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1 Introduction

The AdS/CFT bulk S-matrix [1]–[4] has a remarkable Yangian symmetry Y (su(2|2)) [5].1

Since this S-matrix (which is for the fundamental excitations) can already be determined2

from just the (centrally extended) su(2|2) symmetry, the further Yangian symmetry may

appear to be only a mathematical curiosity. However, in order to construct higher di-

mensional (“bound state”) S-matrices, the su(2|2) symmetry does not suffice [11]; and

the Yangian symmetry can be used to completely determine the two-particle [11, 12] and

general l-particle bound state bulk S-matrices [13]. It is fortunate that such a general

way of generating higher-dimensional S-matrices has been found, since the fusion proce-

dure [14, 15] (which has played a very important role for conventional S-matrices) does

not seem to work for AdS/CFT S-matrices. Knowledge of higher-dimensional S-matrices

is necessary for deriving functional relations for the corresponding transfer matrices, ther-

modynamic Bethe ansatz equations, etc.

We initiate in this note an investigation of higher-dimensional AdS/CFT boundary

S-matrices. For simplicity, we restrict to the case of open strings attached to so-called

Y = 0 maximal giant graviton branes [16]. The fundamental boundary S-matrix can be

determined from su(1|2) symmetry [16, 17]. However, similarly to the bulk case, we find

that this symmetry does not suffice to determine the bound state boundary S-matrices.

We show that the fundamental boundary S-matrix has a residual Yangian symmetry. We

then exploit this Yangian symmetry to determine the two-particle bound state boundary

1For earlier investigations of Yangian symmetry in AdS/CFT, see for example [6–10].
2We do not concern ourselves here with overall scalar factors. Also, we focus on just one copy of the

su(2|2) S-matrix; the full AdS/CFT S-matrix is a tensor product of two such copies.
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S-matrix. In contrast to the fundamental case, this boundary S-matrix is not diagonal. We

verify that it satisfies the boundary Yang-Baxter equations. We formulate the discussion

in terms of Zamolodchikov-Faddeev (ZF) operators [18, 19], which provide a convenient

way of handling the intricate coproducts of the Yangian generators.

The outline of this paper is as follows. In section 2 we consider the case of the fun-

damental excitations. After briefly reviewing the su(2|2) and Yangian symmetries of the

bulk S-matrix, we show that the boundary S-matrix also has Yangian symmetry. In sec-

tion 3 we consider the case of two-particle bound states. After another brief review of the

bulk symmetries in this higher-dimensional representation, we use the su(1|2) and Yangian

symmetries to determine the boundary S-matrix. We conclude with a brief discussion of

our results.

2 Fundamental representation

This section is devoted to the scattering of the fundamental excitations. We begin with a

review of bulk scattering, and then turn to boundary scattering.

2.1 Bulk scattering

It is convenient to work with ZF operators. Following [4], we denote the fundamental ZF

operators by A
†
i (p), i = 1 , 2 , 3 , 4. The operators with i = 1, 2 are bosonic, while the

operators with i = 3, 4 are fermionic. These operators create asymptotic particle states of

momentum p when acting on the vacuum state |0〉. The matrix elements of the fundamental

bulk S-matrix SAA(p1, p2) are defined by the relation

A
†
i (p1)A

†
j(p2) = S

AA i′j′

i j (p1, p2)A
†
j′(p2)A

†
i′(p1) , (2.1)

where summation over repeated indices is always understood.

The centrally extended su(2|2) algebra consists of the rotation generators L b
a , R

β
α ,

the supersymmetry generators Q a
α , Q

†α
a , and the central elements C , C† , H. Latin in-

dices a , b , . . . take values {1 , 2}, while Greek indices α , β , . . . take values {3 , 4}. These

generators have the following nontrivial commutation relations [2–4]
[

L b
a , Jc

]

= δb
cJa −

1

2
δb
aJc ,

[

R β
α , Jγ

]

= δβ
γ Jα − 1

2
δβ
αJγ ,

[

L b
a , Jc

]

= −δc
aJb +

1

2
δb
aJc ,

[

R β
α , Jγ

]

= −δγ
αJβ +

1

2
δβ
αJγ ,

{

Q a
α , Q b

β

}

= ǫαβǫabC ,
{

Q†α
a , Q

†β
b

}

= ǫαβǫabC
† ,

{

Q a
α , Q

†β
b

}

= δa
b R β

α + δβ
αL a

b +
1

2
δa
b δβ

αH , (2.2)

where Ji (Ji) denotes any lower (upper) index of a generator, respectively.

