parameters areot independent. By demanding that the boundé&rynatrix satisfy the
various constraints [9] arising from the existence of boundary and bulk bound states, we
shall determine the relation betwegrandb (4.26), as well as the CDD factdr(0; ¢)
(4.33).

We begin by considering the constraints due to boundary bound states. In general [9],
letivg, be the position of a pole of the boundafymatrix in the physical strip associated
with the excited boundary state) z, which can be interpreted as a boundary bound state
of particle A, with the boundary ground stat@) 5. Near this pole, the boundasymatrix
has the form
i g088°

b () ~
S“(Q)_Zé—ivga’

(4.21)
whereg?, are boundary-particle couplings.

We assume that (as in the bulk) the SYL bound&mpatrix inherits its pole structure
from the YL boundaryS matrix (2.3). Therefore, it has [46] two boundary bound state
poles, corresponding to excited boundary stétes, |2) 5, with ©

T(b+1) T(b—-1)
6 6
It follows from the condition (4.21) and the form (4.14) of thenatrix that foro = ivg,

Vo W2 = (4.22)
2 2
Ao (8297, Ao (819, BocghelO, (4.23)

where the indices and f again denote Boson and Fermion, respectively. Hence, we arrive
at the important constraint

6The subscript: of vg, can be dropped, since YL has only one type of particle.
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AL A
32

=1 (4.24)
O=ivg
This equation gives a relation between the boundary paranpeted vg. As shown in
Appendix B, the relation can be expressed most succinctly in terms of the pargmeter
defined in (4.19):

¢ =1 j:%. (4.25)
The above relation can hold for both poles (4.22) only if
147
=, 4.26
(= (4.26)

Eq. (4.26) is the desired relation betwegrmndb. The restriction¢| < 27 /3 which we
found above implie$h| < 4.

We now consider the constraints due to bulk bound states. In view of the direct-channel
pole of the SYL bulkS matrix atd = i27/3, the following boundary bootstrap relations
must hold [9]

im b im
fibsdo) = fhrase <9 + ?)Sbfsz(%?)sgz (6 — §> (4.27)

Using infinite-product representations for the scalar factg(8), Y1(0; ¢), andY (9), one
can prove the identities

Yo(6 + Z)Yo(® — F)Y(20)  iv2sinhwsinh(§ — )
Yo() ~ sinh(6 + Z)coshg — )’
YiO+ZioYi0-F:9) 1 (m i\ (7 ¢
Y160: ) = Tsinhg S'”(l_z - z) S'”(l—z * 5)

2(1+2coszZ — 2cosh? — 4i cosg sinh6)
X .
cos3 +isinhd®
(4.28)

With the help of these identities, together with (2.5), one can show that the SYL boundary
bootstrap relations (4.27) are satisfied, provided that the CDD factor obeys

FO+'F:¢)F(6—F:¢) cosF +isinhd
F(0: ¢) "~ cosZ —isinh®’
In addition to the boundary bootstrap relation, another constraint due to bulk bound
states is stated in [9]. Namely, léi;, be the position of the pole of the bulk matrix
associated with the direct-channel bound statel fi, which can be interpreted as the
particle A.. If the particlesA, and A, have equal mass, then the boundémpatrix must
have a pole &t =iu}, /2, whereu;, = —uj,. Furthermore,

(4.29)

: b,c
by L S8
S;(0) ~ —59 g (4.30)

2
whereg¢ describes the coupling &f. to the boundary. The SYL boundagymatrix indeed
has such a pole &t=ix /6. It follows from the condition (4.30) that fér =i /6,
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Ay fbbbgb, A fbffgb; (4.31)
and hence [26]
bb
A :ﬁ#:vﬁ (4.32)
A-lo=g Sy

However, this equation is satisfied for arbitrary valuegpénd so does not provide any
further constraints on th& matrix.

