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Abstract

Beisert et al. have identified an integrable SU(2,2) quantum spin chain which gives the one-loop anom-
alous dimensions of certain operators in large Nc QCD. We derive a set of nonlinear integral equations
(NLIEs) for this model, and compute the scattering matrix of the various (in particular, magnon) excita-
tions.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The search for integrability in QCD has a long history (see, e.g., [1–6] and references therein).
A remarkable recent development is the discovery [7] that the one-loop mixing matrix1 for the
chiral gauge-invariant operators

(1.1)trfα1β1(x) . . . fαLβL
(x)

* Corresponding author.
E-mail address: ahn@ewha.ac.kr (C. Ahn).

1 Given a set of operators OM(x), the mixing matrix is defined by Γ = Z−1 · dZ/d lnΛ, where Z is the renormal-

ization factor which makes correlation functions of OM
ren(x) = ZM

N
ON(x) finite, and Λ is the ultraviolet cutoff. See

also [8].
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in the limit Nc → ∞ is given by the integrable spin-1 antiferromagnetic XXX Hamiltonian
[9,10],

(1.2)Γ = αsNc

2π

L∑
l=1

[
7

6
+ 1

2
�Sl · �Sl+1 − 1

2
(�Sl · �Sl+1)

2
]
.

Here fαβ are the selfdual components of the Yang–Mills field strength Fμν = ∂μAν − ∂νAμ −
igYM[Aμ,Aν] (where the gauge fields Aμ(x) are Nc × Nc Hermitian matrices), which together
with the anti-selfdual components f̄α̇β̇ are defined by

(1.3)Fμν = σαβ
μν fαβ + σ̄ α̇β̇

μν f̄α̇β̇ ,

where σμν = iσ2(σμσ̄ν −σνσ̄μ)/4, σ̄μν = −i(σ̄μσν − σ̄νσμ)σ2/4 and σμ = (1, �σ), σ̄μ = (1,−�σ).
Moreover, αs = g2

YM/4π , αsNc is the ’t Hooft coupling [1] which is assumed to be small, and �S
are spin-1 generators of SU(2). Indeed, since fαβ has three independent components

(1.4)f+ = f11, f0 = 1√
2
(f12 + f21), f− = f22,

the operators (1.1) can be identified with the Hilbert space of a periodic spin-1 quantum spin
chain of length L. The eigenvectors and eigenvalues of Γ , i.e., the linear combinations of the
operators (1.1) which are multiplicatively renormalizable and their anomalous dimensions, re-
spectively, can therefore be obtained using the Bethe ansatz [11,12]. In particular, the anomalous
dimensions are given by

(1.5)γ = αsNc

2π

(
7L

6
−

Ml∑
j=1

2

l2
j + 1

)
,

where {l1, . . . , lMl
} are roots of the Bethe ansatz equations (BAEs)2

(1.6)

(
lj + i

lj − i

)L

=
Ml∏
k=1
k �=j

lj − lk + i

lj − lk − i
.

This result was generalized in [13] to gauge-invariant operators with derivatives

(1.7)tr
(
Dm1f

)
. . .

(
DmLf

)
,

where

(1.8)Dmf = Dα1α̇1 · · ·Dαmα̇mfβγ + symmetrized

(complete symmetrization in the undotted and dotted indices, respectively), and Dμ = σαα̇
μ Dαα̇ is

the usual Yang–Mills covariant derivative. Namely, the one-loop mixing matrix for the operators
(1.7) is given by an integrable SO(4,2) = SU(2,2) (non-compact!) quantum spin chain Hamil-
tonian with spins in the representation with Dynkin labels [2,−3,0]. The anomalous dimensions
are given by

(1.9)γ = αsNc

2π

(
7L

6
−

Ml∑
j=1

2

l2
j + 1

+
Mu∑
j=1

3

u2
j + 9/4

)
,

2 There is an additional (zero-momentum) equation due to the cyclicity of the trace in the operators.
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where the BAEs are now given by2

(
lj + i

lj − i

)L

=
Ml∏
k=1
k �=j

lj − lk + i

lj − lk − i

Mu∏
k=1

lj − uk − i/2

lj − uk + i/2
,

(
uj − 3i/2

uj + 3i/2

)L

=
Mu∏
k=1
k �=j

uj − uk + i

uj − uk − i

Ml∏
k=1

uj − lk − i/2

uj − lk + i/2

Mr∏
k=1

uj − rk − i/2

uj − rk + i/2
,

(1.10)1 =
Mr∏
k=1
k �=j

rj − rk + i

rj − rk − i

Mu∏
k=1

rj − uk − i/2

rj − uk + i/2
.

As noted by Beisert et al., a u-root corresponds to adding a covariant derivative D11̇; and an
l-root and an r-root flip a left-Lorentz-spin 1 → 2 and a right-spin 1̇ → 2̇, respectively. The
scaling dimensions and SU(2)L × SU(2)R quantum numbers are given by

(1.11)D = 2L + Mu, S1 = L + 1

2
Mu − Ml, S2 = 1

2
Mu − Mr,

respectively.
As noted in [13], the BAEs (1.10) can be obtained from those of the “beast” form of N = 4

SYM [14] by truncating the supergroup SU(2,2|4) down to the Bosonic subgroup SU(2,2).3

Much attention has been focused on the S matrix of N = 4 SYM and of the corresponding string
theory (see, e.g., [16]).