The action of the bosonic generators L b
a , R

β
α on the ZF operators is given by

L b
a A†

c(p) =

(

δb
cδ

d
a − 1

2
δb
aδ

d
c

)

A
†
d(p) + A†

c(p) L b
a , L b

a A†
γ(p) = A†

γ(p) L b
a ,

R β
α A†

γ(p) =

(

δβ
γ δδ

α − 1

2
δβ
αδδ

γ

)

A
†
δ(p) + A†

γ(p) R β
α , R β

α A†
c(p) = A†

c(p) R β
α . (2.3)

– 2 –
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Moreover, the action of the supersymmetry generators on the ZF operators is given by (see

eq. (4.21) in [4] and [17])

Q a
α A

†
b(p) = e−ip/2

[

a(p)δa
b A†

α(p) + A
†
b(p) Q a

α

]

,

Q a
α A

†
β(p) = e−ip/2

[

b(p)ǫαβǫabA
†
b(p) − A

†
β(p) Q a

α

]

,

Q†α
a A

†
b(p) = eip/2

[

c(p)ǫabǫ
αβA

†
β(p) + A

†
b(p) Q†α

a

]

,

Q†α
a A

†
β(p) = eip/2

[

d(p)δα
β A†

a(p) − A
†
β(p) Q†α

a

]

. (2.4)

It follows that the action of the central charges on the ZF operators is given by

C A
†
i (p) = e−ip

[

a(p)b(p)A†
i (p) + A

†
i (p) C

]

,

C† A
†
i (p) = eip

[

c(p)d(p)A†
i (p) + A

†
i (p) C†

]

,

H A
†
i (p) = [a(p)d(p) + b(p)c(p)] A†

i (p) + A
†
i (p) H . (2.5)

Arutyunov-Frolov-Zamaklar work with a different set of relations for the supersymmetry

generators which involve the world-sheet momentum operator (see eq. (4.15) in [4]). How-

ever, as noted in [17], the relations (2.4) are more natural when dealing with a boundary.

The ZF operators form a representation of the symmetry algebra provided ad−bc = 1.

The parameters can be chosen as follows [2, 3, 11]

a =

√

g

2l
η , b =

√

g

2l

i

η

(

x+

x−
− 1

)

, c = −
√

g

2l

η

x+
, d =

√

g

2l

x+

iη

(

1 − x−

x+

)

, (2.6)

where

x+ +
1

x+
− x− − 1

x−
=

2li

g
,

x+

x−
= eip , (2.7)

and l = 1 for the fundamental case under consideration in this section. Moreover, follow-

ing [11], we take

η = eip/4
√

i(x− − x+) , (2.8)

which has an extra factor eip/4 compared with the corresponding quantity in [4, 17].

The fundamental bulk S-matrix (2.1) is determined by this su(2|2) symmetry [2–4].

For convenience, we reproduce here the result for the nonzero matrix elements:3

Sa a
a a = A , Sα α

α α = D ,

Sa b
a b =

1

2
(A−B) , Sb a

a b =
1

2
(A + B) ,

S
α β
αβ =

1

2
(D − E) , S

β α
α β =

1

2
(D + E) ,

S
α β
a b = −1

2
ǫabǫ

αβ C , Sa b
α β = −1

2
ǫabǫαβ F ,

Sa α
a α = G , Sα a

a α = H , Sa α
α a = K , Sα a

α a = L , (2.9)

3In order to streamline the notation, here we denote the S-matrix element S
AA i′j′

i j (p1, p2) simply by

S
i′j′

i j ; i.e., we drop both the AA label and the arguments (p1, p2).
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where a , b ∈ {1 , 2} with a 6= b; α , β ∈ {3 , 4} with α 6= β; and

A = S0

x−
2 − x+

1

x+
2 − x−

1

η1η2

η̃1η̃2

,

B = −S0

[

x−
2 − x+

1

x+
2 − x−

1

+ 2
(x−

1 − x+
1 )(x−

2 − x+
2 )(x−

2 + x+
1 )

(x−
1 − x+

2 )(x−
1 x−

2 − x+
1 x+

2 )

]

η1η2

η̃1η̃2

,

C = S0

2ix−
1 x−

2 (x+
1 − x+

2 )η1η2

x+
1 x+

2 (x−
1 − x+

2 )(1 − x−
1 x−

2 )
, D = −S0 ,

E = S0

[

1 − 2
(x−

1 − x+
1 )(x−

2 − x+
2 )(x−

1 + x+
2 )

(x−
1 − x+

2 )(x−
1 x−

2 − x+
1 x+

2 )

]

,

F = S0

2i(x−
1 − x+

1 )(x−
2 − x+

2 )(x+
1 − x+

2 )

(x−
1 − x+

2 )(1 − x−
1 x−

2 )η̃1η̃2

,

G = S0

(x−
2 − x−

1 )

(x+
2 − x−

1 )

η1

η̃1

, H = S0

(x+
2 − x−

2 )

(x−
1 − x+

2 )

η1

η̃2

,

K = S0

(x+
1 − x−

1 )

(x−
1 − x+

2 )

η2

η̃1

, L = S0

(x+
1 − x+

2 )

(x−
1 − x+

2 )

η2

η̃2

, (2.10)

where

x±
i = x±(pi) , η1 = η(p1)e

ip2/2 , η2 = η(p2) , η̃1 = η(p1) , η̃2 = η(p2)e
ip1/2 , (2.11)

and η(p) is given in (2.8). This S-matrix satisfies the standard Yang-Baxter equation.

