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Abstract

BoundaryS matrices for the boundary tricritical Ising field theory (TIM), both with and without
supersymmetry, have previously been proposed. Here we provide support foStheseices by
showing that the corresponding boundary entropies are consistent with the expected boundary flows.
We develop the fusion procedure for boundary RSOS models, with which we derive exact inversion
identities for the TIM. We confirm the TBA description of honsupersymmetric boundary flows of
Lesage et al. and we obtain corresponding descriptions of supersymmetric boundary flows.

0 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

A well-known (but nevertheless, remarkable) feature of integrable quantum field
theories in 14+ 1 dimensions is that their exact bulk [1] and boundary [2] scattering
matrices can be found. However, such results are generally not obtained in a systematic
way from the action; rather, one often relies on general principles (factorizability, unitarity,
crossing, bootstrap, etc.) and educated guesses about symmetry, mass spectrum, etc.
A case in point is the tricritical Ising field theory—i.e., the tricritical Ising conformal
field theory (CFT) [3-5] perturbed by thé 3 operator [6]. We shall refer to this
field theory as the “tricritical Ising model” or TIM for short. The bulk matrix was
proposed in [7], and boundaty matrices were proposed in [8,9]. This field theory has
several notable properties, which render it a very attractive toy model: it is unitary; it is
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supersymmetric; and it is one of the simplest examples of a model of massive kinks, whose
scattering matrices are of RSOS [10,11] type. Moreover, the bulk and boundary soliton
S matrices [12—14] of th&v = 1 supersymmetric sine-Gordon model [15,16] contain the
corresponding TIMS matrices as one of the factors.

A thermodynamic Bethe ansatz (TBA) analysis [17] can provide a nontrivial check on
a given bulk [18,19] or boundary [20—-22] scattering matrix. Indeed St@atrices serve
as the input of the “TBA machinery”, whose output consists of certain data (central charge
[3,4], boundary entropy [23,24]) which characterizes the corresponding CFT. For the TIM,
a TBA check of the proposed bulkkmatrix [7] was performed in [19].

One of the principal aims of this paper is to perform an analogous TBA check of the
boundaryS matrices which have been proposed in [8,9]. Such an analysis is technically
nontrivial, since neither the bulk nor boundafynatrices are diagonal. As in the bulk case
[19], the key step is the derivation of an exact inversion identity which is obeyed by an
appropriate transfer matrix. For the boundary case considered here, the transfer matrix is
of the “double-row” type [25].

A second aim of this paper is to develop the techniques for deriving the necessary
inversion identity. We do this in an extended appendix, building on earlier work on fusion
for vertex [26—-28] and RSOS [29-31] models. The main idea is to formulate an RSOS
open-chain fusion formula, and to show that the TIM fused transfer matrix is proportional
to the identity matrix.

A third aim of this paper is to derive TBA descriptions of TIM massless boundary flows.
Let us recall [8,9,23] that the tricritical Ising CFT has a discrete set of (super) conformal
boundary conditions. Boundary perturbations can lead to flows among these boundary
conditions [8,9,32—35]. A TBA description of the nonsupersymmetric flows was proposed
in [32] on the basis of an analogy with the Kondo problem. Here we give a derivation of that
TBA result, as well as the results for supersymmetric flows not considered in [32], directly
from the TIM scattering theory. (An alternative approach based on a lattice formulation of
the TIM is considered in [35]. However, it seems that this approach cannot generate the
boundary entropies.)

We emphasize that detailed analyses such as ours of boundary integrable quantum field
theories may have various important physical applications. For instance, such models can
be used to describe quantum impurity problems in strongly correlated condensed matter
systems (see, e.g., [32,33,36]). Moreover, such models have applications to D-branes and
open string theory (see, e.g., [37,38]). In both the condensed matter and string theory
applications, the concept of boundary flow plays a fundamental role.

The outline of this article is as follows. In Section 2, we review the bulk and bourfdary
matrices [7—9] which will serve as inputs for our TBA calculation. There are two boundary
S matrices that are not supersymmetric; and there are two bouSdaatrices which do
have supersymmetry, which we call NS and R. We also briefly review the classification of
(super) conformal boundary conditions, certain pairs of which are connected by boundary
flows. In Section 3, we carry out the first step of the TBA program, which consists of
constructing the so-called Yang matrix [39] and relating it to a commuting transfer matrix.
For the problem at hand, we require a boundary RSOS version of the Yang matrix, which
is an interesting generalization of the known case of periodic boundary conditions. In
Section 4, we use an exact inversion identity to determine the eigenvalues of the transfer
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matrix in terms of roots of certain Bethe ansatz equations. We restrict our attention here to
the NS case. In Section 5 we use these results to derive the TBA equations and boundary
entropy. Moreover, we find massless scaling limits which correspond to boundary flows,
both for the NS case and the nonsupersymmetric cases. In Section 6 we briefly discuss the
R case, which is closely related (in fact, dual) to the NS case. Our conclusions are presented
in Section 7. In an Appendix B, we give a brief account of the fusion procedure for RSOS
models with boundary, and provide the derivation of the TIM inversion identity.

2. TIM scattering theory

We briefly review in this section some pertinent results on the TIM scattering theory. We
first define the bulk model as a perturbed bulk CFT, and give the$aiktrix [7]. We then
enumerate the possible (super) conformal boundary conditions, and give the bosindary
matrices which have been proposed [8,9] to describe certain perturbations of some of these
boundary conditions. Two of the bounda¥ynatrices do not have supersymmetry, and two
of them do. Many of the notations used in this paper are introduced in this section.

2.1. Bulk

The bulk TIM is defined by the “action” [7]

o o
A= Amauss +2 / dy / dx ®3/53/5(x,y), A<0, (2.1)

—00 —00
whereA pq(4/5) is the action for the tricritical Ising CFT (i.e., the minimal unitary model
M(4/5) with central charge = 7/10), and®3/s5 3/5) is the spinlesg1, 3) primary field
of this CFT with dimensiong3/5, 3/5). Moreover, is a bulk parameter with dimension
lengthr#/5. We restrict our attention to the cage< 0, for which there is a three-fold
vacuum degeneracy, and the spectrum consists of massive fmad3) kinks K, ,(0)
that separate neighboring vacuab € {—1, 0, 1} with |a — b| = 1. Multi-kink states

Kal,bl(el)Kaz,bz(QZ) e

must obey the adjacency conditidns= a», etc.
The two-kinkS matrix Sgi(e) is defined by the relation (see Fig. 1)

Kac(O0)Kep(02) =) S5(01— 02)Ka.a(02) Ka.p(01). (2.2)
d
The nonzero matrix elements are given by [7119]
S§8 ) =e" "5 6)558 (6),
$99,(0) =¢"%5(6)5°%,(0), (2.3)

1 Itis noted in [7] that thisS matrix is essentially the solution of the star-triangle equation corresponding to
the critical Ising lattice model [10,11].
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Fig. 1. Bulk S matrix S¢ ¢ (61 — 65).

whereo, o’ € {—1,+1}, ¥ = 5 In2, and the “reduced” matrix elemerfi§¢ (¢) are given
by

Qoo 0 Qo —0o PR 0
00 (@) =coshZ, Soo (0)=—i sth,
_ 1 _ 1
Sf,’g(@):«/icoshz(@ —in), 5290(9)=f2cosh1(9+m). (2.4)

Finally, o (9) is a function which obeys

1
cosh9/2)’

and has no poles in the physical stripddm6 < 7. A useful integral representation for
this functionis

c@) =o(in —0), o@)o(—0)= (2.5)

o (0)

OOdt sin(4t/m) sinh(3t/2)) 2.6)

—i )
CV2sini©@ — i) /4) eXp<’0/ 't sinh(2r) cosh/2)

This is a “reduction” of the well-known integral representation for the fatt@t) of the
sine-GordonS matrix [1] with 87 /y’ = 1/4.