For the pure spin-1 problem (1.5), (1.6), the ground state for large L is described by a “sea” of
approximate “2-strings” of l-roots [11,12] (in contrast to the case of the spin-1/2 antiferromag-
netic XXX chain, for which the ground state is described by a sea of real roots). The excitations
consist of “spinons” (roughly speaking, “holes” in the sea) which carry RSOS [17] quantum
numbers. The spinon–spinon S matrix was found by indirect methods in [18,19], correcting the
result obtained in [11] using the string hypothesis. A nonlinear integral equation (NLIE) [20,21]
has been obtained for this model [22–24], which does not rely on the string hypothesis and pro-
vides a more direct way to compute the S matrix [25]. The NLIE of the SU(2) sector of N = 4
SYM has been studied in [26].

For the general case (1.9), (1.10), the ground state is still a sea of approximate 2-strings of
l-roots, since the u-roots contribute positively to the energy (and the r-roots do not contribute at
all). Hence, there are again spinon excitations corresponding to holes in the sea. However, there
are now also “magnon” excitations, corresponding to u-roots [13].

Our main objective here is to further investigate these magnon excitations, and in particular,
to compute the magnon–magnon S matrix. Owing to the nontrivial nature of the ground state,
this S matrix (like the spinon–spinon S matrix) must be computed with care: using the string
hypothesis as in [11] gives an incorrect result. To this end, we first derive in Section 2 a set of
NLIEs for the model. Although we do not invoke the string hypothesis, we do make a certain
analyticity assumption in order to describe the u-roots. For simplicity, we restrict to real u-roots,
and we do not consider r-roots. We then use these NLIEs to determine the energy and momentum

3 For some early references on integrable gl(n|m) spin chains, see, e.g., [15].
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of the excitations (Section 3), and their S matrices (Section 4). We end in Section 5 with a brief
discussion of our results.

2. Nonlinear integral equations

We restrict our attention to the case without r-roots (Mr = 0), for which the BAEs (1.10)
reduce to

(2.1)

(
lj + i

lj − i

)L

=
Ml∏
k=1
k �=j

lj − lk + i

lj − lk − i

Mu∏
k=1

lj − uk − i/2

lj − uk + i/2
,

(2.2)

(
uj − 3i/2

uj + 3i/2

)L

=
Mu∏
k=1
k �=j

uj − uk + i

uj − uk − i

Ml∏
k=1

uj − lk − i/2

uj − lk + i/2
.

We now proceed in turn to recast these two sets of BAEs in the form of NLIEs.

2.1. The first set of BAEs (2.1) and an auxiliary inhomogeneous mixed spin chain

An important hint on how to analyze the first set of BAEs (2.1) comes from rewriting it in the
obviously equivalent form

(2.3)

(
lj + i

lj − i

)L Mu∏
k=1

lj − uk + i/2

lj − uk − i/2
=

Ml∏
k=1
k �=j

lj − lk + i

lj − lk − i
.

We recognize these as the BAEs for an inhomogeneous “mixed” spin chain which has two types
of spins: spin-1 and spin-1/2, with L of the former and Mu of the latter. (See, e.g., [27].) More-
over, the latter have associated “inhomogeneities” iuk , k = 1, . . . ,Mu.

We therefore consider an auxiliary integrable inhomogeneous mixed quantum spin chain,
where the number of spin-1 and spin-1/2 “quantum” spaces are given respectively by L and Mu;
and with spectral parameter inhomogeneities iuk only for the spin-1/2 spins. This chain has two
relevant transfer matrices T1(x), T2(x), corresponding to “auxiliary” spaces which are spin-1/2
(2-dimensional) and spin-1 (3-dimensional), respectively.

We find by standard methods that the eigenvalues of these transfer matrices (which we denote
by the same notation) are given by4

(2.4)T1(x) = ψ(x − i/2)φ(x − i)
Q(x + i)

Q(x)
+ ψ(x + i/2)φ(x + i)

Q(x − i)

Q(x)
,

T2(x) = ψ(x)ψ(x − i)φ(x − i/2)φ(x − 3i/2)
Q(x + 3i/2)

Q(x − i/2)

+ ψ(x)2φ(x − i/2)φ(x + i/2)
Q(x + 3i/2)Q(x − 3i/2)

Q(x + i/2)Q(x − i/2)

+ ψ(x)ψ(x + i)φ(x + i/2)φ(x + 3i/2)
Q(x − 3i/2)

Q(x + i/2)

(2.5):= λ1(x) + λ2(x) + λ3(x),

4 Note that in place of the standard spectral parameter u, we introduce u = ix.
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where

(2.6)φ(x) = xL, ψ(x) =
Mu∏
j=1

(x − uj ), Q(x) =
Ml∏
j=1

(x − lj ).

Indeed, the BAEs obtained by demanding that T1(x) be analytic at x = lj (zeros of Q(x)) coin-
cide with (2.1).

Evidently T2(x) has the common factor ψ(x), which has “trivial” zeros. We therefore intro-
duce the renormalized T2,

T2(x) = ψ(x)T
(r)
2 (x).

We note that

(2.7)S1 = Sz
1 = L + Mu

2
− Ml,

and we recall that the “energy” is given by (1.9).

2.1.1. Physical degrees of freedom
For simplicity, we restrict uk to be real, and Mu = 1,2. For now, we also assume that uk

are given by hand, with (in the case Mu = 2) u1 = −u2. We shall discuss how they should be
determined later in Section 2.2.

Numerical studies for small values of L suggest that:

• For Mu = 1, the lowest energy state in the Sz
1 = 1/2 sector is characterized by a single zero

(ϑα) of T1(x), and a single zero (θh) of T
(r)
2 (x). Both of these zeros lie on the real axis.

• For Mu = 2, the lowest energy state is in the Sz
1 = 0 sector. In the “physical strip” (−1/2 �

Imx � 1/2), T1(x) and T
(r)
2 (x) are free from zeros.