Following [5, 13], for each su(2|2) generator J, we denote the corresponding Yangian

Y (su(2|2)) generator (in the evaluation representation) by

Ĵ = −1

2
igu J , (2.12)

where

u =
1

2

(

x+ +
1

x+
+ x− +

1

x−

)

. (2.13)

The action of the Yangian generators on the ZF operators can be inferred from the

coproducts given in [5, 13] and the relations (2.3)–(2.5). For example, from the coproduct

for L̂ 1
2

∆(L̂ 1
2 ) = L̂ 1

2 ⊗ I + I ⊗ L̂ 1
2 +

1

2
L c

2 ⊗ L 1
c − 1

2
L 1

c ⊗ L c
2

−1

2
Q

†γ
2 ⊗ Q 1

γ − 1

2
Q 1

γ ⊗ Q
†γ
2 , (2.14)
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we obtain the relations (which we shall use later)

L̂ 1
2 A

†
1(p) = −1

2
iguA

†
2(p) + A

†
1(p) L̂ 1

2 − 1

2
A

†
1(p) L 1

2 +
1

2
A

†
2(p) (L 1

1 − L 2
2 )

+
1

2
c(p)A†

4(p) Q 1
3 − 1

2
c(p)A†

3(p) Q 1
4 − 1

2
a(p)A†

3(p) Q
†3
2 − 1

2
a(p)A†

4(p) Q
†4
2 ,

L̂ 1
2 A

†
2(p) = A

†
2(p) L̂ 1

2 +
1

2
A

†
2(p) L 1

2 ,

L̂ 1
2 A

†
3(p) = A

†
3(p) L̂ 1

2 +
1

2
d(p)A†

2(p) Q 1
3 − 1

2
b(p)A†

2(p) Q
†4
2 ,

L̂ 1
2 A

†
4(p) = A

†
4(p) L̂ 1

2 +
1

2
d(p)A†

2(p) Q 1
4 +

1

2
b(p)A†

2(p) Q
†3
2 . (2.15)

We have verified that these relations, together with many others which we have not listed

here, are consistent with the bulk S-matrix (2.9), (2.10), thereby confirming the Y (su(2|2))
Yangian symmetry of the latter.

2.2 Boundary scattering

We consider now the problem of boundary scattering for the fundamental excitations of

open strings attached to Y = 0 maximal giant graviton branes [16]. In order to describe

boundary scattering, we extend (following [17]) the bulk ZF algebra (2.1) by introducing

a boundary operator B which creates the boundary-theory vacuum state |0〉B = B|0〉 [20].

Since there is no boundary degree of freedom for the Y = 0 brane, the boundary operator

is a scalar. We define the fundamental (right) boundary S-matrix RA(p) by4

A
†
i (p)B = RA i′

i (p)A
†
i′(−p)B . (2.16)

As for the bulk, the boundary S-matrix can be determined from the symmetry of the

problem. Indeed, the Y = 0 brane preserves only an su(1|2) subalgebra [16], which consists

of the generators

L 1
1 , L 2

2 , H , R β
α , Q 1

α , Q
†α
1 with α , β ∈ {3 , 4} . (2.17)

The vacuum state |0〉B is annihilated by each of these generators. Consider now one-particle

states A
†
i (p) |0〉B . Invariance under L 1

1 and R
β

α implies that the boundary S-matrix is

diagonal, with the structure

RA(p) = diag(r1 , r2 , r , r) . (2.18)

Invariance under Q 1
3 then determines the diagonal matrix elements,

r1

r
= e−ip a(p)

a(−p)
= e−ip/2 ,

r2

r
= eip b(−p)

b(p)
= −eip/2 . (2.19)

4We consider here just a right boundary, since a left boundary can be treated in a similar way [17].
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This result differs from the one in [17] due to the different expression (2.8) for η(p). This

matrix satisfies the standard boundary Yang-Baxter equation

SAA
12 (p1, p2)RA

1 (p1)SAA
21 (p2,−p1)RA

2 (p2)

= RA
2 (p2)SAA

12 (p1,−p2)RA
1 (p1)SAA

21 (−p2,−p1) , (2.20)

where

SAA
21 (p1, p2) = P12 SAA

12 (p1, p2)P12 = SAA
12 (p2, p1)

−1 , (2.21)

and P is the permutation matrix.

