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We examine one-loop radiative corrections to e+e ----, W+W in the standard model with 
one Higgs doublet, concentrating on the effects of very heavy fermions. These disturb the delicate 
unitarity cancellation between s- and t-channel diagrams, raising the cross section even well below 
the fermion threshold and giving a clear experimental signature for the heavy sector. 

1. Introduction 

R a d i a t i v e  correc t ions  allow us to p robe  the high-energy world  with compara t ive ly  

low-energy  exper iments .  Because any in te rmedia te  state a l lowed by symmetry ,  

however  heavy,  can appea r  as a quan tum fluctuat ion,  prec is ion exper iments  which 

i so la te  r ad ia t ive  correct ions  can p robe  for par t ic les  with masses  much higher  than  

the expe r imen t a l  energy scale. The  most  sensitive of such exper iments  are those 

which  involve  flavor mixing, such as the measurement  of  the K L - K  s mass  dif- 

ference.  However ,  even quant i t ies  which entai l  no special  f lavor violat ion,  such as 

the  m u o n  ( g  - 2), can yield impor t an t  in fo rmat ion  on heavy states. N o w  that  we are 

en te r ing  the era  of  exper iments  on the proper t ies  of the weak vector  bosons,  it is 

in te res t ing  to th ink  of precis ion exper iments  which might  be carr ied out  on these 

new f u n d a m e n t a l  part icles.  Such exper iments  would  necessar i ly  be done  at energies 

of  100 GeV,  or  even much higher; still, ex tending  the reach of  the avai lable  mach ine  
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energy by measurements sensitive to the radiative corrections is an attractive 
possibility. 

Two important experiments of this type which have been discussed extensively in 
the literature are the measurements of the W-boson mass [1-5] and the polarization 
asymmetry for fermion pair production at the Z ° resonance [4-6]. Both of these 
experiments are difficult, requiring large statistical samples and methods which 
cancel systematic errors below the 1% level. Yet in both cases the influence of new 
heavy states is larger than one has a right to expect. Naively, one would predict that 
electroweak radiative corrections due to new particles of mass M would affect the 
masses and couplings of the weak bosons by terms of order a/~r, times a factor 
m2/M 2 representing the Appelquist-Carazzone decoupling [7]. However, the 
Appelquist-Carazzone theorem does not apply to theories with chiral gauge cou- 
plings or large mass splittings within gauge multiplets, and indeed one finds by 
explicit calculations both terms with no suppression for M 2 >> m2w and terms 
actually enhanced by the factor AM2/m2w, with AM 2 the mass-squared splitting 
within an isodoublet [8]. The chiral nature of the weak interactions thus increases 
the power of radiative corrections to illuminate new physics. 

In this paper we would like to analyze another set of weak-interaction experi- 
ments, to be done at still higher energy. The next step for electron-positron 
colliders beyond the current generation of Z ° resonance machines will be to a linear 
collider with an energy of order 1 TeV in the center of mass. At such a machine, the 
most important single process contributing to the electron-positron annihilation 
cross section is the production of W-boson pairs. It is well known that confirmation 
of the qualitative, tree-level properties of the W-pair production cross section 
already provides a stringent test of the standard model of weak interactions [9,10]. 
The various diagrams contributing to this process, considered individually, grow 
faster with s than would be permitted by unitarity. The unitarity constraint on the 
tree-level amplitude is maintained only by virtue of a delicate cancellation among 
the various diagrams; this cancellation requires the precise gauge-theory form of the 
vertices coupling W pairs to the photon and the Z ° [11]. This observation has been 
used to propose experimental tests of the idea that W bosons are composite states; 
indeed, models with composite W bosons produce wildly different cross sections 
from those of the standard model [12]. 