• For Mu = 2, the second-lowest energy state is in the Sz
1 = 1 sector. It is characterized by two

zeros (ϑα) of T1(x) and two zeros (θh) of T
(r)
2 (x). These zeros lie on the real axis.

These observations suggest that three sets of real parameters are needed to describe the phys-
ical degrees of freedom: uj ,ϑα, θh. The first and third parameters correspond to magnon and
spinon rapidities, respectively. The second parameter, which seems to correspond to excitation
of the RSOS degree of freedom, is not discussed in [13].

2.1.2. The auxiliary functions and algebraic relations among them
As in previous studies [22,24], we introduce a pair of auxiliary functions

(2.8)b1(x) := λ1(x) + λ2(x)

λ3(x)
Imx � 0, b̄1(x) := λ2(x) + λ3(x)

λ1(x)
Imx � 0,

where λi(x) are defined in (2.5). They are free from zeros and poles near the real axis. This will
be apparent from the following representations,

b1(x) = φ−1/2

ψ1φ3/2φ1/2

Q(x + 3i/2)

Q(x − 3i/2)
T1(x − i/2),

(2.9)b̄1(x) = φ1/2

ψ−1φ−3/2φ−1/2

Q(x − 3i/2)

Q(x + 3i/2)
T1(x + i/2).
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We have introduced here the abbreviated notation φa := φ(x + ia), and similarly for ψ , which
we shall use throughout this part of the paper.

At this stage, there seems to be no reason why the two auxiliary functions should be introduced
in the corresponding half planes. This will become clear at a later stage.

The upper-case functions are also introduced: B1(x) = 1 + b1(x), B̄1(x) = 1 + b̄1(x), and
the following relations are also useful:

(2.10)T
(r)

2 (x) = ψ1φ1/2φ3/2
Q(x − 3i/2)

Q(x + i/2)
B1(x)

(2.11)= ψ−1φ−1/2φ−3/2
Q(x + 3i/2)

Q(x − i/2)
B̄1(x).

Apparently B1(x) vanishes at x = θh, but it remains nonzero at x = uj .
We now define the most important functions,

(2.12)b(x) = b1(x + iε), B(x) = B1(x + iε), Imx � 0,

(2.13)b̄(x) = b̄1(x − iε), B̄(x) = B̄1(x − iε), Imx � 0.

Here ε denotes a positive quantity which is slightly larger than the deviation of the 2-strings
from their “perfect” positions. Therefore B would possess zeros (due to the factor Q(x + i/2)

in (2.10)) slightly below the real axis if it were defined in the whole complex plane. The function
B is, however, defined only in the upper half plane (including the real axis).

Another auxiliary function originates from the so-called fusion formula that relates the two
transfer matrices,

(2.14)T1(x − i/2)T1(x + i/2) = ψ1ψ−1φ3/2φ−3/2 + ψ0T
(r)

2 (x),

which can be verified using (2.4) and (2.5). For later convenience, we renormalize T1(x) =∏Nϑ

α=1 tanh π
2 (x − ϑα)T

(r)
1 (x), and rewrite the above in the form

T
(r)

1 (x − i/2)T
(r)

1 (x + i/2) = ψ1ψ−1φ3/2φ−3/2 + ψ0T
(r)

2 (x)

(2.15)= ψ1ψ−1φ3/2φ−3/2Y(x),

where we have defined the auxiliary functions

(2.16)y(x) := ψ0

ψ1ψ−1φ3/2φ−3/2
T

(r)
2 (x), Y (x) := 1 + y(x).

Since y possesses zeros on the real axis due to uj and θh, we also define a renormalized func-
tion y(r)

(2.17)y(x) =
Mu∏
j=1

tanh
π

2
(x − uj )

Nh∏
h=1

tanh
π

2
(x − θh)y

(r)(x),

which obeys the functional relation

(2.18)y(r)(x − i/2)y(r)(x + i/2) = B1(x + i/2)B̄1(x − i/2),

as follows from (2.10) and (2.11).
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2.1.3. Derivation of NLIE
The derivation of the NLIE can be most easily done in Fourier space. For a smooth function

f (x), we define

(2.19)f̂ [k] = 1

2π

∞∫
−∞

eikxf (x) dx, f (x) =
∞∫

−∞
e−ikx f̂ [k]dk.

We also introduce the special notation

(2.20)d̂lf [k] = 1

2π

∞∫
−∞

eikx
[
lnf (x)

]′
dx,

which will be frequently used below.
It is convenient to introduce “shifted” Q functions,

(2.21)q1(x) := Q(x − i/2 − iε), q2(x) := Q(x + i/2 + iε).

By definition, q1 is Analytic and NonZero (ANZ) for Imx � 0, while q2 is ANZ for Imx � 0.
We therefore have by Cauchy’s theorem the important property

(2.22)d̂lq2[k > 0] = d̂lq1[k < 0] = 0.

Similarly,

d̂lψa[k > 0] = d̂lφa[k > 0] = 0 for a > 0,

(2.23)d̂lψa[k < 0] = d̂lφa[k < 0] = 0 for a < 0.

We slightly shift the arguments in (2.10), (2.11)

(2.24)T
(r)
2 (x + iε) = ψ1+εφ1/2+εφ3/2+ε

q1(x − i + 2iε)

q2(x)
B(x),

(2.25)T
(r)
2 (x − iε) = ψ−1−εφ−1/2−εφ−3/2−ε

q2(x + i − 2iε)

q1(x)
B̄(x).