We now show that this boundary S-matrix also has a residual Yangian symmetry.

Indeed, consider the charge Q̃ defined by

Q̃ = L̂ 1
2 +

1

2

(

L 1
2 L 1

1 − L 1
2 L 2

2 − Q
†3
2 Q 1

3 − Q
†4
2 Q 1

4

)

, (2.22)

which we shall assume is also conserved. This charge has the following action on the ZF

operators,

Q̃ A
†
1(p) =

[

−1

2
igu +

1

2
− a(p)d(p)

]

A
†
2(p) + A

†
2(p) (L 1

1 − L 2
2 )

+c(p)A†
4(p) Q 1

3 − c(p)A†
3(p) Q 1

4 + A
†
1(p) Q̃ ,

Q̃ A
†
2(p) = A

†
2(p) Q̃ ,

Q̃ A
†
3(p) = d(p)A†

2(p) Q 1
3 + A

†
3(p) Q̃ ,

Q̃ A
†
4(p) = d(p)A†

2(p) Q 1
4 + A

†
4(p) Q̃ , (2.23)

as can be verified with the help of (2.15). The key point is that all the symmetry generators

appearing on the RHS of (2.23) annihilate the vacuum state. A similar construction has

appeared in e.g. [21, 22].

In order to see the symmetry of the boundary S-matrix, consider the action of Q̃ on

the one-particle state A
†
1(p)|0〉B . Using (2.23), we obtain

Q̃ A
†
1(p)|0〉B = f(p)A†

2(p)|0〉B = r2f(p)A†
2(−p)|0〉B , (2.24)

where in the first equality we have also introduced

f(p) = −1

2
igu +

1

2
− a(p)d(p) = −1

2
[igu + a(p)d(p) + b(p)c(p)] , (2.25)

and we have used the fact that Q̃ and the su(1|2) generators (2.17) annihilate the vacuum

state; and in the second equality we have “reflected” using (2.16), (2.18) . Reversing the

order of operations, we obtain

Q̃ A
†
1(p)|0〉B = r1Q̃ A

†
1(−p)|0〉B = r1f(−p)A†

2(−p)|0〉B . (2.26)

Comparing (2.24) and (2.26), we arrive at the relation

r1

r2

=
f(p)

f(−p)
= −e−ip , (2.27)

which is consistent with the result (2.19). We conclude that the charge Q̃ (2.22) constructed

with the Yangian generator L̂ 1
2 is a symmetry of the boundary S-matrix. Additional

charges of this sort can be constructed, but we shall not need them here.
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3 Two-particle bound state representation

We now proceed to determine the boundary S-matrix for two-particle bound states. We

begin by reviewing some necessary results about such states and their bulk scattering.

3.1 Bulk scattering

The two-particle bound states form an 8-dimensional (atypical totally symmetric) repre-

sentation of su(2|2). Following the convenient superspace formalism in [11], the su(2|2)
generators can be represented by differential operators on a vector space of analytic func-

tions of two bosonic variables wa and two fermionic variables θα, as follows:

L b
a = wa

∂

∂wb
− 1

2
δb
awc

∂

∂wc
, R β

α = θα
∂

∂θβ
− 1

2
δβ
αθγ

∂

∂θγ
,

Q a
α = a θα

∂

∂wa
+ b ǫabǫαβwb

∂

∂θβ
, Q†α

a = dwa
∂

∂θα
+ c ǫabǫ

αβθβ
∂

∂wb
,

C = ab

(

wa
∂

∂wa
+ θα

∂

∂θα

)

, C† = cd

(

wa
∂

∂wa
+ θα

∂

∂θα

)

,

H = (ad + bc)

(

wa
∂

∂wa
+ θα

∂

∂θα

)

. (3.1)

The basis vectors |ei〉 of the fundamental representation are |ea〉 = wa , |eα〉 = θα; and the

basis vectors |eJ〉 of the two-particle bound state representation are [11]

|e1〉 =
w1w1√

2
, |e2〉 = w1w2 , |e3〉 =

w2w2√
2

, |e4〉 = θ3θ4 ,

|e5〉 = w1θ3 , |e6〉 = w1θ4 , |e7〉 = w2θ3 , |e8〉 = w2θ4 . (3.2)

We introduce corresponding ZF operators B
†
J(p), J = 1, . . . , 8 for the two-particle

bound states. The operators with J = 1, . . . , 4 are bosonic, while the operators with