We observe here that even within the standard model, the introduction of new 
heavy particles can cause large deviations from the tree-level cross section. New 
species with perfectly conventional electroweak couplings naturally yield different 
radiative corrections to the s- and t-channel diagrams involved in the tree-level 
unitarity cancellation. All of these corrections together must sum to zero (to leading 
order) for asymptotic s. However, the regime of greatest experimental interest 
corresponds to the case of a state with mass M too large to allow its pair-production 
at the high-energy lepton collider: s ~< M 2, while s >> m 2.  In this regime, there is no 
reason for the unitarity cancellations to occur, and, indeed, we find enhanced 
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radiative corrections of order (a /~r ) ( s /m2) .  These effects can be readily identified 
experimentally. We call this phenomenon, in which heavy-particle radiative correc- 
tions postpone the asymptotic cancellation among diagrams, "unitarity delay". 

As a part of our calculation, we will give a simplified analysis of the general 
structure of radiative corrections to W pair production. The radiative corrections 
due to the conventional states of the standard model have, of course, been 
calculated some time ago by Lemoine and Veltman [13], Philippe [14], and others*. 
However, the structure of the corrections is quite complex, since the theory must be 
renormalized to the standard model's physical parameters as measured in lower- 
energy weak interactions. It was observed in ref. [6] that the renormalization 
program for weak-interaction radiative corrections at the one-loop level is greatly 
simplified if one assumes that the virtual particles do not couple directly to light 
leptons but only to the gauge bosons through their standard-model gauge interac- 
tions. This assumption is valid for most new particles one might wish to 
introduce - heavy quarks, heavy leptons, technicolor bosons, and all of the states of 
supersymmetric theories except the selectron and the smuon. Lynn, Peskin and 
Stuart termed this scheme of coupling "oblique". They showed that the oblique 
radiative corrections to the properties of the Z and W can be represented quite 
generally by straightforward and manifestly finite expressions. These expressions 
allow one to classify the various corrections and to understand which precision 
experiments should give identical and which complementary information on new 
physics. One of our goals in this paper is to extend this analysis to the corrections to 
e + e - ~  W+W -. 

Accordingly, this paper will proceed as follows. We begin in sect. 2 by reviewing 
the basic kinematics of W-pair production. Following the formalism of Hagiwara 
et al. [18] we present formulae for observable differential cross sections in terms of 
W-pair form factors, which might then be analyzed at the one-loop level. In sect. 3, 
we present a general analysis of the oblique weak-interaction radiative corrections to 
the W form factors. We explicitly extract corrections which are already observable 
in low-energy and Z ° resonance experiments, incorporating these into the effective 
running electroweak parameters defined by Kennedy and Lynn [5]. What remains is 
a set of intrinsically new radiative effects; we organize these into manifestly 
ultraviolet-finite combinations. Finally, we evaluate these new corrections for the 
case of heavy fermions and scalars. In sect. 4 we study the various asymptotic limits 
of the form factors and confirm the kinematic enhancement of the radiative 
corrections in the region s - M 2 >> m 2.  We also check explicitly the restoration of 
the unitarity cancellation for asymptotic s. In sect. 5 we discuss the physics 
underlying observability of the corrections, and present numerical examples relevant 
to future high-energy experiments. We find that a new heavy generation of fermions 

* See refs. [15, 16, 17]. An extensive bibliography of theoretical work on the reaction e +e----, W +W- 
can be found in ref. [18]. 
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gives a sizeable correction, an enhancement of roughly 0.02 pb, constant in cos 0. At 
1 TeV, this represents a 5% enhancement of the total cross section at non-forward 
angles. 

2. General formalism 

Since our analysis concerns oblique corrections due to new heavy particles, we 
should expect that the most interesting effects we will uncover will be corrections to 
the form of the three-gauge-boson vertices. It is easiest to keep track of these 
corrections by studying the reaction e+e- -~  W+W for vertices of the most general 
structure, and then inserting the specific expressions for the form factors which arise 
from explicit one-loop computations. The general analysis which we require has 
been carried out most efficiently by Hagiwara, Peccei, Zeppenfeld, and Hikasa 
(HPZH) [18]. In this section, we will review their results and express their formulae 
in a fashion convenient for our analysis. 