The scalar factow (6; ¢) (4.17) should not have zeros or poles in the physical strip. In
view of the relation (4.26), we see that the facta(6; ¢) has poles a = i(+; — %) =
im(+b — 1)/6. The pole atd = iz (b — 1)/6 is undesirable, since it is physical for
1< b < 4.7 Fortunately, we can arrange for this pole to be canceled by a corresponding
zero of the CDD factor. Indeed, a solution to the CDD constraint equations (4.20)
and (4.29) which has a zero@t=in (b — 1)/6 is given by

1%&¢):(3§3><5§f>, (4.33)

where we have again used the notation (2.4).

In short, the boundary matrix which we propose for the boundary SYL model (4.1)
is given by Egs. (4.12)—(4.19), (4.26), (4.33). This is one of the main results of our paper.
Note that our proposed boundafymatrix depends on a single independent boundary
parametew. The relation of this parameter to the boundary paramegein the action
(4.1) is not yet known.

One check on this proposal is provided by supersymmetry. We have suggested that the
SYL model (4.1) has the integral of motian given by (4.5). We now demonstrate that
our proposed boundaryy matrix commutes with a similar quantity. Indeed, let us assume
that the supersymmetry charg@sand Q act on states according to (3.14), (3.15). It is
straightforward to show that the mati(0; ¢) (4.14) commutes with

Q=0+ 0+y(=DF, (4.34)

where herey = —/m,/—1+ 2/+/3e~?. Note thatQ does not anticommute with-1)",

unlike usual supersymmetry charges. The appearan¢e D in Q should not be too
surprising, since similar topological charges also appear in the fractional-spin integrals of
motion of the boundary sine-Gordon model [18]. Presumably the opepato(4.5) can be
identified withy (—1)F". Note thath 3 = 0 (for which ® vanishes) corresponds ¢o= oo,

and hencé = 0. For this value ob, the boundary matrixS(0) is diagonal. We recall that
Moriconi and Schoutens proposed [26] two diagonal bounfamatrices for the boundary
SYL model (although without reference to any specific boundary conditions), which they

designateck/! and R(3). Our boundarys matrix for b = 0 differs from R3] by the CDD
factor, i.e.,
SO
© | _ g, (4.35)
FO;9)|peo @

7 The pole at = i (—b — 1)/6 is canceled by a corresponding zero in the faét%#) from Sy .
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4.3. Boundary TBA and massless boundary flow

We have defined the boundary SYL model in Section 4.1, and we have proposed the
corresponding boundaymatrix in Section 4.2. We shall now demonstrate that this picture
is supported by the boundary TBA. Our analysis is a generalization of the one for the
boundary YL model, which we briefly reviewed in Section 2.2. For simplicity, we again
focus our attention on the case of massless boundary flow.

We begin by determining the massless scaling limit. We set

m=un, 9=é—ln%, %(b—i—a):@B—ln%, n— 0, (4.36)

with 2, 6, andép real and finite. Our objective is to determine the value(s) (dlso real
and finite) for which the boundar§y matrix, in the above limit, remains finite and unitary.
After some computation, we find that= 6; and the resulting massless boundgumpatrix

is given by

S() =2(0 — 05)R(@ — 0p), (4.37)

where

X P i0
20) sinh(§ — i) = exp(—/ dr sinhj sinh(r (£ — 1))) (4.38)
0

sinh(§ — 2%) sinh(§ + t sinht coshy
and
. 4
sinh(§ + & —iy3
R(G):( (2434) . 92 ) (4.39)
-2 sinh(3 - )

Indeed S(0) satisfies the unitarity condition, since

Z(O)R(B) Z(—O)R(—0) =1. (4.40)

In order to formulate the TBA equations, we consi@départicles with real rapidities
01,...,60x in an interval of lengthL, with bulk S matrix S(0) (3.13) and boundary
matricesS(6; b1) (4.12), where the subscriptshere denote the left and right boundaries.
As already discussed, the bulk and boundé&rgnatrices of the SYL model essentially
coincide with those for the supersymmetric sinh-Gordon model given in [15]&/&11—%,

e =41, ¢ =¢ + 7, andr = —ir. Hence, the Bethe Ansatz equations and the transfer
matrix eigenvalues for SYL can be easily obtained from [15], to which we shall henceforth
referas |. From Eq. (I 4.14) we obtain the Bethe ansatz equatiom§for