Zamolodchikov has shown in [7] that thismatrix “commutes” with supersymmetry
charges and Q, which obey theV = 1 supersymmetry algebra with topological charge.
The S matrix also commutes with the spin-reversal operdtpwhich is defined by

FKal,az(el)Kaz,a;\,(QZ) T KaN,aNJrl On)
= K7a1’7a2 (91)K7a2,7a3 (92) e KfaN,faNJr]_ (QN) (27)

Further properties of th& matrix are listed in Appendix A.
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2.2. Boundary

Although the three vacua1,0, +1 are degenerate in the bulk, these vacua do not
necessarily remain degenerate at the boundary. Chim [8] has identified the six conformal
boundary conditions&BC) [23] of the tricritical Ising CFT as follows: for theoundary
conditions (—), (0), (+), the order parameter is fixed at the boundary to the vacua
—1,0,+1, respectively. For the boundary conditigr-0), the vacua—1 and O are
degenerate at the boundary; hence, the order parameter at the boundary may be in either
of these two vacua. Similarly, for the boundary conditi@), the 0 and+1 vacua
are degenerate at the boundary. Finally, for the boundary condiigrall three vacua
—1,0, +1 are degenerate at the boundary (as well as in the bulk); i.e., the order parameter
at the boundary may be in any of the three vacua. The correspogdimgiors [24] are
given by [8]

gy =v20°C, g0 =g+ =1°C.
g0 =v2C, g =8+ =C, (2.8)

where

_ sin(r /5) . sin(2r /5)
=i "=V sinG/5) (2.9)

It is argued in [9] that the conformal boundary conditigrg & (+), (—0)& (0+), (0) and
(d) are in fact superconformal. Notice that the first two of these superconformal boundary
conditions correspond to superpositions of “pure” Cardy states.

We shall consider separately integrable perturbations of both conformal and supercon-
formal boundary conditions, resulting in models without and with supersymmetry, respec-
tively. We assume [8] that also in the perturbed theory the boundary can have (at most)
three possible states, corresponding to the three different vacua, which are created by the
boundary operatoB, with a € {—1, 0, 1}. Multi-kink states have the form

Kal,az(el)Kaz,ag(QZ) e KaN,a(eN)Bw
The kink boundary matrix Raz (0) is defined by the relation (see Fig. 2)

Kap(©)Bp =) Ra} (0)Kqc(—0)B.. (2.10)

2.2.1. Non-supersymmetric cases
Chim [8] has considered the TIM on the half-lime< 0 corresponding to an integrable
perturbation of the CBC—0). The model is defined by the action

o) 0 o)
A=A @540 T A /dy /dx<1><3/5,3/5)(x,y)—h/dY¢(3/5),<70)(y),
—00 —0o0 —00

A <0. (2.11)
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Fig. 2. Boundarys matrix R (6).

The last term is the boundary perturbation. It involves the boundary primary field
b3/5),(—0) With dimensionA .3y = 3/5 which acts on the CBC—0).2 Moreover, is
a boundary parameter which has dimensions lerrgth

The boundarys matrix which has been proposed [8] for this model has the following
nonzero matrix elements

R0, (6,§) = P(6,§)R0_, (6,8,

RoQ (0,8)=M(®,&)Rog (0, ), (2.12)
where the reduced matrix elemerﬁsz (0, &) are given by
Ro (0.6)=1,
R+12(0,86) = cosé +i sinhg. (2.13)
0 2 2

The parametey is related in some way to the boundary parametgppearing in the action
(2.11). The functiorP (9, &) is given by

P(9.&) = PEPP(0, &) Prin(0). (2.14)
wherePCPP (g, &) is the CDD factor
iné — i sinho
pCOD(y £y siné —isin 215
©.5) sing 4 i sinhg’ ( )

2 |In general, boundary operatags and ¢, which act on conformal boundary conditionsandb commute;
i.e., their operator product expansion with each other is zero. Such operators have recently been studied in [40].
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which has a pole & = i&, and Pyin(0) is the minimal solution of the equations
Pmin(Q)Pmin(—Q) =1,
i : 0 im i
Pmin<7 — 9) = \/562”/0 COS”(E — Z)U(z@)Pm|n(7 +9>, (216)

with no poles in the physical strip & Imé < Z. We find that it has the integral
representation

1 fdr sin(Zy
Prin(6) =expi<—y9 + éO/Tm) (2.17)
Finally, the functionM (0, &) is given by
M@©,€)=e?"5( —i&)o (0 +iE) PO, €). (2.18)
There is a similar model corresponding to a perturbation of the GB€). The

boundary S matrix for this case is the same as the one given above, except that
Roj 6,8 =0, and

Ro, (0,€) = P(6,€)R0, (0,6), (2.19)
with I?oi (8, &) = 1. Neither of these two models has supersymmetry.

2.2.2. Supersymmetric cases

Supersymmetric perturbations of the tricritical Ising boundary CFT with two different
superconformal boundary conditions (namélypP)& (0+) and(d)) are considered in [9].
We refer to these two cases as NS and R, respectively, since these are the sectors to which
the corresponding boundary states belong.

(@)NS case
The NS case corresponds to a perturbation of the boundary con@it®& (0+), with
action

0 0

A= AM@/5)+(-0&0+) T2 f dy f dx @(3/53/5)(x, y)
—0Q —0Q
o0
—h / dy (¢3/5),-0)(¥) — @5, 00 (), A <O. (2.20)
—o0

The proposed boundatyymatrix is the “direct sum” of the boundayymatrices given in
Section 2.2.1 for the perturbations@f0) and(0+). That is, the nonzero matrix elements
are given by

RO} (0.&) = P(0.£)R0, (0,8),
RoJ(0.£)=M(0.£)Ra)(0.£), (2.21)
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where
RO (0.6) =1,

Eilg 0, &) =cos% +isinh (2.22)

0
27
and the functions? (9, &) and M (9, &) are given by Eqgs. (2.14) and (2.18), respectively.
This boundarys matrix “commutes” with the supersymmetry charge

0-0+0 +zco<§)ﬁr, (2.23)

wherel is the spin-reversal operator (2.7).

(b) R case

For the R case, which corresponds to a perturbation of the boundary conditiche
action is given by the image of (2.20) under duality transformation. The proposed boundary
S matrix has the following nonzero matrix elements

RO] (6,6)=N(6,6)R0, (6,%),
Ro,” (6.8) = N(0.£)Ro,° (6.5).
Ro)(0.£)=R(0.£)Rog (0. 8), (2.24)

where the reduced matrix elemerﬁsz (0, &) are given by

50 _ 3 = -1 e 0

Ro_(0,8)= cosé, R0+1 0,8 =—ir sth,

Rott@.6)=—Lsinhl,  RL@.6)=1 (2.25)
-1 r 2 0

andr is a parameter which presumably is related in some way to the boundary parameter
as is&. Moreover, the function#/ (6, £) andR(6, &) are given by

N®,&)=e27"M@0, ), R©O,&) =% P(0,§). (2.26)

This boundary§ matrix “commutes” with the supersymmetry charge

0=0-0+ air cos@)ﬁl‘. (2.27)
1-r2 2

In contrast to the NS case, here the maﬁ'bi (0, &) does not vanish fob # c; i.e., itis

not “diagonal”.

The parameter can be set to unity by an appropriate gauge transformation [2] of the
kink operators, which corresponds to adding a total derivative term to the boundary action
that restores spin-reversal symmetry. This limiting case, for which the supersymmetry
charge (2.27) reduces 10, was considered earlier in [8].
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3. Yang matrix and transfer matrix

The first step of the TBA program is to formulate the “Yang matrix” [39] and relate it
to an appropriate commuting transfer matrix. Since it is not obvious how to do this for the
case of boundaries, we begin by reviewing the case [19] of periodic boundary conditions.