HP ZH begin their analysis with a general parametrization of the WWA and 
WWZ vertices. In this paper, we will work in the euclidean metric. With that 
convention, their general vertex takes the following form: Let f v represent form 
factors ( V =  A or Z) and T i represent canonical Lorentz structures (implicitly 
carrying three vector indices). The vertex shown in fig. 1 is built from these 
ingredients as 

7 
r V , ( q ,  77,/,) ___ f 

i=l 

= f lv(  q _ 77), oB + f (  ( q - q ) , p o s B  

+ f3V( p~3,B - pl~6~,~, ) + f4Vi( P'~6~'# + pBS,'~') 

( q - ?l ) ~'e'~'o~Po ( q - ~1) . 
+ f vVi m~ v (2.1) 

v, llP 
gF~ aB 

Fig. 1. The general vertex for W pairs. 
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The  form factors  are dimensionless functions of s and mw.  We will consistently 

ignore the electron mass. 
At  the tree level, the A and Z vertices have the same kinemat ic  structure; bo th  are 

of  the fo rm gvTo, where 

c0 
gA  = e ,  gz  = e - - ,  (2.2) 

So 

(s o and c o denote  cos 0 w and sin 0w) and 

T o = Ta + 2 T  3 = ( q  - 7/)~'6 "# + 2 ( P ~ 6  ~ - PeS~"~). (2.3) 

Thus,  at the tree level, we would write 

f ~ = f Z = l ,  f3A = f z  = 2, (2 .4)  

and set the o ther  form factors to zero. 
Us ing  eq. (2.1), we can write the full 

d iagrams  for  e+e  --* W + W  (fig. 2(a)) as 

ampl i tude arising f rom the s-channel  

1 

+ie2(I3-s2Q)  1 
F~,,~B~ * s~ (SY~U) p2 + m2 z z , (q)g~;(g: / ) ,  (2.5) 

where  p2  = - s ,  u and v are electron and posi t ron Dirac  spinors, and ~ ( q ) ,  E/~(~) 

are polar iza t ion  vectors of  W q:, respectively. We may  consider the electron to have 
defini te  helicity and write 13 = - ½ for eL, 13 = 0 for e R. Eq. (2.5) suggests that  we 

eL,R 
eL,R 

(a )  (b)  

Fig. 2. The amplitude for e+e ---, W + W  : (a) s-channel (general vertex); (b) t-channel. 
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combine the photon and Z vertices according to 

Fi = QfiA + s~ f z ,  i = 1 . . . .  ,7,  (2.6) 

and define F ~B as the vertex built from these form factors according to eq. (2.1) 

7 

F~"B(q, q, P)  = Y'. F,T,. (2.7) 
i=1 

Then the matrix element (2.5) can be written more concisely as 

- (~'l .u)/ '""B~* (q)  ~°B* (q)  (2.8) 

The form factors F 4, F6, and F 7 multiply CP-violating terms; these always vanish 
explicitly in the standard model and in the CP-conserving extensions that we will 
consider here. 

It is quite straightforward to evaluate eq. (2.8) directly for each initial and final 
polarization state by inserting explicit forms for the electron and positron spinors 
and the W-boson polarization vectors. We sketch this development in appendix A. 
Following this analysis, we can construct the differential cross section for W 
scattering from electron and positron states of definite helicity into W states of 
definite polarization. Expressing these cross sections in units of the point cross 
section 1 R = 4vra2/3s, we find 

do 
_ _  _ 3 

dcos0  ~/3.2  (R), 

GT-r = 2sin2O[IAll 2 -  (A1A ~ +A2A~)cosO+ IA212(1 + 2cos20)] ,  

"~TL = "a~LT = IA312( l + cOs2 0 )  "}- (A3A* + AaA ~ )cos 0 sin20 + IA412 sin40, 

~LL = IAsl 2 sin20, (2.9) 

where 0 is the scattering angle in the center-of-mass frame, and the subscripts T, L 
denote transverse or longitudinal polarization of the W -  and W +. For e~ + e+L, the 
t-channel diagram does not contribute and so the coefficients A, are built directly 
from the F, 

A 1 = flF1, A 2 = O, 

A 3 - -  [1F 3 + ½,Scos 0Fs],  
m W 

As = B ~ -  7F3 - F1 

B2~- 
An- Fs, 

2m w 

+ 4B m~ F2 , (2.10) 
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where 13 is the W velocity: 13 = (1 - 4m2w/S) 1/2. For e{. + e R, we find the more 
complicated result 