N

et —0) i)
iatanh(z el —0) + 5 tanh(3 (7 +6) + )

_ SInP(G(FF +20)) [ —e”? sintP(F)+e? sint?(3(F —2,))
sintP(3(1Z - 2;)) [—e_¢ SiNP (%) +e?- sink? (3 (23X + 1))

}[(l)— = 4],
(4.41)
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and from (I 4.15) we obtain a similar result for . In view of the massless scaling limit
(4.36), we set

A n at n i + n

9,:9,—“’]5, Zk =Z; —lnz, E(bi+6)=93 —lnz, n—)O, (442)
and we obtain

ﬁ tanh(3 & —6))

iatanh(3E —6) + %)

~

_ cosh(3 Gz —05) —

iZ)cosh(3 (2} —0) — %)
cosh{3(5 —65) +°

4.43
)COST(Z( 6+)+ l57T) ( )

dgnh

Finally, settmgzk = Xr — %, we obtain the Bethe ansatz equations fqr (cf
Eq. (14.19)),

1_[ tanh(3 (& — 8,) — T) cosh(3 &k — b5) +
i1 tanh(3 (& — 8,) + Z) cosh(3 (& — 65) —
k=0,1,....N

T) cosh(3 (& = 05) + 7))
F)cost(3u—07)—F)

(4.44)
The transfer matrix eigenvalues(6161,

...,0y) can be deduced from Egs. (I 4.12),
(14.17), (14.24). In the scaling limit (4.42) (with=6 — In 5), We obtain

N A A 8.0, N
- - . - Z (6 — 6) ekt A A
AocZ(@—01)Z( — 05)et0~ 205 +05) % he (6 —6)). (4.45)
i1 3Sinh6 =00 g
whereZ(6) andz(0) are given by (3.12) and (4.38), respectively;

im 0 eim
re(0) = smh< + ?> cos)—(é - ?) (4.46)
¢ = +1 (see Eq. (1 4.20)), anﬂ(Asatisfy (4.44).

We introduce the densitig3. (9) of “magnons”, i.e., of real Bethe ansatz ropts} with

ex = +1, respectively; and also the densitjeg6) and 5(9) of particles{d;} and holes
respectively. The Bethe ansatz equations (4.44) ifhply

. . . 1 . .
PL(O)+ P_(0) = Z(pl* D)) + ﬁ[t,zf(e —04)+w(0—0g)].

(4.47)
where
19 tanh(% — = 4coshysinZ
PO = _£|n<tan$§ 2;) cosh;?—cossZ” G
21T % 3
19  (cosh§+F) 1
v@H) ==—In , 4.48
©® i 00 (cos}(e ’”)) coshy ( )

and we have definepll(e) for negative values of to be equal t(p1(|é|)

8 The counting function should be monotonic increasing, in order that the corresponding density (defined as
the derivative of the counting function) be nonnegative
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The Yang equations (I 5.7) and the expression (4.45) for the eigenvalues imply

p1(0) + 5 ()

I 1 A 1 A~ 1 A~
=—e¢ + —(p1*xDP2)O) + —(P+ *D)(0) + -—(P-xD_)(0)
T 2 2 21

1 d A 0 N
—— | —=ImInz(@ —6})+—=ImInz(6 —63) |, 4.49
+orp | amminz(i ~ o) + S mnz(d - 0;) | (4.49)
where
d d
D2(0)= 2o IMNZ©).,  @2(0) = 2-ImInis(6). (4.50)

and we have definefl. (9) for negative values of to be equal taP+(|0]). Using the fact
DL(0) = :F%qb(e), and using (4.47) to eliminatk, , we obtain