We then use the result

(2.26)
1

2π

∫
Cε

eikx
[
lnT

(r)
2 (x)

]′
dx = i

∑
h

eikθh ,

where we choose the contour Cε as in Fig. 1, and we obtain the following

d̂lq1[k > 0] = d̂lψ−1−ε + d̂lφ−3/2−ε + d̂lφ−1/2−ε

1 + e−k
+ d̂lB̄[k] − e−2kε d̂lB[k]

1 + e−k

(2.27)− i
∑
h

eikθh−kε

1 + e−k
,

d̂lq2[k < 0] = d̂lψ1+ε + d̂lφ3/2+ε + d̂lφ1/2+ε

1 + ek
+ d̂lB[k] − e2kε d̂lB̄[k]

1 + ek

(2.28)+ i
∑ eikθh+kε

1 + ek
.

h
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Fig. 1. Integration contour.

In addition, from (2.15), one derives

(2.29)d̂lT 1[k] = d̂lψ∓1 + d̂lφ∓3/2

ek/2 + e−k/2
+ d̂lY

ek/2 + e−k/2
+ i

∑
α

eikϑα+k/2

ek/2 + e−k/2
,

where −(k > 0) and +(k < 0).
We shift the arguments in (2.9)

b(x) = φ−1/2+ε

ψ1+εφ3/2+εφ1/2+ε

q2(x + i)

q1(x − i + 2iε)
T1(x − i/2 + iε),

(2.30)b̄(x) = φ1/2−ε

ψ−1−εφ−3/2−εφ−1/2−ε

q1(x − i)

q2(x + i − 2iε)
T1(x + i/2 − iε),

and then take the Fourier transformation. The substitution of (2.27), (2.28) and (2.29) into the
resultant transformation then leads to the NLIE in Fourier space,

d̂lb[k > 0] = d̂lφ−1/2+ε

1 + e−k
+ i

∑
h

eikθh+εk

1 + ek
+ i

∑
α

eikϑα+εk

ek/2 + e−k/2

(2.31)+ e−k/2+εk

ek/2 + e−k/2
d̂lY [k] + 1

ek + 1

(
d̂lB[k] − e2kε d̂lB̄[k]),

d̂lb[k < 0] = − d̂lφ1/2+ε

1 + ek
+ i

∑
h

eikθh+εk

1 + e−k
+ i

∑
α

eikϑα+εk

ek/2 + e−k/2

(2.32)+ e−k/2+εk

ek/2 + e−k/2
d̂lY [k] + 1

e−k + 1

(
d̂lB[k] − e2kε d̂lB̄[k]).

Interestingly, although a contribution from the inhomogeneities (ψ ) appeared during the calcu-
lation, it canceled in the final form. An equation for y is immediately derived from (2.18),

d̂ly[k] = i
∑
h

eikθh

1 + e−k
+ i

∑
j

eikuj

1 + e−k

(2.33)+ ek(1/2−ε)

ek/2 + e−k/2
d̂lB[k] + e−k(1/2−ε)

ek/2 + e−k/2
d̂lB̄[k].
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In the original coordinate space, the resultant equations read

lnb(x) = iDb(x + iε) +
∞∫

−∞
Gs(x − x′) lnB(x′) dx′ −

∞∫
−∞

Gs(x − x′ + 2iε) ln B̄(x′) dx′

(2.34)+
∞∫

−∞
K(x − x′ − i/2 + iε) lnY(x′) dx′,

lny(x) = iDy(x) +
∞∫

−∞
K(x − x′ + i/2 − iε) lnB(x′) dx′

(2.35)+
∞∫

−∞
K(x − x′ − i/2 + iε) ln B̄(x′) dx′,

where

Gs(x) = 1

2π

∞∫
−∞

e−ikx

1 + e|k| dk,

(2.36)K(x) = 1

2π

∞∫
−∞

1

2 cosh(k/2)
e−ikx dk = 1

2 cosh(πx)
.

The source term in (2.34) consists of the bulk (“driving”) contribution and the contribution from
the hole excitations,

(2.37)Db(x) = D
(b)
bulk(x) + D

(b)
hole(x) − π

2
Nh,

where

(2.38)D
(b)
bulk(x) = LχK(x), D

(b)
hole(x) =

Nϑ∑
α=1

χK(x − ϑα) +
Nh∑
h=1

χ(x − θh),

and

(2.39)χ ′
K(x) = 2πK(x), χ ′(x) = 2πGs(x).

In particular, on suitable domains (containing the positive real axis),

χK(x) = 1

i
ln tanh

(
π(x − i/2)/2

) = i ln
sinh(π(x + i/2)/2)

sinh(π(x − i/2)/2)
+ π

2

(2.40)= arctan
(
sinh(πx)

) − π

2
,

where χK(0) ≡ −π/2, and also χ(0) ≡ 0. The source term in (2.35) is given by

(2.41)Dy(x) =
Nh∑
h=1

χK(x − θh + i/2) +
Mu∑
j=1

χK(x − uj + i/2).
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The parameters (uj ,ϑα, θh) must actually be determined again by NLIEs. Indeed, (2.10) im-
plies that the hole rapidities θh are determined by

(2.42)b(θh − iε) = b1(θh) = −1,

which also leads to the determination of the spinon–spinon and spinon–magnon scattering ma-
trices, as discussed in Section 4.

In order to fix the parameters ϑα , we need another NLIE. We consider the most natural auxil-
iary function a(x), defined by5

(2.43)a(x) := λ1(x + i/2)

λ2(x + i/2)
= λ2(x − i/2)

λ3(x − i/2)
,

where again λi(x) are defined in (2.5). From (2.4) we have

(2.44)T1(x) = ψ1/2φ1
Q(x − i)

Q(x)
[1 + a(x)].