13 
A1 = 13F1 + 2sa---  

1 
A 2 -  2s~@ 

1 m w( 2m w ] 
A 3 - - - - -  ½F 3 - 113cosOF5 + 2s--- 7 + s~132---- 7 1 

m w s ~  

13 2~/tS - m w 

A 4 -  2 m ~  F5 + sff~'s-----~ 

[ ( ) s 1 lm w( 2m w)] 
S 1 m 2  F1 + a13 ----2TF2 + 4sff + - -  1 _ _  1 2 _ _  

A5 = 13 m 2 ½F3 - -  2 s m w 132s~ s s ~  ' 

(2.11) 

where 13 is as above and 

N =  ½(1 + t32-  213cos O). (2.12) 

In practice, it is not experimentally straightforward to separate the cross sections 
for W-pair production into the various polarization states. The easiest way to extract 
some of the information on the W polarization is to use the decay of the W to a 
charged lepton. The decay distribution obviously depends on whether the W is 
longitudinally or transversely polarized. Further, the parity violation in the decay 
amplitude allows one to distinguish the two transverse polarization states. The 
explicit formula involves only the form factors A i of eqs. (2.10) and (2.11). Let X be 
the angle between the W momentum vector and the lepton momentum vector as 
measured in the W rest frame. Then the angular distribution in X is given by 

do 

d cos 0 d cos X 
(e+e ---,W+t ~) 

= 913BR(W--+ 1 - ~ ) [ Z r r  (1 - lsin2 X) +- 4cos O sin2 ObA2] 2 cos X 

+ZLT(1 + ½ sin2 X) --+ (2COS 01A312 + sin20(A3AZ + A4A ~ ))cos X 

+2?ct sin 2 X], (2.13) 
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w h e r e  the upper (lower) sign refers to the cross section for e~e~ (e~e{). The same 
formula holds for the X distributions in e+e ~ W  g+u from each electron 
polarization state. This formula agrees with HPZH; it is a simple byproduct of the 
analysis leading to eq. (2.9). We discuss its derivation in appendix A. 

The tree-level differential cross sections predicted by eqs. (2.9) and (2.13) are 
shown in fig. 3. In fig. 3a, we display the differential cross section predicted for 
W-pair production by unpolarized e+e pairs at ~- = 1 TeV and the decomposition 
of the cross section into the contributions from the various W-boson polarization 
states. (In principle, one might also consider the effect of polarizing the electrons; 
however, the contribution from right-handed electrons is generally quite small.) In 
fig. 3b, we plot the X distribution at three values of cos 0. The change in the form of 
this distribution reflects the increasing proportion of longitudinally polarized W 
bosons produced as one moves toward the backward direction. 
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Fig. 3. (a) Tree-level differential cross section versus 0: longitudinal polarizations only (EL), mixed 
polarizations (LT), transverse polarizations (TT) ,  and their sum. (b) Tree-level x-distribution ratio. 
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Since the A i are dimensionless scattering amplitudes, they will violate the unitar- 
ity limit if they grow asymptotically with any positive power of s. For example, eqs. 
(2.10) and (2.11) show clearly that A 5 will violate unitarity if the combination of 
form factors in brackets has asymptotic s o behavior, since this amplitude contains 
an overall factor s/m2w arising from the scalar product of longitudinal polarization 
vectors. At the tree level, eqs. (2.4) and (2.6) give 

gF 3 -  1 + - -  + - - +  . . . .  (2.14) 
s s 

Examining eqs. (2.10) and (2.11) we see that for right-handed electrons, 13 = 0 and 
the unitarity cancellation is immediate. For left-handed electrons, with 13 = - ½, the 
residual term from the form factors is cancelled by the constant term 1/4s~, which 
represents the asymptotic behavior of the t-channel diagram. 