3.1. Closed-chain transfer matrix

Following [19], we consideV kinks of massn with real rapiditiesss, ..., 0y and
two-kink S matrix Sgi(e) in a periodic box of lengtiL > n—11 We impose the periodicity
condition

M IMAK 4y (01) Kagas 02) - Kay_y.ay (ON—1) Kay .0y (ON)
- Kaz as (92) aN a (QN)K(J]_ az (91) (31)
Commuting the kink operatoK,, «,(61) on the LHS past the others using the relation
(2.2), we obtain

CHEmSL N {5 9292(01 — 0)S (203 (01 — 03) -+ S GV (01 — Oy 1)

ayaz dyay dy_z2an

dp,....dN
d
X S (01— ON) Ky (02) Kty 03) -
X KaN 1, dN (QN)KdN 01(91)}
- Kaz as (92) aN a (QN)K(J]_ az (91) (32)

Multiplying both sides by the “wavefunction® 414~ summing overws, ..., ay, and
relabeling indices appropriately, we obtain the Yang equation for kink 1

ol Lmsinhoy Z Y(l)a/ “anal “N—lllal “an (3.3)

whereY(y) is the Yang matrix
Yy o ot =878, : 2 01-02)S, o v 01— 03) S e T (01— 0n-D)

X Saxa;(el —0N). (3.4)
There are similar equations, and corresponding matriggs for the other kinksk =
2,3,...,N
The objective is to diagonaliz&y),. The key to this problem is to relatgy, to
an inhomogeneous closed-chain transfer matrix, for which there are well-developed
diagonalization techniques. To this end, we consider the transfer matrix

ra,l_'_'_'“/N (0101, ...,0n)

alaz

MG 9)5“2“3(9 05) - - SNlN(Q On_ 1)S“N {0 —06N), (3.5)

3 The analysis presented here for RSOS-t§peatrices is parallel to the one given in [22] for vertex-type
matrices.
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with inhomogeneitiesy, . .., Oy . Because thé matrix satisfies the Yang—Baxter equation
(A.5), the transfer matrix commutes for different value® tf

[t(0161,...,08),T(0161,....0N)] =0. (3.6)

Let us now evaluate this transfer matrixéat 61. Using the fact that thd matrix at
zero rapidity is given by (A.6), we immediately obtai(01|61, . .., 65) = Y(1). In general,
we have

Yoy =T(Oklb1,....0n), k=1,...,N. (3.7)

This is the sought-after relation. In order to diagonalize the Yang matriggst suffices to
diagonalize the commuting closed-chain transfer mat¢}01, . .., 6y). That calculation
as well as the corresponding bulk TBA analysis, is described for the TIM in [19].

3.2. Open-chain transfer matrix

We turn now to the case with boundaries, which is our primary interest here. We
therefore consideN kinks of massn with real, positive rapiditie8, ..., 6y in aninterval
of lengthL > n—11 with bulk S matrix Sgi(e) and boundary matrixRaZ @, &). In analogy
with (3.1), we propose the formal relation

A S BA K 1 4y (01) Kay.a3(02) - Kay_y.an ON-1) Kay.ay1 ON) By,
- B Ka]_ az(el)Kaz a3(92) aN 1,aN (QN 1)Ka1\/ aN+1(9N)BaN+1’ (38)

where now there are two boundary operatd§ corresponding to the left and right
boundaries, with (cf. Eq. (2.10))

Kap(0)By = Ry (0,6 )Kac(=0)B, (3.9)

B Kp.a(0) = Z Bch,a(—Q)R“Z (=0, &4). (3.10)
Note that for each boundary opera®®jf there is a corresponding boundary paraméter
By moving the kink operator with rapidit§; on the LHS of (3.8) to the far right using
(2.2), reflecting it from the right boundary using (3.9), moving it to the far left using again
(2.2), and finally reflecting it from the left boundary using (3.10), we arrive at the Yang
equation for kink 1

2i Lm sinhd; A1 AN+L Ay -y g gyral-aN+l
€ > vy dpdly T V=W , (3.11)

! ’
ap-olyyg

4 Our convention for matrix multiplication is given by

ap- “N ay- “N B AN
(A § Ay NBO.
" 174N d1ay

an

5 The relations (3.9) and (3.10) are consistent in that both lead to the same boundary Yang—Baxter equation
(A.10).
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where the Yang matriX(y) is given by

d
Yoot = Y R 01,608 E 00 -6 SS 01-6x)

a- “N+1 N-1ay,
dp,....dN

aN+1
X RIS, 0L EDS D, OLFON) - SEROL+ 0]
N+1

dy-1anN+1
(3.12)
There are similar matriceBy, for the other kinks. In analogy with the case of periodic
boundary conditions, the key to diagonalizing the Yang matrix is to relate it to an
inhomogeneous open-chain transfer matrix

o “N“wwl ,ON)

al a
- a ajay “N N+1
= Z R 1 (l]T 0 E+)S // /(9 9) a / (9 QN)
N
ajs.., a;\//+1
an+1
X R%s1, (0.6, 4 Y0+ 0) - “2“1(9+91)} (3.13)

AN+l

which commutes for different values 6f

[1(6161, ...,60n8),1(0'161, ...,05)] =O. (3.14)

The transfer matrix (3.13) is an RSOS version [13,30,31] of the Sklyanin [25] vertex-type
transfer matrix. Using the relations (A.6), (A.9) and (A.2), one can show that

Yo =1(6kl01.....08), k=1,...,N. (3.15)

Hence, in order to diagonalize the Yang matri¢gs, it suffices to diagonalize the open-
chain transfer matrix(0161, ..., 0y). Indeed, let¥ (91, ..., 0y) be an eigenvector of the
transfer matrix with corresponding eigenvald& |61, . .., 0y),

10101, ...,0NW 01, ...,08) = AB|0, ...,0N)W (61, ...,0N). (3.16)

The eigenvector is independentéby virtue of the commutativity property (3.14). With
the help of the result (3.15), the Yang equation (3.11) implies

eZiLmSinhekA(ekWL~-~a9N):1’ k=1,...,N. (3.17)

4. Inversion identity and transfer-matrix eigenvalues: NS case

We turn now to the problem of determining the eigenvalues of the inhomogeneous open-
chain transfer matrix (3.13). As for the closed chain [19], our approach is to derive an
exact inversion identity. For definiteness, we treat here the NS case (see Section 2.2.2.).
The results for the R case, which are closely related to those for the NS case, are presented
in Section 6.

Instead of working with the full (“dressed”) transfer matrix (3.13), it is convenient (see
Footnote 6 below) to work instead with the reduced (“bare”) transfer matrivhich is



444 R.l. Nepomechie, C. Ahn / Nuclear Physics B 647 [FS] (2002) 433-470

constructed from the reduced bulk and boundamgatrices,

O “N”(9|9 ,ON)

ala
_ a “102 aN N+1
- ¥ {Rl (7 = 0,88 37 (0 = 00) Sy 2720 — O)

—, 9N+l ay
x Rov+1 | (6,6 )S N“ LO+0N) -

AN+1

a2 ay

me+o) @)
Itis also convenient to define the following four “sectors”:

N =even—sector . a1,ay,any1,ayq € {—1,+1},

N =even—sectorll: a1 =a)=ani1=ay,, =0,

N =odd—sectorl:  ay,a7 € {—1,+1}, ayt1=day =0,

N =odd—sectorll: a3 =a} =0, ant1,ay,q € {(—1,+1}. (4.2)
The nonzero matrix elements of the transfer matrix lie exclusively in these sectors. For a
given parity of N (i.e., even or odd), the transfer matrix decomposes into two blocks along
the diagonal corresponding to sectors | and Il. For the NS case (2.21), (2.22), the relation
between the full transfer matrix and the reduced transfer matrix is given by

(@161, ...,08) = w9 O O61,...,08), (4.3)
wherea runs over the four sectors (4.2), and® () is given by
P(im —0.51)P(©.£-).
M(im —0,6)M (0, §-),
e 2VOP(im —6,6)M(0,5-),
AVIM(im —6,61)P(6,E-),
respectively. The latter can be brought to the form

N
w®®) = ]_[0(9 —0))(0 +6;) x
j=1

(4.4)

1 N
[[e@-0)00+06)

@y —
v (9)_0(29)cosr(9/2)j:l

AP ©O,54) PO, 5-),
S 2IM@6, £ )M, &
x 26 ( 7E+) ( 75 )7 (45)
PO,5)M(0,5-),
FM6.6)PO.5)
with the help of the crossing properties (2.5), (2.16).
Using the fusion procedure, we show in Appendix B that the reduced transfer matrix
obeys the inversion identity

FO0161,...,0M)7 O +im|e,...,08) = @O, (4.6)
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wherea runs over the four sectors (4.2), afi®) (9) is given by

@ @) = 1 £ ) costt? ﬁ cosi-(l(e —9 ~)> cosi-(}(e +6 ~))
cosho | 7T 2 i 2 J 2 J

(@) 0 1 1 1
+ f270) sintf > Esmh(E(Q — 9j)> smh<§(9 + @))]7
"~ 4.7)
where

1a
(coshy + cost_)(coshp + costy ),
$(coshp + cost_),
2(coshy £ costy),
respectively. This inversion identity is one of the main results of this paper. We have
checked it explicitly up tav = 4.