J = 5, . . . , 8 are fermionic. The bulk S-matrix SAB(p1, p2) is defined by

A
†
i (p1)B

†
J(p2) = SAB i′J ′

i J (p1, p2)B
†
J ′(p2)A

†
i′(p1) , (3.3)

and the bulk S-matrix SBB(p1, p2) is defined by

B
†
I(p1)B

†
J(p2) = SBB I′J ′

I J (p1, p2)B
†
J ′(p2)B

†
I′(p1) . (3.4)

Both S-matrices are given in [11].5

The action of the bosonic su(2|2) generators J ∈ {L b
a , R

β
α } on these ZF operators is

given by (cf. (2.3))

J B
†
J(p) = (J) K

J B
†
K(p) + B

†
J(p) J , (3.5)

5There are two typos in the coefficients of SAB listed in section 6.1.2 of [11]. In a13, the factor in the

numerator (x−
1 − y+

2 ) should be instead (x+

1 − y+

2 ); i.e., the x−
1 should be changed to x+

1 . And in a14, the

factor in the numerator (1 − y−
2 x−

1 ) should be instead (1 − y−
2 x+

1 ) ; i.e., the x−
1 should be changed to x+

1 .
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and the action of the supersymmetry generators is given by (cf. (2.4))

Q a
α B

†
J(p) = e−ip/2

[

(Q a
α ) K

J B
†
K(p) + (−1)ǫJ B

†
J(p) Q a

α

]

,

Q†α
a B

†
J(p) = eip/2

[

(Q†α
a ) K

J B
†
K(p) + (−1)ǫJ B

†
J(p) Q†α

a

]

, (3.6)

where the matrix elements (J) K
J , (Q a

α ) K
J , (Q†α

a ) K
J can be computed from (3.1), (3.2), and

are provided for the reader’s convenience in the appendix; ǫJ is the Grassmann parity,

ǫJ =

{

0 for J = 1, . . . , 4

1 for J = 5, . . . , 8
, (3.7)

and a, b, c, d, x± are given by (2.6), (2.7) with now l = 2. Moreover, for the central charges,

C B
†
J(p) = e−ip

[

2a(p)b(p)B†
J (p) + B

†
J(p) C

]

,

C† B
†
J(p) = eip

[

2c(p)d(p)B†
J (p) + B

†
J(p) C†

]

,

H B
†
J(p) = 2 [a(p)d(p) + b(p)c(p)] B†

J(p) + B
†
J(p) H . (3.8)

The action of the Y (su(2|2)) Yangian generators on the ZF operators can be inferred,

similarly to the case of the fundamental representation, from the coproducts given in [5, 13]

and the relations (3.5), (3.6). In particular, from the coproduct (2.14), we obtain

L̂ 1
2 B

†
1(p) =−

√
2

2
iguB

†
2(p) + B

†
1(p) L̂ 1

2 − B
†
1(p) L 1

2 +

√
2

2
B

†
2(p) (L 1

1 − L 2
2 )

+

√
2

2
c(p)B†

6(p)Q 1
3 −

√
2

2
c(p)B†

5(p)Q 1
4 −

√
2

2
a(p)B†

5(p)Q†3
2 −

√
2

2
a(p)B†

6(p)Q†4
2 ,

L̂ 1
2 B

†
2(p) =−

√
2

2
iguB

†
3(p) + B

†
2(p) L̂ 1

2 +

√
2

2
B

†
3(p) (L 1

1 − L 2
2 )

+
1

2
c(p)B†

8(p) Q 1
3 − 1

2
c(p)B†

7(p) Q 1
4 − 1

2
a(p)B†

7(p) Q
†3
2 − 1

2
a(p)B†

8(p) Q
†4
2 ,

L̂ 1
2 B

†
3(p) = B

†
3(p) L̂ 1

2 + B
†
3(p) L 1

2 ,

L̂ 1
2 B

†
4(p) = B

†
4(p)L̂ 1

2 − 1

2
d(p)B†

8(p)Q 1
3 +

1

2
d(p)B†

7(p)Q 1
4 +

1

2
b(p)B†

7(p)Q†3
2 +

1

2
b(p)B†

8(p)Q†4
2 ,

L̂ 1
2 B

†
5(p) =−1

2
iguB

†
7(p) + B

†
5(p) L̂ 1

2 − 1

2
B

†
5(p) L 1

2 +
1

2
B

†
7(p) (L 1

1 − L 2
2 )

+
1

2

[

d(p)B†
2(p) + c(p)B†

4(p)
]

Q 1
3 − 1

2

[

a(p)B†
4(p) + b(p)B†

2(p)
]

Q
†4
2 ,

L̂ 1
2 B

†
6(p) =−1

2
iguB

†
8(p) + B

†
6(p) L̂ 1

2 − 1

2
B

†
6(p) L 1

2 +
1

2
B

†
8(p) (L 1

1 − L 2
2 )