This type of cancellation should occur order-by-order in perturbation theory. In 
sect. 4, we will show this explicitly for one-loop radiative corrections due to a heavy 
generation. The cancellation guarantees good asymptotic behavior up to logarithmic 
factors. However, the cancellation is guaranteed only for values of s which are 
actually asymptotic. A new heavy particle of mass M could potentially produce very 
large radiative corrections by disturbing the delicate cancellations in A 5 at energies 
of order M if M >> m w. In sect. 3, we will explain how to compute the corrections 
to the form factors F, which allow us to analyze that situation. 

3. One-loop radiative corrections 

It will be useful to consider the various contributions systematically before 
beginning an explicit computation of the one-loop corrections. In this paper we deal 
only with oblique corrections; this still includes a variety of corrections, as we show 
in fig. 4. In the standard model, as long as we have no subdiagrams which involve 
Higgs-Higgs or W - W  scattering processes (as is the case here), the divergences of 
all one-loop diagrams are removed when we adjust three basic parameters, which 
may be taken to be g, g' and the Higgs vacuum expectation value or, more 
concretely, a, G~, and m z. In this section, we will explain how to renormalize the 
various diagrams of fig. 4 and organize them into finite corrections with direct 
physical meaning. 

We would particularly like to address the question of which part of the one-loop 
corrections to e+e - - ,W+W are already constrained by measurements at low 
energy or at the Z ° and which are new to the W-pair production process. To make 
this separation, we follow Kennedy and Lynn [5] in parameterizing our amplitudes 
in terms of running electroweak parameters; ref. [5] shows in detail how these 
quantities summarize the information on weak-interaction radiative corrections 
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(o) (b) 

(c) (d) 

Fig. 4. One-loop oblique corrections to e+e --* W+W : (a) corrections to the t-channel diagram; (b) 
external leg corrections to the s-channel diagram; (c) propagator corrections to the s-channel diagram; 

(d) vertex corrections to the s-channel diagram. 

available from low-energy experiments. From the remaining corrections, we will also 
extract a finite overall factor representing the W-boson wave-function renormaliza- 
tion. This will leave over other finite contributions which correct the various form 
factors f.v in the three-gauge-boson vertices. These are the corrections which have 
the largest physical effect on W-pair production. 

We begin our analysis by presenting our notation for the loop corrections. These 
will be given at first in terms of bare parameters (which always carry a subscript 0). 
The boson self-energies will be denoted I-Ivv,(P2), as in fig. 5. We define 

/TVV, 
H~v'- p2 

The various boson self-energies can be written as two-point functions of the 
.,ui 

electromagnetic currents J~M and the weak isospin currents JL according to 

17 AA = e21-I  QQ , 

HZA-- %2 (H3Q--S~HoQ)' 
SoC 0 

H z z -  e2 (H33_2s2H3o+s~HQQ) 2 2 
SoC 0 

4 
H w w -  s 2 H n ,  (3 .1 )  
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v'L 

d 
¢ 

v4 

= S/a.v r[vv, (P2) - p/a.Pv ~vv ,  ( P 2) 

lP 

Fig. 5. Notation for vector-boson self-energies. 
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where s o = sin 80 and c o = cos 80 are defined by s o = e o / g  o. In general, only the real 
par ts  of  these amplitudes are relevant to the O(a )  corrections. 

Fol lowing ref. [5], we can use Dyson ' s  equations to account  for vacuum polariza- 

t ion and boson  self-energies by exchanging the bare coupling constants for renor- 

malized, running  coupling constants (subscripted with a star). This results in an 

effective lagrangian with the same form as ~'0, but  with all bare quantities replaced 

by  asterisked quantities. To include the effects of the oblique corrections we are 

account ing  here, we thus write 

1 1 

e,2(P 2) eo 2 
n Q(P:) 

e2(/ ,  2) 
[!GJ~.Q( P2)  - H~?Q(/,2)] , 

1 1 

[ ] - ] -pQ(p2)_]-/~Q(/,2)]  ; (3.2) 

f rom these we define s ,  2 = e2,/g 2 and c,  2 = 1 - s ,  2. These formulae allow us to relate 

processes occurr ing at p2 to measurements  performed at /,2. We similarly define 
running  boson  mass parameters to include self-energy and mixing effects 

e 2 1 e ,  2 1 
M 2 - , M 2 - , (3.3) 

z .  = w. d 
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with 
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Gt**(/-t2 ) 