Hence, the zeros of T1 on the real axis ϑα satisfy

(2.45)a(ϑα) = −1.

We omit the derivation of the NLIE for a(x) for |Imx| < 1/2, which is similar to the one for
the trigonometric and homogeneous case considered in [24]. The result is

(2.46)

lna(x) = iDa(x) +
∞∫

−∞
K(x − x′ − iε) lnB(x′) dx′ −

∞∫
−∞

K(x − x′ + iε) ln B̄(x′) dx′,

where the source term is given by

(2.47)Da(x) =
Nh∑
h=1

χK(x − θh) +
Mu∑
j=1

χK(x − uj ).

2.2. The second set of BAEs (2.2)

We finally consider an equation to fix the magnon rapidities uj . For this purpose, we propose
an expression for the transfer matrix eigenvalues similar to the one for the su(3) spin chain,6

τ(x) = φ(x − i)
Q(x + i)

Q(x)
+ φ(x + i)

ψ(x + i/2)

ψ(x − i/2)

Q(x − i)

Q(x)
+ φ(x − 2i)

ψ(x − 3i/2)

ψ(x − i/2)

(2.48):= τ1(x) + τ2(x) + τ3(x).

Indeed, demanding analyticity of τ(x) at x = lj (zeros of Q(x)) gives the BAEs (2.1), while
demanding analyticity at x = uj + i/2 (zeros of ψ(x − i/2)) gives the BAEs (2.2).

Because of its similarity to the su(3) transfer matrix eigenvalue, we shall assume that τ(x)

is ANZ in the strip −1/2 � Imx � 1/2, which is indeed the analyticity property for the su(3)

case. This assumption can in principle be checked numerically for small values of L. However,

5 As discussed further in Section 2.3, one can verify numerically that 1
i

lna(x) and also �e[ 1
i

lnb(x)] are increasing
functions of x.

6 We expect that, starting from a suitable su(2,1) R matrix, a transfer matrix can be constructed with eigenvalues (2.48).
However, we have not attempted to carry out this construction.
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we have so far not succeeded to do so, due to the difficulty of finding numerical solutions of the
BAEs (2.1), (2.2).

This assumption leads to a simple determination of uj as follows. Let us consider an auxil-
iary function introduced in studies of the supersymmetric tJ model [28] and the su(3) vertex
model [29],

(2.49)c(x) := τ3(x + i/2)

τ1(x + i/2) + τ2(x + i/2)
.

It is easy to check that this can be rewritten in terms of T1(x) in (2.4),

(2.50)c(x) = ψ(x − i)φ(x − 3i/2)

T1(x + i/2)
.

We then have

(2.51)c(uj ) = −1,

which follows from

(2.52)C(x) = 1 + c(x) = τ(x + i/2)

τ1(x + i/2) + τ2(x + i/2)
= τ(x + i/2)ψ(x)

T1(x + i/2)
.

From our above assumption on the analyticity of τ(x), the zeros of C(x) near the real axis are
determined by those of ψ(x), namely uj .

The NLIE for c is obtained from the knowledge of T1. The result is

(2.53)ln c(x) = iDc(x) −
∞∫

−∞
K(x − x′ + i/2) lnY(x′) dx′,

where the source term is given by

(2.54)Dc(x) = Lχ2(x) +
Mu∑
j=1

χ3/2(x − uj ) +
Nϑ∑
α=1

χK(x − ϑα) − π

2
(L + Mu),

and

χ ′
a(x) = 2πKa(x), Ka(x) = 1

2π

∞∫
−∞

e−a|k|−ikx

2 cosh k
2

dk,

(2.55)χa(0) ≡ 0, a = 3/2,2.

2.3. Counting functions and counting equations

So-called counting equations relating the various types of Bethe roots and excitations in a
given state can be derived from corresponding counting functions associated with the auxiliary
functions. These counting equations help determine the spins of the excitations.

We continue to restrict to the case of real u-roots and no r-roots. As in previous studies
[21,24,25], it is convenient to classify l-roots according to their imaginary parts as follows:

2-strings: pairs of complex-conjugate roots xj ± iyj with 0 < yj − 1/2 � 1, j = 1, . . . ,M2/2,
real roots: Imlj = 0, j = 1, . . . ,Mreal,
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inner roots: |Imlj | < 1/2, j = 1, . . . ,MI ,
close roots: 1/2 < |Imlj | < 3/2, j = 1, . . . ,MC ,
wide roots: |Imlj | > 3/2, j = 1, . . . ,MW .

Hence,

(2.56)Ml = Mreal + M2 + MI + MC + MW.

It is also convenient to introduce the functions

(2.57)θ∓(x,α) = 1

i
ln

(
∓x − iα

x + iα

)
.

Note that θ−(x,α) = 2 arctan(x/α) has branch points in the complex x plane at x = ±iα; fol-
lowing [21], we choose the corresponding branch cuts to be parallel to the real axis, extending
from iα to +∞+ iα, and from −∞− iα to −iα. This function has a discontinuity of −2π when
crossing the cuts from below. Similarly, we add to θ+(x,α) a 2π -discontinuity at x = 0 so that
it is a continuous function of x.

We define the counting function za(x) associated with the auxiliary function a(x) (2.43) by

(2.58)za(x) = 1

i
Loga(x) = Lθ−(x,1) −

Ml∑
j=1

θ−(x − lj ,1) +
Mu∑
j=1

θ+(x − uj ,1/2).