A oA T 1 N 1 1 N
p1(0) +pO) = —e" + = (P-*xP)(O)+ = | p1* | Pz — —P* D] |(0)
T 2 2 4
1 ) A 1 A
— | =ImInz(6 —6}) — — W« ®)(6 — 6,
2“[aémn (6-63) — =@ % 9)(0—7)
a A 1 A
—Iminz(6 —0;)— — W *«xd)(0 —0;)|. (4.51
+ S inz(i - 0;) - )0 -0;)| (@5
With the help of the identities
1
Pz(0) — 4—(‘15*@)(9) = —2(0),
T
) 1
%Im Inz(©) — E(W*CD)(@) =0, (4.52)
we obtain the simple result
PP A R § A 1 A
p1(0) + p(0) = —e” + = (P_x P)(0) — = (p1* P)(0). (4.53)
T 2 2

Proceeding as in |, we obtain the TBA equatidns

re’ = e (é)—i(cp*(L — L2))(0)
= €1 o 1 2 s

o
I

e20) + 1 (@ % L1)(0), (4.54)
2
where

L[(é)=|n(1+€7€i(é)), r=uR,
0 P
€1 =|n<ﬁ>, €= |n<—+>. (4.55)
P1 P_

9This set of TBA equations is the same as for the case of periodic boundary conditions, which was first
conjectured in [47] (see also [48]) and later derived from the S¥hatrix in [20] and generalized in [21].
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Moreover, the boundary entropy of one boundary is given (up to an additive constant)
by

o0
2 . R
Ing =~ f dOw (6 —05)L2(0), (4.56)
TT

—00

where we have included the factor 2 in order to account for contributions from both right-
movers and left-movers. In the UV limitg — —oo, the integrand is nonvanishing for

6 — —oo; similarly, the IR limit6z — oo requires) — co. Using the resultd.o(—oc) =
IN(2+ +/2), L2(c0) = In2 which follow from the TBA equations (4.54), we obtain

gV 1 (1442
Ingﬁ = EIn<7>. (4.57)

This is precisely the ratio of factors corresponding to th#&1(3/8) conformal boundary
conditions(1, 3) and(1, 2)

nées 1 In<1+7\/§), (4.58)
gaay 2 V2
as one can verify from Eq. (4.10). Hence, the proposed boursdaatrix is consistent with
massless flow away from the UV conformal boundary condition; namely, from the CBC
(1, 3) to the CBC(1, 2). In the SM (2/8) description, this corresponds to the flow from
the SCBC(1, 3) to the SCBC(1, 4). A plot of Ing as a function obp is given in Fig. 1.

For convenience, a constant has been added so that the UV V%IUE(]S-I— V/2) and the
IR value is3In+/2.

0.45 T T T T

04l 1

0.35 - i

03 | i

025 - 4

02 i

Fig. 1. Boundary entropy: lavs.6p.
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5. Discussion

We have proposed the boundaiynatrix (4.12)—(4.19), (4.26), (4.33) for the boundary
SYL model defined by the action (4.1). Some support for this conjecture is provided by
the fractional-spin integral of motion (4.5), (4.34), and by the massless boundary flow
(4.57), (4.58). Several important problems remain to be solved, including the relation of
the parameteip in the action to the parametér of the boundaryS matrix; and the
identification of the operato® in (4.5) with the operatoy (—1)f in (4.34). It would
also be interesting to consider other conformal boundary conditions, as well as extend the
present study to the full family of integrable models wkh= 1 supersymmetry [19,26].
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Appendix A. SYL model as restriction of ZMS model

Here we show that the scaling supersymmetric Yang—Lee model is a restriction of the
Zhiber—Mikhailov—Shabat model [30,31], whose action is given by

2
A= /dzx Bu9)? + %(M@‘ﬂ eV, (A.1)

Thisis theA(zz) imaginary coupling affine Toda field theory, wha$enatrix was found by
Izergin and Korepin [32]. We follow closely the paper [29] of Takacs, to which we shall
refer as Il. (See also [49,50].)