In addition to the inversion identity, we can establish certain further properties of the
transfer matrix which are needed to determine its eigenvalues. Namely, periddicity

fi20) = (4.8)

1O +2iw|01,...,08) =1(0]01,...,0N), (4.9
crossing
tim —001,...,08) =1(0|61,...,0N), (4.10)

and asymptotic behavior for large

190161, ...,08) ~ 29O 1, foro — oo, (4.11)

wherea runs over the four sectors (4.2), ariél is given by

! \N/2
(_%) (‘Sal,aNH - 301,—0N+1)7
(_%)(N/Z)-l—l
(@) _ ’
7%9(0) = 0 (NaD) /2 (4.12)
(— ) N 2y 21 = 8ap, ),
i \(N+1)/2
2(_%)( 7 (Baps1.-1 = Bay,1.1),
respectively.
Acting with the above relations on an eigenvectb(d, ...,0y) of the (reduced)
transfer matrix
70101, ....0M)¥O1,...,08) = A©|61,...,0M)¥ O, ...,0N), (4.13)

6 This is not the case for the full transfer matrigo |64, . .., oN)-
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we obtain corresponding relations for the eigenvaldé¥ (8|64, ..., 0y) in the various
sectors,

AD 0161, ..., 00 A O +im|61,....08) = fD0), (4.14)
ADO +2i710,...,08) = AD @G04, ...,0n), (4.15)
A —0161,...,08) = ADB61, ...,0N), (4.16)
AD@B101,...,08) ~290), foro — occ. (4.17)

The periodicity, crossing and asymptotic behavior requirements of the eigenvalues
(4.15)—(4.17) are fulfilled by the ansatz

d@

_ ! 1
AD G164, ...,08) =c@ H(—i) smh(E(e — uj)> cos>—<§(9 + u,-)), (4.18)
j=1
wherec@ andd® are given by
+1, 5
2 Z+1
@_ )% @_J]27>
=y d@ = bty (4.19)
+2, N+1
2 ’

respectively. The parametejs;} appearing in the ansatz (4.18) are evidently roots of the
eigenvaluesA@ (u 161, ...,0y) = 0. It follows from the inversion identity (4.14) that
{u;} are also roots of the function@ (9), i.e., f("‘)(uj) = 0. We conclude from (4.7) that
{u;} are solutions of the set of equations

N

_fﬁ“)(uj) sini? % I sinh(3(u; — 61)) sinh(3(u; +6x) _1
1©(u) costt o 7 cost(F(u; —6) coshzu; +60)
j=1,...,d®, (4.20)

to which we refer as “Bethe ansatz” equations. )
The periodicity property (4.15) implies that we can restrict the ragtsf A (9) to
the interval

-7 <Imu; <. (4.21)
We now demonstrate that all the roats have the forme; & & with x; real. Indeed, we
observe thaff ) (9) has the propertiés

[FO) =190, fOO0Fin) =10, (4.22)

where* denotes complex conjugation. These two properties imply that i& a root of
f®(©), then so arer; andu; F im, respectively. Since’ # u;, thenu’ = u; ¥ ix.
Hence, Imy; = +Z.

7 \We assume here théd, } andéy are real.
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In view of the above, we set

e (4.23)

uj=x;+ >

with x; real ande; = £1. The eigenvalues (4.18) are specifiedby, €}, j =1, ..., d®,
similarly to the bulk case [19]. Hence, we can rewrite the expression for the eigenvalues as

d@
A@ @104, ...,0N5) =@ ]_[ Ag})(e - xj)xg?(e +x;), (4.24)
j=1
where
AD©6) = sinh} LY 212 ©6) = —i cosh} 0+ i (4.25)
¢ VTP 2 ) « T 2 2 ) '

Moreover, we can rewrite the Bethe ansatz equations (4.20) in terms (tfiey do not
depend orE;) as

Q@ (xj,&x)

i . . . R . A ) .
sintP(3 — & ﬁ|: sinh(=5=% — &) smh(xf;r Lo ] L

sint?(F + 5 3| sinh(E% 4 i) sinp i 4 ix)
j=1...,d9, (4.26)
where
17
O(xj,6-) O(xj, &4),
@ (x; £4) = J J 4.27
Q" (xj,Ex) 0.5, ( )
Oxj, &)
and
0(x.6) = sinhx — i cosg (4.28)

sinhx + i cost

(As always,a runs over the four sectors (4.2).) Notice that (4.26) is invariant under
xj — —x;. Moreover, following [41,42], we assume that the rept= 0 corresponds to an
eigenvector with zero norm. Hence, we restrict to solutions wijtk 0.

To summarize this section, the eigenvalues (3.16) of the full transfer matrix for the NS
case of the TIM are given by

AD©B101,...,08) = w D O)AD (0104, ...,0N8), (4.29)

wherew® (9) is given by (4.5) A (064, ..., Oy) is given by (4.24), angix;} are positive
solutions of the Bethe ansatz equations (4.26).
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5. TBA analysis

Having obtained the eigenvalues of the transfer matrix and the Bethe ansatz equations,
we can proceed to the derivation of the corresponding TBA equations and boundary
entropy. Following [2,20] we consider the partition functigh— of the system on a
cylinder of lengthL and circumferenc® with left/right boundary conditions denoted by
+. Itis given by

—RH,_ _ ,—RF

Zi_=tre =e

= (Byle ""|B_)
~ (B4+|0)(0|B_)e LFo,  for L — oo. (5.1)

In the first line, Euclidean time evolves along the circumference of the cylindettiand

is the Hamiltonian for the system with spatial boundary condititn#n the second line,

time evolves parallel to the axis of the cylindéfp is the Hamiltonian for the system

with periodic boundary conditions, anf..) are boundary states which encode initial/final
(temporal) conditions. In the third line, we consider the lihit> oo; the statd0) is the
ground state ofip, andEj is the corresponding eigenvalue. The quantityBln|0) (0| B_)

is the sought-after boundary entropy [20,24]. Taking the logarithm of the above expressions
for the partition function, one obtains

—RF ~—LEg+In(B;|0)(0|B_). (5.2)

Whereas the free enerdy has a leading contribution which is of order we seek here
the subleading correction which is of order 1.

5.1. Thermodynamic limit

We proceed to computE using the TBA approach [17-22]. To this end, we introduce
the densitiesP+ () of “magnons”, i.e., of real Bethe ansatz rogis} with ¢; = £1,
respectively; and also the densiti@g0) ands(9) of particles{d;} and holes, respectively.
Computing the imaginary part of the logarithmic derivative of the “magnonic” Bethe ansatz
equations (4.26), we obtdin

1 o0
P (®)+ P_(9) = Zfde’pl(e/)[qx@ —0)+ PO +0"]
0

1
+ 5 [PO) + ¥ 0) + ¥ 0], (5.3)
where
K sinh(§ — ) 1
PO =735 Imln(sinh(% + %)) ~ coshp’

4 co< coshy

cosZ +cosh?’ -4

0
Ve (0) = %Imln 00,8 =

8 There is a contribution—ﬁdﬁ(e) which originates from the exclusion [41,42] of the Bethe ansatz root
xj=0.
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In the final equality, we have used the expression (4.28Df@, £), and we have assumed
that¢ is real. We present here the results foe= even— sector Il, from which the results
for the other sectors (see (4.27)) can be read off by inspection. Defin{figg for negative
values of9 to be equal t1(|0|), we obtain the final form

1 1
PL(O)+ P_(0) = Z(pl * D)(0) + E[Q)(@) + W, (0) + Vs (9)], (5.5)
wherex denotes convolution
(f*g)©0)= / do’ f(6—6")g(6". (5.6)

Computing the imaginary part of the logarithmic derivative of the Yang equation (3.17)
using the result (4.29) for the eigenvalue, we obtain (agaitvfer even— sector Il)

1 o
PO+ 5(0) = 5 {Zm coshy + / 6’ p1(0")[ @6 (0 — 6') + D, (0 +6)]
0

+ f a0'[ P (@6 —0) + 2P0 +0")
0

+P_ @) (@P0O-0)+0P 06+ 9’))]