We have verified numerically for various states that za(x) is a continuous increasing function
of x. This function “counts” zeros of T1(x) and real l-roots. That is,

(2.59)za(xj ) = 2πIa
j ,

where Ia
j is integer (S1 − S2 odd) or half-odd integer (S1 − S2 even) if xj is a zero of T1(x) or a

real l-root. Defining integers or half-odd integers Ia
max and Ia

min by

(2.60)za(+∞) = 2π

(
Ia

max + 1

2

)
, za(−∞) = 2π

(
Ia

min − 1

2

)
,

it follows from (2.58) and (2.59), respectively, that

(2.61)Ia
max − Ia

min + 1 = S1 + S2 + Mb = Nϑ + Mreal,

where Mb is the number of l-roots lj with |Imlj | > 1. We therefore arrive at the first counting
equation

(2.62)Nϑ = S1 + S2 + Mb − Mreal.

Similarly, we define the counting function zb(x) associated with the auxiliary function b1(x)

(2.8) by

zb(x) = �e
1

i
Logb1(x)

= �e

{
1

i
ln

[
1 + 1

a(x − i/2)

]
+

Mu∑
j=1

θ+(x − uj ,1) + L
[
θ−(x,1/2) + θ−(x,3/2)

]
(2.63)−

Ml∑[
θ−(x − lj ,1/2) + θ−(x − lj ,3/2)

]}
.

j=1
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The presence of the first term generally requires the introduction of further discontinuities. We
have verified numerically that zb(x) is also a continuous increasing function of x. This function
“counts” zeros of T

(r)
2 (x) and centers of 2-strings and inner pairs. Proceeding as before, we find

Ib
max − Ib

min + 1 = 2S1 + MC + 2MW + (M2 + MI)/2

(2.64)= Nh + (M2 + MI)/2.

We therefore arrive at the second counting equation

(2.65)Nh = 2S1 + MC + 2MW.

Finally, we define the counting function zc(x) associated with the auxiliary function c(x)

(2.49) by

zc(x) = �e
1

i
Log c(x)

= �e

{
−1

i
ln

[
1 + a(x + i/2)

] +
Mu∑
j=1

θ+(x − uj ,1) + Lθ−(x,3/2)

(2.66)−
Ml∑
j=1

θ−(x − lj ,1/2)

}
.

We have verified numerically (using for the first term the same discontinuities introduced for the
first term in (2.63)) that zc(x) is a continuous increasing function of x. Assuming

(2.67)I c
max − I c

min + 1 = L + Mu − Mreal − (M2 + MI)/2,

which can also be verified numerically, we recover the result

(2.68)Mu = 2S2.

3. Spin, energy and momentum of excitations

We now compute the excitations’ spin, energy and momentum, which enter into the computa-
tion of the S matrix. Our results agree (except for some minor discrepancies) with those obtained
previously using the string hypothesis.

We can infer the spins of the excitations with the help of the counting equations found in
Section 2.3. The second counting equation (2.65) implies that a spinon has S1 = 1/2. Indeed,
Nh = 1 requires S1 = 1/2 (and MC = MW = 0); Nh = 2 requires either S1 = 0 or S1 = 1, etc.
Note that all the terms on the RHS of (2.65) are nonnegative. Evidently, a spinon also has S2 = 0.
The fact that a spinon has spin-1/2 was found using the string hypothesis by Takhtajan [11].

Similarly, the third counting equation (2.68) implies that a magnon has S2 = 1/2, and evi-
dently S1 = 0. This result was found using the string hypothesis by Beisert et al. [13].

The spin of the ϑ particle is not determined by the first counting equation (2.65), since not all
the terms on the RHS are nonnegative. Nevertheless, an analysis of various examples suggests
that this particle has S1 = S2 = 0.
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By the definition in [13], the energy (E) is related to the anomalous dimension (1.9) by γ =
αsNc

2π
E, and is therefore given by7

(3.1)E = −
Ml∑
j=1

2

l2
j + 1

+
Mu∑
j=1

3

u2
j + 9/4

.

We can relate this to the derivate of the eigenvalue T2(x) (2.5) at x = i/2,

(3.2)E = i
d

dx
lnT2(x)|x=i/2 − 3L

2
+

Mu∑
j=1

[
3

u2
j + 9/4

+ i

(
1

uj − i/2
+ 1

uj − 3i/2

)]
.

Recalling the definition of the auxiliary function y(x) (2.16), we see that

(3.3)E = i
d

dx
lny(x)|x=i/2 − 2L +

Mu∑
j=1

(
3

u2
j + 9/4

− 1

u2
j + 1/4

)
.

We observe from (2.20) that

(3.4)
d

dx
lny(x) =

∞∫
−∞

dke−ikx d̂ly[k],

and substitute our result for d̂ly[k] (2.33) to obtain

(3.5)E = −2L +
Mu∑
j=1

[
π

cosh(πuj )
+ 3

u2
j + 9/4

− 1

u2
j + 1/4

]
+

∑
h

π

cosh(πθh)
+ · · · ,

where the ellipsis (· · ·) represents the Casimir energy contribution. We conclude that the energy
of a spinon is

(3.6)εh(θ) = π

cosh(πθ)
,

and the energy of a magnon is

(3.7)εu(u) = π

cosh(πu)
+ 3

u2 + 9/4
− 1

u2 + 1/4
,

in agreement with Eqs. (6.15), (6.32) in Beisert et al. [13], respectively, up to a factor 2. The
spinon result (3.6) was first found by Takhtajan [11]. We remark that

(3.8)εu(u) = 2πK2(u),

where K2(u) is the kernel introduced in (2.55). Evidently there is no ϑ -dependent contribution
in (3.5), which implies that the ϑ “particle” does not carry energy.