Itis useful to first recall the related work [28] of Smirnov. There it is observed that, for

y = ? (A.2)

the ZMS model is th€l, 2) perturbation of the minimal modeW(r/s). Indeed, one can
regard the first two terms in the action (A.1) as the action¥6(r/s), and the third term as
the (1, 2) perturbation. TheS matrix of the perturbed model can be obtained as the RSOS
restriction of theAgz) S matrix, using the model'#, (s/(2)) symmetry, wherg = il

In Il, it is observed that, for

Ay’
Yy = 4)// = s/ s (A3)

the ZMS model is th€1, 5) perturbation of the minimal modeW(+'/s"). Indeed, one
can regard the first and third terms in the action (A.1) as the actionMor'/s”), and the
second term as th@, 5) perturbation. Th& matrix of the perturbed model can be obtained
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as the RSOS restriction of th%z) S matrix, using the model'’&, (s/(2)) symmetry, where
q/ — einz/y’ — q4_

We have suggested in Section 3 that the SYL model can be regarded &k She
perturbation ofM (3/8). We now proceed to compute the lattef’'amatrix following I,
and we shall find that it coincides (up to a scalar factor) with Eq. (3.8)./@B/8) we
haver’ = 3, s’ = 8; hencey’ = g = ¢%7/3. The first positive integep for which ¢’? =

+1 is p = 3. Hence, the maximum spin igax = % —1= % Thus, the model contains

“charged” kinksK, 1= K% o Which we denote by, and “neutral” kinksKg o = K% 1
which we denote by. Since (11 23)
2( my
== =2 A4
e=3(z5) -2 (A

the model contains neither breathers nor higher kinks.STimatrix is expressed in terms of
the rapidity variable = ¢™%/¢ = ¢?/2. Thec ¢ — ¢ ¢ amplitude is given by (Il 43)—(11 45)

2 2 5
1 1 .
:__12__+q+y_5_q_2__+q:2i\/§—25mh9.
y q q y q
(A.5)

_ q6y2 + y2q8 _ q8 _ q4y2 + y2 _ q10y2+ y4q2 _ y2q2
y2q°
= 2i+/3+2sinhp. (A.6)

Thec ¢ — n n andn n — ¢ ¢ amplitudes are equal, are are given by (Il 48)

0

4 2 _
0 0 ;9 =D0" =Y, s,
1 g2y 2
2 (A.7)

Finally, then ¢ forward scattering and reflection amplitudes are given by (11 46), (11 40)

1

2 6 2 _
_ (y +q2)(g 1 _ 2sinty
i (A.8)

and

Nl

@ =D +4¢%

6
0 = =2i/3 coshs,

5
Y4 (A.9)
respectively. ldentifying: and ¢ as the Boson and Fermion (respectively) of the SYL
model, we see that the above amplitudes coincide with thosgini®) R(6), whereR (6)

is the matrix (3.8). That is, the SYL model is indeed a restriction of the ZMS model,
corresponding to thél, 5) perturbation ofM (3/8).
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Appendix B. Solution of constraint Eq. (4.24)

Here we solve Eq. (4.24), which for simplicity we now write as
(AyA-—B%)|,_,,=0. (B.1)

Using the definitions ofd;, A_, andB givenin (4.15), (4.16), and introducing the variable
t =sir? 4, Eq. (B.1) can be brought to the form

(t - %) [r2+t<—1+ ? +€_2¢<2 - ?))

+1—76—§+e‘2¢<§—g)+e‘4¢<1—76—§)}=0. (B.2)

We discard the solution= % which corresponds to a fixed valuewfand hencep). The
two remaining solutions are= 2 (y  +/4), where

y=2—\/§+€_2¢<\/§— §>,

2
A=e"2Q2-3)+e % <J§— ;) (B.3)
In terms of the parameterdefined by
cos¢ =1—e—2¢<1— ?) (B.4)
we have
y =2 —+/3cos, A =sing; (B.5)

and therefore,

t= %[1—005({ q:%)} (B.6)

Finally, recalling the definitiom = sir? %, we arrive at the remarkably simple result

{:v:l:z,
6

which is quoted in text (4.25).

(B.7)
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