1 9
+ z[—2;/ — P (0) = 205(20) + - IMIN M (6, &)

3
2 IminM@®, £ 5.7
+ 5 Imin (,E)”, (5.7)
where
@0 (0) = - Imin (9)—1]odk v __ 9
TN 90 o= 8 cosh?% " 2m sinhg’
—00
(”(9)_ Imlnk(”(e), =12, (5.8)

and/\ﬂE (9) are introduced in (4.25). Using the fa@é_tl)(e) (2)(9) =+1 5®(0), and
defining P+ (9) for negative values af to be equal taP.(|0]), we obtain

p1(0) + ()
m 1 1
= —cosht + —— (p1 % Do) (0) + — ((Py — P_) x ®)(6)
T 2 4

1 9
+ 5 L[ 2y — P (0) = 205(20) + - IMINM (0, &)

ad
+ £ImlnM(9,.§)}. (5.9)
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Using (5.5) to eliminateP_, and (2.14), (2.18) to separate the various facto® i@, &),
we obtain

p1(6) + p(6)
"

1 1 1
=—cosW+ —P, D+ —p1% | Py — —DP*xP
T 2 2 4

1

0 1

+ (@U(B — i)+ P (0 +iky) — %W& * @)

+ (@U(e ) O iE )~ e @)

+§¢mmpam@gg+7%nnmpam@g)} (5.10)
Using the identity [19]

P; (0) — %(45 * P)(0) =0, (5.11)

as well as the identities
1
Dy (0 —i&)+ Dy (0 +i&) — E(% *®)(0)=0,

Gl 1
ﬁlmln Pin(0) — ®(20) — P (0) + ¥ =—Z‘P(9), (5.12)
we arrive at the final simple result

p1(6) + p(6)
_n

1 1 1
= coshy + E(PJr *®)(0) + Zn—L[_E(p(e) + ke, (0) + ke_ (9)], (5.13)
where

4 sin coshy

d
% (0) 90 min ©.8) cosZ —cosh®

(5.14)
The result (5.13) holds in fact for all four sectors.

The thermodynamic limit of the magnonic Bethe ansatz equations and the Yang
equations, given by (5.5) and (5.13), respectively, are the main results of this subsection.

5.2. TBA equations and boundary entropy

The free energy is given by

F=E-TS, (5.15)
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where the temperature = %, the energyt is

N o
L
E= Zm coshg, = 5 / d® p1(0)m coshp, (5.16)
k=1 e
and the entropy is [17,19]
L o
S= 5 / do{(p1+ p)In(or+ p) — prINp1 — 5INj + (Py + P-)In(Py + P-)
—0o0
— PyInPy—P_InP_}. (5.17)

Extremizing the free energy F = 0) subject to the constraints
1 1
SP_=—86Py + —68p1% @, 3p=—68p1+ —8P D, (5.18)
2 2

(which follow from Egs. (5.5), (5.13), respectively) we obtain a set of TBA equations which
is the same as for the case of periodic boundary conditions [19]

1
tcoshd =€1(0) + 2—(<1> * L2)(0),
JT

O0=¢€200) + i(<15 *x L1)(0), (5.19)
21
where

Li® =In(1+¢5®), t=mR,

61=In<pﬁ~l>, 62=In<£—;). (5.20)

We next evaluaté’ using also the constraints (5.5), (5.13) and the TBA equations. From
the boundary (order 1) contribution, we obtain (see Eq. (5.2)) the boundary ehtropy

1 [ 1
In(B+|0){0|B_) = yr / do H:—E‘p(@) + ke, (0) +K€(9)]L1(9)

+[®60) + W, 0) + We_ (9)]L2(9)}. (5.22)

9 Taking into account all the sectors, the last term in (5.22) should be replader(®y+ ¥ @ (o, E4)1L2(0),
wherea runs over the four sectors (4.2), awd® (9, £+ ) is given by

0,
W, (0) + W (0),
v (),
e, (0),

@ g £y = (5.21)

respectively.



452 R.l. Nepomechie, C. Ahn / Nuclear Physics B 647 [FS] (2002) 433-470

In particular, the dependence of the boundary entropy of a single boundary on the boundary
parameteé is given by

[e¢]

1
Ing(&) = y / d [k () L1(6) + W (0)L2(0)]. (5.23)
—0o0
where the kernelsg (6) and ¥, (9) are given in Egs. (5.14) and (5.4), respectively. This

expression for the boundary entropy for the NS case of the TIM is another of the main
results of this paper.

5.3. Massless boundary flows

We now consider the case of massless boundary flow. That is, we consider the bulk
massless scaling limit

m=un, Qzé:Fln%, n— 0, (5.24)

wherep andé are finite, which implieE = ue™?, P = +ue®?. There are two nontrivial
scaling limits of the boundary parameter, which we consider in turn. As we shall see, these
two limits correspond to the boundary flows0)& (0+) — (—)&(+) and(—0)& (0+) —

2(0), respectively.

5.3.1. The boundary floy0)& (0+) — (—)&(+)
Let us first consider the scaling limit

g:-%+i<93—ln%>, "0, (5.25)
where the boundary scalg is finite. For the sign—in the limit (5.24), the CDD factor has

a nontrivial limit

isinh(®e — (5.26)
sinh(4522 + )

and therefore, so does the corresponding kernel (5.14)

PP, &) — —

ke (0) — D (0 — 0p). (5.27)

On the other hand, the factap (9, &) (4.28) becomes real in this limit; hence, the
corresponding kernel (6) (5.4) vanishes. The result (5.23) for the boundary entropy
therefore implies

o
2 A .
Ing=_— f dl &0 — 6p) L1(6), (5.28)
T

—00

whereé; (8) = €@ — Inn/2), andL; () = In(1 + ¢—4®). The factor of 2 appearing in
(5.28) accounts for the contribution from the signn the limit (5.24), corresponding to
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boundary entropy vs. boundary scaling parameter
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Fig. 3.

the fact that right-movers and left-movers give equal contributions to the boundary entropy.
In the UV limit 65 — —oo, the integrand is nonvanishing fér—> —oo; similarly, the IR

limit 65 — oo require®) — oco. Using the resultd.;(—oo) = In( (34++/5)), Li(c0) =

which follow from the TBA Eg. (5.19), we conclude from (5. 28) that

uv
4 =5+ VB) (5.29)

This is precisely the ratio of factors corresponding to the boundary flow0)& (0+) —
(—)&(+), as follows from (2.8),

sc0son _ 2 L 5 (5.30)
8(-)& () 2

A plot of Ing in (5.23) as a function of the boundary scaling paramggetefined in (5.25)

with finite 210 for various values of is given in Fig. 3. Observe that ferx 1, the correct

conformal boundary entropy is reproduced. Aiicreases, one can see that the entropy

deviates from the conformal field theory value. Indeedxfer 1, the entropy approaches

zero, as expected for a massive theory.

One might wonder how there can be a flow to the boundary conditio& (+) in
the N = even— sector Il, for which the boundary “spins” are fixed to O (see (4.2)). Our
explanation is that there are boundary bound states with splnsorresponding to the
pole at = g = 65 — - inthe CDD factor (see Fig. 4).

5.3.2. The boundary floy0)& (0+) — 2(0)
Let us now consider instead the scaling limit

s=i<93—|n %) n—0, (5.31)

10 The horizontal axis is rescaled in such a way that the range is mappedljo
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00

Fig. 4. Boundary bound state pole.

with 6 finite. Taking again the sign—in the limit (5.24), the fac®tPP (9, £) becomes
real, and so the corresponding kernglf) vanishes. However,
isinh(é‘zeB ~i

sinh(%=8 + 1)

00,8 — (5.32)

and therefore
W (0) — @ (0 — Op). (5.33)
The result (5.23) for the boundary entropy now implies

o0
2 A A
Ing = yoe f dO (6 —05)L2(H). (5.34)
T
—00

Using the resultd »(—o0) = In(3(3+ v/5)), L2(c0) = In2, we obtaid?

uv
1
P E‘/3+ V5. (5.35)

This is the ratio of factors corresponding to the boundary flow0)& (0+) — 2(0), since

2

8-0&0+) N 1

= == 3—{—«/3. 5.36
82(0) J2 2 (5:36)

oo

11 This flow does not occur faN = even— sector |, since for this sector there is he(#) contribution to the
boundary entropy, as can be seen from (5.21). Our understanding of this fact is as follows: by definition (4.2), this
sector has boundary “spinst1. Moreover, in the scaling limit (5.31), there cannot be a boundary bound state
with spin 0, since the CDD factor does not have a corresponding pole. That is, the process represented by Fig. 4
with the spinst1 and 0 interchanged does not occur. Hence, there cannot be a flow to the boundary c@®dition
in this sector.
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5.3.3. Nonsupersymmetric flows

The analysis presented so far in Sections 4 and 5 has been restricted to the NS case of
the TIM, for which the boundary matrix is given by (2.21), (2.22). However, the results
for the cases without supersymmetry can now be obtained with no additional effort.