The momentum is given by8

(3.9)P = 1

i

[
Ml∑
j=1

ln

(
lj + i

lj − i

)
+

Mu∑
j=1

ln

(
uj − 3i/2

uj + 3i/2

)]
(mod 2π).

7 For convenience, we drop the constant term 7L/6 in the expression for E. This definition of energy is (for the l-roots)
a factor 2 larger than the one in [11].

8 This definition of momentum differs (for the l-roots) by an overall sign from the one in [11].
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We can evaluate it in similar fashion. Indeed, we find that

(3.10)P = 1

i
lny(i/2) + 1

i

Mu∑
j=1

[
ln e−3(uj ) + ln e1(uj )

] + Lπ,

where we have introduced the notation

(3.11)en(u) = u + in/2

u − in/2
.

Proceeding as before, we arrive at the result

(3.12)P = Lπ +
Mu∑
j=1

[
χK(uj ) + q3(uj ) − q1(uj )

] +
∑
h

χK(θh) + · · · ,

where χK(x) is defined in (2.39), and qn(x) is defined by

(3.13)qn(x) = π + i ln en(x) n > 0, q−n(x) = −qn(x), q0(x) = 0.

It is an odd function of x, and satisfies

(3.14)qn(x) = 2 arctan(2x/n), n �= 0.

We conclude that the momentum of a spinon is

(3.15)ph(θ) = χK(θ),

and the momentum of a magnon is

(3.16)pu(u) = χK(u) + q3(u) − q1(u),

in agreement with Eqs. (6.15), (6.32) in [13], respectively, up to an overall sign. Corresponding
to the energy result (3.8), we observe that

(3.17)pu(u) = χ2(u),

where χ2(u) is defined in (2.55). The ϑ particle also does not carry momentum.

4. S matrix

We finally turn to the problem of computing the scattering amplitudes for the various excita-
tions.

4.1. Spinon–spinon

It is convenient to review the computation of the spinon–spinon S matrix [18,19] using the
NLIE approach [25]. Let θh1, θh2 denote the rapidities of the two spinons. Since b(θh1 − iε) = −1
(2.42), the lnb equation (2.34) implies

(4.1)iπ = iDb(θh1) +
∞∫

−∞
dx′K(θh1 − x′ − i/2) lnY(x′),
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since the convolution terms involving B and B̄ become exponentially small in the IR limit.
Neglecting the convolution term in the lny equation (2.35), one obtains

(4.2)y(x) = tanh
(
π(x − θh1)/2

)
tanh

(
π(x − θh2)/2

)
,

and therefore

(4.3)Y(x) = 1 + y(x) = cosh(π(x − (θh1 + θh2)/2))

cosh(π(x − θh1)/2) cosh(π(x − θh2)/2)
.

We now exponentiate both sides of (4.1), and note using (2.37), (2.38) that

(4.4)Db(θh1) = LχK(θh1) + χ(θ) − π, θ = θh1 − θh2 .

With the help of the momentum expression (3.15), we compare the result with the Yang equation

(4.5)eiLph(θh1 )Sh,h(θ) = 1.

We conclude that the S matrix is given (up to a constant) by

(4.6)Sh,h(θ) = eiχ(θ)SRSOS(θ),

where

(4.7)SRSOS(θ) = e
∫ ∞
−∞ dx′K(θh1−x′−i/2) lnY(x′) = e− i

2 [ψ0(θ)−ϕ2(θ)] = e−i[ψ0(θ)−ϕ4(θ)],

and

(4.8)ψ0(x) = arctan sinh(πx/2) = i ln
sinh(π(i + x)/4)

sinh(π(i − x)/4)
,

(4.9)ϕn(x) =
∞∫

0

dk
sin(kx) sinh((n − 1)k/2)

k sinh(nk/2) cosh(k/2)
,

with ϕ4(x) = (ϕ2(x) + ψ0(x))/2. The convolution integrals are performed using the results col-
lected in the appendix. The result (4.7) is (up to a crossing factor, and a rescaling of the rapidity
by π ) one of the kink-kink scattering amplitudes of the tricritical Ising model perturbed by the
operator Φ(1,3) [17], which appears also in the soliton–soliton S matrix of the supersymmetric
sine-Gordon model [18]. We note that

(4.10)χ(θ) = 1

i
ln

Γ (1 + iθ/2)Γ (1/2 − iθ/2)

Γ (1 − iθ/2)Γ (1/2 + iθ/2)
,

which is (up to the same rescaling of the rapidity by π ) the soliton–soliton scattering phase of
the sine-Gordon model [30] in the isotropic limit β2 → 8π .

If we also consider the lny equation with an additional iπ term, then the RHS of (4.2) acquires
a minus sign. The corresponding amplitudes can be computed along similar lines [25]. However,
for simplicity, we restrict our attention to the lny equation without this additional iπ term.

4.2. Spinon–magnon

Let θh1, u1 denote the rapidities of the spinon and magnon, respectively. The spinon–magnon
S matrix can be computed in two different ways. One way is to start from b(θh − iε) = −1,
1
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which again leads to (4.1). The lny equation implies

(4.11)y(x) = tanh
(
π(x − θh1)/2

)
tanh

(
π(x − u1)/2

)
,

and therefore

(4.12)Y(x) = 1 + y(x) = cosh(π(x − (θh1 + u1)/2))

cosh(π(x − θh1)/2) cosh(π(x − u1)/2)
.

Moreover, now Db(θh1) = LχK(θh1) = Lph(θh1), up to an additive constant. Proceeding as be-
fore, we obtain the result

(4.13)Sh,u(θ) = SRSOS(θ),

where now θ = θh1 −u1, and SRSOS(θ) is given by (4.7). That is, in contrast to the spinon–spinon
S matrix (4.6), the spinon–magnon S matrix consists only of the RSOS factor.