+
1

2

[

d(p)B†
2(p) + c(p)B†

4(p)
]

Q 1
4 +

1

2

[

a(p)B†
4(p) + b(p)B†

2(p)
]

Q
†3
2 ,

L̂ 1
2 B

†
7(p) = B

†
7(p) L̂ 1

2 +
1

2
B

†
7(p) L 1

2 +

√
2

2
d(p)B†

3(p) Q 1
3 −

√
2

2
b(p)B†

3(p) Q
†4
2 ,

L̂ 1
2 B

†
8(p) = B

†
8(p) L̂ 1

2 +
1

2
B

†
8(p) L 1

2 +

√
2

2
d(p)B†

3(p) Q 1
4 +

√
2

2
b(p)B†

3(p) Q
†3
2 . (3.9)

– 8 –



J
H
E
P
0
5
(
2
0
1
0
)
0
1
6

3.2 Boundary scattering

We define the two-particle bound state boundary S-matrix RB(p) by

B
†
J(p)B = RB J ′

J (p)B
†
J ′(−p)B . (3.10)

We assume, as in the case of the fundamental representation, that the su(1|2) genera-

tors (2.17) annihilate the vacuum state |0〉B = B|0〉. Consider now one-particle states

B
†
J(p) |0〉B . Invariance under L 1

1 and R
β

α implies that the boundary S-matrix has the

structure

RB(p) =





























r1

r2 r5

r3

r6 r4

r7

r7

r8

r8





























, (3.11)

where matrix elements which are zero are left empty. Note that, in contrast with the l = 1

(fundamental representation) case, the l = 2 (two-particle bound state representation)

boundary S-matrix is not diagonal.

Invariance under the supersymmetry generators Q 1
α , Q

†α
1 leads to the following set of

linear equations,

a(−p)eip/2r1 − a(p)e−ip/2r7 = 0 ,

a(−p)eip/2r2 − b(−p)eip/2r5 − a(p)e−ip/2r8 = 0 ,

b(−p)eip/2r4 − a(−p)eip/2r6 − b(p)e−ip/2r8 = 0 ,

a(p)e−ip/2r4 + b(p)e−ip/2r5 − a(−p)eip/2r7 = 0 ,

b(p)e−ip/2r2 + a(p)e−ip/2r6 − b(−p)eip/2r7 = 0 ,

b(p)e−ip/2r3 − b(−p)eip/2r8 = 0 , (3.12)

d(p)eip/2r1 − d(−p)e−ip/2r7 = 0 ,

c(−p)e−ip/2r2 + d(−p)e−ip/2r5 − c(p)eip/2r7 = 0 ,

d(−p)e−ip/2r4 + c(−p)e−ip/2r6 − d(p)eip/2r7 = 0 ,

d(p)eip/2r2 − c(p)eip/2r6 − d(−p)e−ip/2r8 = 0 ,

c(p)eip/2r4 − d(p)eip/2r5 − c(−p)e−ip/2r8 = 0 ,

c(−p)e−ip/2r3 − c(p)eip/2r8 = 0 , (3.13)

of which only 6 are independent. Since there are 7 independent matrix elements (any of

the eight matrix elements can be set to unity, since we are not concerned with the overall

scalar factor), we conclude that the “ordinary” su(1|2) symmetry is not strong enough to
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determine the boundary S-matrix. A similar phenomenon was observed in [11] for the bulk

S-matrix SBB .

We can obtain the needed additional linear equation by assuming that the charge

Q̃ (2.22) is again conserved. Indeed, using (3.9), we find that the action of this charge on

the ZF operators is given by

Q̃B
†
1(p) =

√
2

[

−1

2
igu + 1 − a(p)d(p)

]

B
†
2(p) −

√
2a(p)c(p)B

†
4(p)

+
√

2B
†
2(p) (L 1

1 − L 2
2 ) +

√
2c(p)B†

6(p) Q 1
3 −

√
2c(p)B†

5(p) Q 1
4 + B

†
1(p) Q̃ ,

Q̃B
†
2(p) =

√
2

[

−1

2
igu − a(p)d(p)

]

B
†
3(p) +

√
2B

†
3(p) (L 1

1 − L 2
2 )

+c(p)B†
8(p) Q 1

3 − c(p)B†
7(p) Q 1

4 + B
†
2(p) Q̃ ,

Q̃B
†
3(p) = B

†
3(p) Q̃ ,

Q̃B
†
4(p) =

√
2b(p)d(p)B

†
3(p) − d(p)B†

8(p) Q 1
3 + d(p)B†

7(p) Q 1
4 + B

†
4(p) Q̃ ,

Q̃B
†
5(p) = −1

2
iguB

†
7(p) + B

†
7(p) (L 1

1 − L 2
2 ) +

[

d(p)B†
2(p) + c(p)B†

4(p)
]