For definiteness, let us now consider the nonsupersymmetric bousidaarix (2.12)—
(2.18)12 The corresponding inversion identity is again given by (4.6)—(4.8), except the
sectors are now given by

N =even—sectorl: ag an+1 = aN+l =-1,

/
a
N =even—sectorll: a1=aj=anj1=ay,,=0,
N =odd—sectorl: a;=a;=-1, ayt1=day, =0,
N =odd—sectorIl: a3 =a;=0, ayt1=day=—1 (5.37)

That is, the sectors are restrictions of those in the NS case (4.2). In particulsir=theyen

— sector Il is identical to the one for the NS case. Hence, the TBA equations and boundary
entropy are the same as before (5.19), (5.23). Moreover, the two massless scaling limits
give the same results (5.28), (5.34). However, the interpretation of these scaling limits is
different from the interpretation in the NS case: the first scaling limit now corresponds
to the boundary flow(—0) — (—), while the second scaling limit now corresponds to the
boundary flo{ —0) — (0). That both interpretations are possible is due to the coincidence
in the ratio ofg factors [9],

8(-0&0O+) _ 8(=0 8(-0&©OH) _ 8(-0) (5.38)
8(—)&(+) 8(-) 82(0) £(0)

The TBA results (5.28), (5.34) for these flows coincide with those obtained in [32] on the
basis of an analogy with the Kondo problem.

6. R case

We now consider the R case of the TIM, for which the boundargatrix is given by
(2.24)—(2.26). Remarkably, the results are closely related (in fact, dual) to those for the NS
case. Indeed, let us define the four sectors as before (4.2). The relation between the full and
reduced transfer matrices is again given by (4.3), exeépt(9) is now given by

N(ir —0,64)N@®,&-),

R(ir —0,&)R©O,&-),

e 2VON(im —0,6)R0. &),
e2V'R(im —0,E)N(6, £).

N
w® @) =[]o® —0,)0©+6;) x
j=1

(6.1)

12 For the other nonsupersymmetric case (2.19), the results are exactly parallel, with the spiterchanged
with +1.
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The inversion identity is again given by (4.6), (4.7), excﬁj_ﬁ) (9) is now given by

Z(coshy £ cos_)(costy £ coséy),
4’

$(costy + cost,),

2(coshy £ cost_).

F96) = (6.2)

The periodicity and crossing properties of the reduced transfer matrix are the same as
before (4.9), (4.10). In contrast to the NS case, the reduced transfer matrix now becomes
an anti-diagonal (rather than diagonal) matrix for> co. Nevertheless, the asymptotic
values of the eigenvalues are again given by (4.17), ex¢&bis now given by

iof\(N/2)+1
+(=7) ,

io? \N/2

+2(=15)"%,

(o) —
Z9) = .
i\ (N+1)/2

+(-'F)

(6.3)

’

i2(_%)(N+l)/2.

A suitable ansatz for the eigenvalues is again given by (4.18), exegtindd® are now
given by

N
:bl’ 7 + 19
+2 g
() _ ’ (_ ) 2°
Y = i1 a‘ = N2+l (6.4)
+2, N+1
2 ’

respectively. The Bethe ansatz equations are therefore again given by (4.20), with the new
1%(6) given in (6.2). Comparing with the old{*’ (9) given in (4.8), we conclude that the
Bethe ansatz equations for the R case exactly coincide with those for the NS case, except
the sectors | and Il are interchanged (for b= even andvV = odd)! We remark that the
eigenvalues do not depend on the parametehnich appears in the boundagymatrix.

Itis now straightforward to repeat the TBA analysis. Roe= even— sector |, we obtain
the same constraint equations (5.5), (5.13), and therefore the same TBA equations (5.19)
and boundary entropy (5.23). The result (5.28) for the first massless scaling limit can now
be interpreted as the boundary flg#) — (0), since

1
@:,72:_(“@), (6.5)
10 2
as follows from (2.8). Similarly, the result (5.34) for the second massless scaling limit can
now be interpreted as the boundary flely — (—)&(+), since

2
&) n 1

_f@ 0 _ = /3446 (6.6)

g&+) 2 2
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7. Conclusion
We have achieved the principal goals set out in the introduction:

e \We have provided support for the proposed TIM boundargatrices [8,9] by show-
ing that the corresponding boundary entropies (5.23), (5.28), (5.34) are consistent with
boundary flows (both supersymmetric (5.30), (5.36), (6.5), (6.6) and nonsupersymmet-
ric (5.38)) which were expected on other grounds [8,9,32-35].

e We have developed in Appendix B analytical tools for RSOS models with boundary,
which we have used to derive exact inversion identities for the TIM. (See (4.6)—(4.8)
and (6.2) for the supersymmetric cases, and (5.37) for the nonsupersymmetric case.)

e Our TBA descriptions of boundary flows have been derived directly from the TIM
scattering theory. The fact that we have reproduced the TBA description of the
nonsupersymmetric flows given by Lesage et al. [32] provides support for their
approach based on an analogy with the Kondo problem. The TBA descriptions of the
supersymmetric boundary flows are new.

It would be interesting to see if the approach presented here can also be used to
investigate massless flow in the bulk [32]. Moreover, we expect that it should be possible
to generalize this approach to more complicated models, such as the, R88I8Is with
n > 3[19,32], and coset models [45,46].
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Appendix A. Propertiesof S matrices

We collect here some important properties which are satisfied by the TIM bulk and
boundaryS matrices.

A.1. BulkS matrix

The bulkS matrix (2.3)—(2.6) has the following symmetries in its indices
SHOENHOERHES (A1)
It also satisfies the crossing relation

$¢9(0) =89 (im —6) (A.2)
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and the unitarity relation

> Sed0)SE (—0) =80t Aac A, (A3)
d

whereA,; is the so-called adjacency matrix (see, e.g., [30])

Aab =38a,b-1+ Sa,p+1- (A.4)

Moreover, it satisfies the Yang—Baxter (star-triangle) equation

. | |
> ShE 61— 62055561 — 63)S5L (62— 63)
8

=Y 5,802 — 02) S04 (01 — 02) S55(01 — 02). (A.5)
8

Finally, we note that the bulK matrix at zero rapidity is given by
Seh(0) =8c.aAacAba- (A8)
A.2. Boundarys matrix

The nonsupersymmetric boundafynatrix (2.12)—(2.18) obeys the unitarity relation
> Ray (0)Raf (—0) = 8y,.4AapBa, (A7)

where hereB; equals 1 ifd is an allowed state of the boundary and equals zero otherwise;
hence, it is given by

By =2684,-1+84,0. (A.8)
This S matrix also obeys the boundary crossing-unitarity relation [2]

a i _ bd a I
Rb! (? —9) —ZSM(ZG)R% (7+9), (A.9)

d

as well as the boundary Yang—Baxter equation [8,13,30,31,43]

b " d ¢
Y SafO1—02)Re! (01)S5 701+ 02)R4, (62)
fg

=Y Re 0Sa{ O1+ R 1 (01)S1E 01— 62). (A.10)
fg

The supersymmetric boundaly matrices described in Section 2.2.2 obey the unitarity
condition (A.7) withB; = 1, and also (A.9), (A.10).
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Appendix B. Fusion procedurefor RSOS models with boundary

The fusion procedure was developed for bulk vertex models in [26,27], and was adapted
to bulk RSOS models in [29]. The fusion procedure was extended to vertex models with
boundary in [28], but this work has been adapted only in part to the RSOS case [30,
31]. In particular, the useful notions of projectors and quantum determinants have not
been explicitly implemented in [30,31]. For this reason, and also to make this paper self-
contained, we give here a brief summary of the fusion procedure for RSOS models with
boundary, and provide the derivation of the TIM inversion identity. However, our treatment
is not completely general. In particular, to avoid complications which are not necessary for
the TIM, we restrict taS matrices with the symmetries (A.1).