A second way to compute the spinon–magnon S matrix is to start from c(u1) = −1 (2.51),
which together with the ln c equation (2.53) imply

(4.14)iπ = iDc(u1) +
∞∫

−∞
dx′K(u1 − x′ − i/2) lnY(x′).

We exponentiate both sides of this equation, and note that

(4.15)Dc(u1) = Lχ2(u1) = Lpu(u1),

where we have made use of (2.54) and the momentum result (3.17). Comparing with the corre-
sponding Yang equation, we recover the same result, i.e.,

(4.16)Su,h(θ) = SRSOS(θ),

where now θ = u1 − θh1 .

4.3. Magnon–magnon

Let u1, u2 be the rapidities of the two magnons. The lny equation (2.35) implies

(4.17)y(x) = tanh
(
π(x − u1)/2

)
tanh

(
π(x − u2)/2

)
,

and

(4.18)Y(x) = 1 + y(x) = cosh(π(x − (u1 + u2)/2))

cosh(π(x − u1)/2) cosh(π(x − u2)/2)
.

The condition c(u1) = −1 (2.51) and the ln c equation (2.53) again give (4.14), where now
(cf. (4.15))

(4.19)Dc(u1) = Lpu(u1) + χ3/2(θ),

with θ = u1 −u2. Proceeding as before, we conclude that the magnon–magnon S matrix is given
by

(4.20)Su,u(θ) = eiχ3/2(θ)SRSOS(θ),
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where SRSOS(θ) is given by (4.7). We note that

(4.21)χ3/2(θ) = 1

i
ln

Γ (−1/2 + iθ/2)Γ (−iθ/2)

Γ (−1/2 − iθ/2)Γ (iθ/2)
+ π,

and that s(θ) ≡ eiχ3/2(θ) has the crossing property

(4.22)s(i − θ) =
(

1 − iθ

2 + iθ

)
s(θ).

Hence, s(θ)/(1 + iθ/2) is crossing invariant.
We have considered so far the composite operators containing only Dα1̇ covariant derivatives

and computed the S matrix amplitude between them. In principle, one would need to add r-
roots to compute amplitudes for the derivatives carrying the right-spin state 2̇. But this can be
done, without adding r-roots, by using the SU(2)R symmetry. The “vertex” part of the S matrix
is in fact a 4 × 4 matrix which can be fixed completely by the SU(2)R symmetry along with
factorizability (i.e., Yang–Baxter equation), unitarity and crossing,

(4.23)
s(θ)

1 + iθ/2
(P + iθ/2),

where P is the permutation matrix.

4.4. ϑ -spinon and ϑ -magnon

The condition a(ϑα) = −1 (2.45) together with the lna equation (2.46) imply that the S

matrices Sϑ,h and Sϑ,u are identical, and are given by

(4.24)S(θ) = sinh(π(θ/2 − i/4))

sinh(π(θ/2 + i/4))
.

The same result can also be obtained starting from (2.42), (2.34) (for Sh,ϑ ) and from (2.51),
(2.53) (for Su,ϑ ). Since there is no ϑ -dependent contribution in the source term of the lna equa-
tion (2.46), there is no nontrivial ϑ–ϑ scattering.

5. Discussion

We have proposed a set of NLIEs (2.34)–(2.41), (2.46), (2.47), (2.53)–(2.55) to describe the
QCD spin chain of Beisert et al. [13]. We have used these NLIEs to compute S matrix elements
for excitations of this model, as shown in detail in Section 4. The consistency of our results
(Sa,b = Sb,a for particles a and b of different types) provides further support for the validity of
these NLIEs.

Many questions remain to be addressed. It should be possible to generalize this work along
the lines [31] and compute the boundary S matrix for the open QCD spin chain corresponding
to operators with quarks at the ends. The magnon–magnon S matrix (4.20), (4.21) has an infinite
number of singularities (starting at θ = ±2i), which can presumably be interpreted as magnon–
magnon bound states (“breathers”). The energy and momentum of these breathers was computed
using the string hypothesis in [13]. It would be interesting to analyze these excitations without
invoking the string hypothesis, and to determine their S matrices. It would also be interesting
to consider the effects of higher loops ([7] and [13] worked only to leading order in the ’t Hoof
coupling) and to better understand the significance of these results for QCD, as well as for the
full N = 4 SYM theory and for the corresponding string theory.
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Appendix A. Convolutions

The convolution integrals involving the kernel K(x − i
2 ) = i

2 sinhπx
can be evaluated using the

following results

(A.1)
i

2

∞∫
−∞

dx′ ln cosh(π(x′ − iε))

sinh(π(x − x′ + iε))
= − i

2
arctan sinh(πx) + 1

2
ln cosh(πx),

(A.2)
i

2

∞∫
−∞

dx′ ln cosh(π(x′ − iε)/2)

sinh(π(x − x′ + iε))
= − i

2
ϕ2(x) + 1

2
ln cosh(πx/2),

(A.3)
i

2

∞∫
−∞

dx′ ln sinh(π(x′ − iε))

sinh(π(x − x′ + iε))
= 1

2
ln sinh(πx) − 1

2
ln tanh(πx/2) − iπ

4
,

(A.4)
i

2

∞∫
−∞

dx′ ln sinh(π(x′ − iε)/2)

sinh(π(x − x′ + iε))
= i

2
ϕ2(x) + 1

2
ln cosh(πx/2) − iπ

4
,

where ε is a small positive number, and ϕ2(x) is given by (4.9).
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