Q 1
3 + B

†
5(p) Q̃ ,

Q̃B
†
6(p) = −1

2
iguB

†
8(p) + B

†
8(p) (L 1

1 − L 2
2 ) +

[

d(p)B†
2(p) + c(p)B†

4(p)
]

Q 1
4 + B

†
6(p) Q̃ ,

Q̃B
†
7(p) =

√
2d(p)B†

3(p) Q 1
3 + B

†
7(p) Q̃ ,

Q̃B
†
8(p) =

√
2d(p)B†

3(p) Q 1
4 + B

†
8(p) Q̃ . (3.14)

Note that, as in the fundamental case (2.23), all the symmetry generators appearing on

the RHS of (3.14) annihilate the vacuum state.

Consider the action of Q̃ on the one-particle state B
†
5(p)|0〉B . Using (3.14), we obtain

Q̃ B
†
5(p)|0〉B = −1

2
iguB

†
7(p)|0〉B = −r8

1

2
iguB

†
7(−p)|0〉B , (3.15)

where in the first equality we have assumed that Q̃ and the su(1|2) generators (2.17) anni-

hilate the vacuum state; and in the second equality we have “reflected” using (3.10), (3.11).

Reversing the order of operations, we obtain

Q̃ B
†
5(p)|0〉B = r7 Q̃ B

†
5(−p)|0〉B = r7

1

2
iguB

†
7(−p)|0〉B . (3.16)

Comparing (3.15) and (3.16), we arrive at the desired relation6

r7 = −r8 . (3.17)

6By acting with Q̃ on the one-particle states B
†
1(p)|0〉B and B

†
2(p)|0〉B , one can derive in a similar manner

the following further relations,

r1

»

1

2
igu − b(−p)c(−p)

–

+ r2

»

1

2
igu + b(p)c(p)

–

+ r6a(p)c(p) = 0 ,

r1a(−p)c(−p)− r4a(p)c(p) − r5

»

1

2
igu + b(p)c(p)

–

= 0 ,

r2

»

1

2
igu − a(−p)d(−p)

–

+ r3

»

1

2
igu + a(p)d(p)

–

+ r5b(−p)d(−p) = 0 ,

which are also satisfied by the solution (3.18).
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Solving the linear equations (3.12), (3.13), (3.17), we obtain the following result for

the boundary S-matrix elements

r1 = 1 , r2 = −
1

x− + x−

1

x+ + x−
, r3 = eip , r4 =

1

x+ + x+

1

x+ + x−
,

r5 = −r6 = eip/2 x− − x+

1 + x−x+
, r7 = −r8 = eip/2 . (3.18)

The boundary S-matrix (3.11), (3.18) and its Yangian symmetry are our main results.

We have verified using Mathematica that this boundary S-matrix RB(p) satisfies both

boundary Yang-Baxter equations

SAB
12 (p1, p2)RA

1 (p1)SBA
21 (p2,−p1)RB

2 (p2)

= RB
2 (p2)SAB

12 (p1,−p2)RA
1 (p1)SBA

21 (−p2,−p1) , (3.19)

and

SBB
12 (p1, p2)RB

1 (p1)SBB
21 (p2,−p1)RB

2 (p2)

= RB
2 (p2)SBB

12 (p1,−p2)RB
1 (p1)SBB

21 (−p2,−p1) , (3.20)

where

SBA
21 (p1, p2) = SAB

12 (p2, p1)
−1 , (3.21)

and RA(p) is given by (2.18), (2.19). We note that the boundary unitarity equation

RB(p)RB(−p) = I (3.22)

is also satisfied.

4 Discussion

We have showed that boundary scattering for the Y = 0 brane has a residual Yangian

symmetry, which we have exploited to determine the boundary S-matrix for two-particle

bound states. We expect that it should be possible to further exploit this symmetry to

determine the boundary S-matrices for general l-particle bound states. However, this will

require developing more powerful techniques, perhaps along the lines of [13]. We also

expect that boundary scattering for the Z = 0 brane [16] has the full Yangian symmetry

Y (su(2|2)), which should determine the corresponding bound state boundary S-matrices.

Moreover, the boundary S-matrices which have been proposed for D7 and D5 branes [23]

presumably also have Yangian symmetry. We hope to be able to address these problems

in the near future.

The fact that Yangian symmetry has been found in both bulk and boundary scattering

suggests that Yangian symmetry may be a generic feature of AdS/CFT worldsheet scat-

tering. It would be interesting to understand if there is any connection with the recently-

discovered Yangian symmetry in spacetime scattering [24, 25].
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A Two-particle bound state representation of the su(2|2) generators

We provide here the explicit two-particle bound state representation of the su(2|2) gener-

ators, which follows from (3.1), (3.2), and which is used for the computations in section 3.