We remind the reader that a bar over a quantity (5.y.denotes that it is “reduced”,
and a tilde over a quantity (e.g?) denotes that it is “fused”.

B.1. Projectors

We shall carry out the fusion procedure by exploiting the fact that the redtibatk S
matrix degenerates into the projecIBT;‘,ﬁ for some value of the rapidity, which for the
TIMis 0 = —im,

Sed(—im)y=2P <4, (B.1)

For the TIM, P~¢¢ has the matrix elements

88 = %(50,0/ —86,07),
P=0%, =600, (B.2)
where as usuat, o’ € {—1, +1}. We define the projectaP™ Z‘; by
Pr =145 — P b, (B-3)
where]l;‘,ﬂ is the “adjacency-inclusive” identity matrix,
169 =8¢ qAacAba. (B.4)

For the TIM, P* ¢4 has the matrix elements

r 1 1
P+8g = E(aa,a/ +80,—0’) = E,

pt 00/ 250,0/. (BS)

[oen

13 Note that we work here with the reduced maﬁgz (9) rather than the full matri)Sflg(e). There are good
reasons for so doing: (i) as explained in Section 4, it is the reduced transfer matrix for which we require an
inversion identity; and (i) the fuls matrix is singular ab = —ix.
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a J

01 ~Sp K
7/

c 4 d

62

~cj
Fig. 5. Fused bulks matrix S bk (61 — 62).
ad

These projectors have the important properties
Z _CCP_ P_ab’ ZP+ZCbP+ab_P+ab’

ZP"‘ +ed — 0, (B.6)

B.2. Fused bulls matrices

We derive a bulk “fusion identity” from a degeneration of the Yang—Baxter equation.
Thatis, in (A.5) we sefh =0, 62 =60 + iw, 63 = 0, use the degeneration result (B.1), and
contract on the right of both sides with the projeckot to obtain

Y PoES L O)SE 0 +im P =0, (B.7)
.8

This identity can be used to show that the “fuse&dimatrix (which can be read off from
(B.7) by replacing the projecta?~ with P*, and which is represented by Fig. 5),

e +hegef g8 +fk
525(9)_ZP (S OSSO +im) P (B.8)
satisfies the generalized Yang—Baxter equation

~cm

Zs kg (01=02)S 51, (61— 6954 (02— 09)

= Zde(92—93)S kg (91 —93)5 gl (61— 62). (B.9)
1.8
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Fig. 6. Fused bulks matrix?bk?(el —6).

ac

For the TIM, the nonzero matrix elements®tre given by

500 (0) =5 o ! costd B.10
S 06’ (0) =S 0'0(f) = — cosh—. .
00’ () =S ¢'0(0) 7 > (B.10)
From a second degeneration of the Yang—Baxter equation (A.5)0withdz = —ir,
we obtain a second fusefdmatrix (see Fig. 6)

§'hkd @y =" Prissalo —imysih e Pt (B.11)
1.8
which obeys
35718 0y — 0,501 — 65 41 (62— o)
ak (01— 02)5 7401 —=03)5 ¢! (62 —03
1.8
~cf s ~
=Y Sk (02— 03)8 % (01— 03)S" 1 (01— 02). (B.12)
1.8
For the TIM, the nonzero matrix elements@fare given by
<7000 oo o 1 6

J2 2

B.3. Fused boundar§ matrix

Following [28], we obtain a boundary fusion identity from the degeneration of the
boundary Yang—Baxter equation (A.10) with— 6, = —im,
3 P iR 0)58 @20 + in)Ed’; ©+im)Pt4l =0 (B.14)
d.f.g
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Fig. 7. Fused boundary matrix ﬁu'}’;k ©).
¢

This identity can be used to show that the “fusétitnatrix (which can be read off from
(B.14) by replacing the projectad®~ with PT, and which is represented by Fig. 7),

ﬁal{’c‘(e)z 3 PSR (B)ng(ZB—l—tJT)Rd ©+im)pti (B.15)
d.f.g
satisfies the generalized boundary Yang—Baxter equation

Z S/ahC(el_ez)Rg (91)5 hl (91+92)Re (92)
f.8.h,i

Z Ra ‘g (92)S/dlf(91+92+l7r)Rf (91)S h; (01— 02— im). (B.16)
f.8.h,i
The shifts in the arguments of the fused bdlknatrices on the RHS should be noted. As
an example, for the NS case of the TIM, the nonzero matrix elemerRsané given by

~ 0
Rogz 0, &) =x/§cosh§,

0,% ©,8) = 2—\1/§(cosh9 + COsE) coshg. (B.17)

B.4. Fused transfer matrix

Before attempting to construct the fused transfer matrix, it is instructive to first review
the construction of the fundamental transfer matrix. To this end, we set

_ aan+1

ai
Py 101 0N =) (RY G0 —im e)T 4 (©10....0N),
N+1 1 N

ay-a
1 +1
aj

(B.18)
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whereT is defined by

AaN+1

ai- a,/N+l —aa —
T, 4 0fn....000= Y {Ta%ma,N*l (0161, ...,0N) R%+1 ,  (0,6-)
ay -y P / 179N 41 dyq
ags-dnig
x TG @6y, ... eN)}, (B.19)
and the monodromy matric§sandT are given by
T 010 On) = S50 — 61) - “N"””(e on).
Ti,’iiiii,’gi ©161.....08) =5, N“ (9+9N) Safai(9+91)~ (B.20)

The boundary matrix in (B.19) is assumed to obey the boundary Yang—-Baxter equation
(A.10), which implies tha obeys

PREACE 92)T (9 )S i 61+ 07, N

c1,b1,....bN 11

- ¥ Tu ””(9>s‘5;,(91+92>7b A 00T 01— 0.

c1,b1,.bN 11

(B.21)

However, the matrixk + in (B.18) is not yet specified. Indeed, following Sklyanin [25],
the requirement that the transfer matrix obey the commutativity property (3.14) determines
the relation whichR ™ should satisfy. In this way, we find (using also the properties (A.1)—
(A.3)) that

R*a(0,61) =Ra) (—0,&), (B.22)

Whereﬁaz (0, &) obeys (A.10). The result (B.18), (B.22) coincides with the expression
(3.13) for the (reduced) fundamental open-chain transfer matrix;
We follow a similar strategy to construct the fused transfer matike set

“ ~d1aAN+1

101 ./ /) 7
t“,l“"/N+1(9|91,.. ,ON) = Z R+ (af (0 —im, &) T “0Prel (0164, ..., 0n),
// b// // 1b1 a1~~~aN+1
(B.23)
whereT is defined by
~ a1 adN+1
Tai’b” 1 (0161, ...,0N)
ajdy g
S DR U AT
gy “X/Jrl’ R
b;(lJrl ‘N+1
=, NN ZhN
X Rajyy 0 (0,5)T eha (0 +im|6r,....00) 1, (B.24)
D141 ayadnga
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n

where the fused monodromy matrlcEsandT are given by

a1 AN+ ~a ar N aN
— "1
T bubvst (9161,....08) = Y Sbibz (0 — 1) szvbzv+1(9 On),
al aN+1 ba,..., by 414z aNuNJrl
=ai-ay+1
T bubyea (164, ..., 0n)
ay- “N+1
_ :/a;erle aN+1 /azblaz
= ) S ey @O S RO + 62). (B.25)
by,....bx

We determine the relation obeyed ﬁlF from the requirement that the fused transfer
matrix (B.23) commute with the fundamental transfer matrix (B.18), (B.22),

[1(6161, ...,60N), 16161, ...,0N)] =O. (B.26)
With the help of the relation obeyed ti:y

~ b1--bny1

> §’Z’;§1(91—92)T“1 “N+1(91)s hi (91+92)T ei  (6)
g.h.i, ay-ayg
Agseens “;v+1
- Y 7 R 6281 101 + b2 + i)
g.h.i, az-anN+1
a/l""’a;V+1
_ byb ~fe
xT 1 @08 hj (61—62— i), (B.27)
apayyy dby

we obtain the following equation R +
~gk _ ~ .
3 St G- )R g 01 —im. £)S ] (—61— 65+ 2im)
bd. fg "
X R+ a(ez—m £))
db
=y R+ F 02— i, £)S fb( 01— 602 + i)
bd.f.g
x R (61— i, s+)s/j[;(92—91+m) (B.28)
That is, this relation guarantees the commutativity (B.26). This relation is satisfied by

~ ki
RT7a@—in &)
ch

= . = N 4 dj
= > PHURS (im —0.60)555(—20 +im)Rd (=0,6) T (B.29)
d.f.g
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For the NS case of the TIM, the nonzero matrix eIementEﬂ)fare given by

~

~ o0 0
RY o (9—in,§+)=x/§cosh§,

~ Oo
R*OG,O O —im &) = Z—jé(cosm + COSE,) coshg. (B.30)

To summarize, the fused transfer matriis given by (B.23)—(B.25), where the fused

matricesS, S/, R andR * are given by (B.8), (B.11), (B.15) and (B.29), respectively. For
the NS case of the TIM, the nonzero matrix elements of the fused transfer matrix are as
follows: for N = even,

_01007-- OO'N

! 41007 oaN (9|917~- ,0n) = 2cosk = (Hcosh)

001007+ O'N 0
toglo(r2 GN Q(9|91a .., 0N)

= —(cosh9 + costy ) (cosh + cost— )cosﬁ (H cosh) (B.31)

and forN = odd,

_01002-:0n110

501002,,,(,; (@161, ..., 0y) = (coshd + cosi_) costt — (Hcosh)

_0010-- OUN+1

£ 00,0. 0ors Z (0161, ...,0N) = (coshP + cost, ) costf = (Hcosk) (B.32)

where([ ] cosh denotes

N 1 1
(l_[ cosh) = jl_IZlcosI(E(Q — Qj)> cosi-<§(9 + 9,-)). (B.33)

As also discussed in Section 4, for a given a transfer matrix (either fundamental

i ZN“ or fused: +” ZN“) it is convenient to define the following four “sectors”:
1 N+1 ag

N =even—sector : a1,ay,any1,ayq € {—1,+1},
N =even—sectorll: a1=a)=anj1=ay,1 =0,
N =odd—sectorl: a1, a7 € {—1,+1}, ayt1=day =0,
N =odd—sectorIl: a3 =a;=0, an+1,ay,q1 € {—1,+1}. (B.34)
The results (B.31), (B.32) show that, within each sector, the fused transfer matrix is

proportional to the adjacency-inclusive identity matrix,

F@@161,....058) =g@ O, (B.35)
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wherea runs over the four sectors (B.34), ag@ (9) is given by

6 N 1 1
(@) _ Z P _0. = .
¢@(0) = cosit > Jl:|lcosr(2(9 9,)) cosf(z(é + 9,))

27
1
y 3(coshy + cosé)(coshy + coséo), (B.36)
(coshy 4 cost_),
(coshy + cost ),

respectively. This is a nontrivial property of the TIM. The supersymmetric sinh-Gordon
model enjoys [22] a similar property.

B.5. Fusion formula and quantum determinants
We now derive the important “fusion formula”, from which the TIM inversion identity

is obtained. To this end, we first note tHAat(B.24) can be expressed as the fusion of the
corresponding fundamental quantitiegB.19),

al 11/N+/1
T albi.c] 061, ..., 0n)
ajay g
- ¥ {P+b,,f,1’T ' (9|91,.. ON)SIEH(20 + i)
aya; al~~a
by,....bny1,
f1.81
T, CO+inlo... eN)P+g1”l} (B.37)
a;

We next observe that the reduced bSlknatrix obeys

nga}z’(i” —20)S%b (i +20) = 84,424 (0) Aaa Aba, (B.38)
c
where, for the TIM, the scalar factgy () is given by

Lo(0) = } coshy, £+1(0) =2coshy. (B.39)

Using also Egs. (B.29) and (B.21), we obtain the desired fusion fofthula

a1 “LlNJrl(Q) _ é.a (9) Z , N(e)tal “LIN (9 + l]T) _ Lll aN+l(9) (B40)
l

Sy

ay...ay

14 We save writing by suppressing the dependence of the transfer matrix, etc. on the inhomogeneity parameters
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where the quantum determinant [27,44{9) of the transfer matrix is given by
Aal aN+1 0
ay--aj +1( )
1
- ¥ {5 (R* @, s+) f18(R(9 £ ))fN+1 T pkd
bay.y
SN+
b,c,d,j,k
kaq--
x a(T(e)))”f1 5”*18(T(9))jﬁf'f7vfl}, (B.41)
where the quantum determinants of the monodromy matrices are defined by
S T 9 ca}~~~a1/v+1
( ( ))bal'"aN+1
_ —chy bN+1 ap--an+1 —byt1b
Z P alalTal ”N 1(9)T '“bN 1(9+”T)P aN+1aN+1
b1,....bny1
T 9 cay aN+1
( ( ))b“1 iy
_ —cb1 & bN+1 Far-any1 —b byt
>oop alalTa1 e OT O +imPT (B.42)
b1,....bn+1

and the quantum determinants of the boundary matrices are defined by
5(1?(9,5,))5/"
=y P*”gRg (Q)ng(29+ln')Rd O +im)P~
d.f.g
S(R*®.£0)"
=Y P R im— 0,685 (- 29+171)Rd (—0,£) P41,

(B.43)
d.f.g

We now proceed to evaluate the quantum determinants for the TIM. With the help of
the identity
., 0 i .
Y P oS OS 0 +im P =iv2 smth’ﬁ{.P’;’;, (B.44)

we find that the quantum determinants of the monodromy matrices are given by
(T(Q))Cal aN+1

“N+1
R .0 —cay p— 4103 _ay b
= l\/ESInh P % e o
ay al aza, aN+1Gy.q
T 9))c aN+1
( ( ))bal aN+1
N / a1 d. b
. . —_ca — —
= zfzsmh— p-% p-“9 . p-an
2 ajai azap

e (B.45)
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Moreover, for the NS case, the quantum determinants of the boundary matrices have the
following nonzero matrix elements

5(R®,&))-00 =iv/2 sinh%,

— o0 i . 6
8(RO,£_))0 ~ =+——(cost_ — coshY)sinh=, o ==0'; B.46
(R(H.£-)) 0 Zﬁ( s& ) > ( )

and

3(R0.60) 00 = ~ivVZ sinh

_ j 0
S(R™ (8, %0 —+-' (coshy —co sinh=, o =420". B.47
(R*( §+))Og, Zﬁ( sE4) > ( )
We conclude that the quantum determinAri#) for the NS case of the TIM is given by
A@ @) =h@ @)1, (B.48)

wherea runs over the four sectors (B.34), ah@ (9) is given by

h®(6) = sintf o ﬁ sinh(}(e -0 ~)> sinh(}(e +6 ~)>
2,~:1 2 / 2 /

27
1 _ —

y 3(coshy — cosé)(coshy — coséo), (B.49)
(coshy — costL),

(coshp — costy),

respectively. Substituting this result, together with the result (B.35), (B.36) into the fusion
formula (B.40), we finally arrive at the inversion identity (4.6)—(4.8).

Note added

It was pointed outin [47] that the buikmatrix (2.4) should be rescaled by a minus sign.
Moreover, it was pointed out in [48] that the amplituB¢)) (2.14) should be rescaled by
the factori tanr'(iT” — %), in order that it have a simple (rather than double) polﬁzat%
for & = %. Similarly, the amplitudes (2.26) should also be rescaled by this factor. The effect

on the TBA computation is to produce an additional contribu%%[Z@(@)] in (5.10),

(5.13), and inside the brackets multiplyiig in (5.22). However, since this additional
contribution to the boundary entropy does not depend on the boundary parameter, it does
not change (5.23) or any of the discussion which follows. We are grateful to L. Chim for
bringing [48] to our attention.
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