For α = 3, 4,

Q 1
α |e1〉 =

√
2a|eα+2〉 ,

Q 1
α |e2〉 = a|eα+4〉 ,

Q 1
α |e3〉 = 0 ,

Q 1
α |e4〉 = −b|eα+4〉 ,

Q 1
α |e5〉 = −δ4

α (b|e2〉 + a|e4〉) ,

Q 1
α |e6〉 = δ3

α (b|e2〉 + a|e4〉) ,

Q 1
α |e7〉 = −δ4

α

√
2b|e3〉 ,

Q 1
α |e8〉 = δ3

α

√
2b|e3〉 ,

Q 2
α |e1〉 = 0 ,

Q 2
α |e2〉 = a|eα+2〉 ,

Q 2
α |e3〉 =

√
2a|eα+4〉 ,

Q 2
α |e4〉 = b|eα+2〉 ,

Q 2
α |e5〉 = δ4

α

√
2b|e1〉 ,

Q 2
α |e6〉 = −δ3

α

√
2b|e1〉 ,

Q 2
α |e7〉 = δ4

α (b|e2〉 − a|e4〉) ,

Q 2
α |e8〉 = δ3

α (−b|e2〉 + a|e4〉) , (A.1)

and

Q
†α
1 |e1〉 = 0 ,

Q
†α
1 |e2〉 = cǫαβ|eβ+2〉 ,

Q
†α
1 |e3〉 =

√
2cǫαβ |eβ+4〉 ,

Q
†α
1 |e4〉 = dǫαβ|eβ+2〉 ,

Q
†α
1 |e5〉 = δα

3

√
2d|e1〉 ,

Q
†α
1 |e6〉 = δα

4

√
2d|e1〉 ,

Q
†α
1 |e7〉 = δα

3 (d|e2〉 − c|e4〉) ,

Q
†α
1 |e8〉 = δα

4 (d|e2〉 − c|e4〉) ,

Q
†α
2 |e1〉 = −

√
2cǫαβ |eβ+2〉 ,

Q
†α
2 |e2〉 = −cǫαβ |eβ+4〉 ,

Q
†α
2 |e3〉 = 0 ,

Q
†α
2 |e4〉 = dǫαβ |eβ+4〉 ,

Q
†α
2 |e5〉 = δα

3 (d|e2〉 + c|e4〉) ,

Q
†α
2 |e6〉 = δα

4 (d|e2〉 + c|e4〉) ,

Q
†α
2 |e7〉 = δα

3

√
2d|e3〉 ,

Q
†α
2 |e8〉 = δα

4

√
2d|e3〉 . (A.2)

Moreover,
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L 1
1 L 2

2 R 3
3 R 4

4

|e1〉 1 -1 0 0

|e2〉 0 0 0 0

|e3〉 -1 1 0 0

|e4〉 0 0 0 0

|e5〉 1
2

−1
2

1
2

−1
2

|e6〉 1
2

−1
2

−1
2

1
2

|e7〉 −1

2

1

2

1

2
−1

2

|e8〉 −1
2

1
2

−1
2

1
2

Table 1. Eigenvalues of the generators L a
a

and R α
α

in the two-particle bound state representation.

L 2
1 |e1〉 = 0 ,

L 2
1 |e2〉 =

√
2|e1〉 ,

L 2
1 |e3〉 =

√
2|e2〉 ,

L 2
1 |e4〉 = 0 ,

L 2
1 |e5〉 = 0 ,

L 2
1 |e6〉 = 0 ,

L 2
1 |e7〉 = |e5〉 ,

L 2
1 |e8〉 = |e6〉 ,

L 1
2 |e1〉 =

√
2|e2〉 ,

L 1
2 |e2〉 =

√
2|e3〉 ,

L 1
2 |e3〉 = 0 ,

L 1
2 |e4〉 = 0 ,

L 1
2 |e5〉 = |e7〉 ,

L 1
2 |e6〉 = |e8〉 ,

L 1
2 |e7〉 = 0 ,

L 1
2 |e8〉 = 0 , (A.3)

and R 4
3 |eJ 〉 = 0 = R 3

4 |eJ 〉 except for the following:

R 4
3 |e6〉 = |e5〉 , R 4

3 |e8〉 = |e7〉 ,

R 3
4 |e5〉 = |e6〉 , R 3

4 |e7〉 = |e8〉 . (A.4)

Finally, L 1
1 , L 2

2 , R 3
3 , R 4

4 are represented by diagonal matrices, whose eigenvalues are

given in table 1:
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