G/~*(P2) = 1 - 4~-Gp, , ( ]12) ( / - /11  - I13Q)It~ t:2 (3 .4 )  

p , ( p 2 )  = I - 4 ~ - G t ~ , ( M 3 3  - I i l l  ) " (3 .5 )  

(All starred quantities in this paper should be evaluated at p2, unless explicitly 
written otherwise.) A little algebra yields an explicit form 

g2, 
M2.(p2) =m2 + C-"~- [(/13Q - Iv/33)(P2) - (/-/3Q-- / / 3 3 ) ( - m 2 )  

+m2z( C2, _ s2, )(17~Q( p2) _ flfQ(_m2z) ) 

2 4 p ' } -mzs , ( I][QQ(P 2 ) IF/~Q( -- m 2 ) ) ]  . (3.6) 

The combination of self-energies on the right-hand side of eq. (3.6) has no 
uncancelled ultraviolet divergences. With these definitions and light external ferm- 
ions, the boson propagator and non-abelian vertex contributions to the neutral-cur- 
rent interactions sum to the fully renormalized expression [5] 

Jh'= 
e2, (13 - s2Q)( I ; -  s2,Q ') } 

e20-0---2'_, + , , ~ 2 - -, ¥ -M 2: • (3.7) 

We use the renormalization scheme detailed in ref. [5] 

m 2 = M 2 , ( p 2 =  _ m  2) = (93.00 GeV) 2, 

47r/e,  2 (0) = 137.036, 

G . . ( 0 ) = 1 . 1 5 8 1 × 1 0  5(OeV) 2. (3 8) 

(G, differs from G,,(0) by residual vertex and box corrections.) All of the diver- 
gences in our calculation will be absorbed into the three functions M 2 , e ,  2, and g,2 Z, 
or s,  2. Note that in this renormalization scheme, sZ(-m 2) is extracted from the 
measured m z through terms including p,. Thus, s2(-m2z) will be affected by large 
isospin mass splittings. 

With this renormalization, contributions from individual fermion generations or 
scalar doublets are separately gauge invariant and finite; each such contribution can 
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be considered on its own footing. Accordingly, while our calculations include all 

electroweak effects of the new heavy particles, they ignore the conventional particles 

of the standard model, since the standard effects are of order a, unenhanced, and 
smooth as a function of s. The standard contributions should of course be included 
to correctly analyze precision measurements. We also neglect minor corrections 
f rom the Higgs and vector-boson sector; this eliminates longitudinal self-energy 
contributions and the need to rediagonalize the Z and photon [5]. (The case of a 
strongly coupled Higgs sector will be presented in a separate publication [19].) 
Bremsstrahlung effects merely produce an overall multiplicative factor convolved 
with a hard-photon energy shift, which can be treated [20] straightforwardly and 

will have no qualitative influence on the effects reported here. Finally, QCD 
corrections should be quite small at the energies we consider, and we neglect them 

as well. 
In our formulae, the influence of the running of e 2 and s ,  2 is relatively minor, and 

the reader may reproduce the value of any differential cross section that we present 
to a few percent accuracy by fixing these running parameters at the values 

4vr/e 2 = 128.0, s 2 = 0.223; (3.9) 

s 2 will be affected by the O parameter of course. The W-boson mass, unlike the Z 
mass, appears in our calculation only from the kinematics and should be set directly 
at its physical value. In the calculations of sect. 5, we have used the value of 
m 2 ~  2 2 M w . ( - r n w )  computed from the electroweak theory, including one-loop 
radiative corrections. This means that we change m w slightly in accord with the 
properties of the new heavy particles; this change is small except when we include 
heavy generations with very large isospin splitting. Even in the worst case which is 
consistent with current 0 parameter measurements ( 1 O - 1 [  < 1%, translating to 
Am2< (200 GeV) 2) [21,22], one would make an error of less than 2% in the 

differential cross section by taking the value m w = 82 GeV. 
Having defined the parameters of the theory, we can now put together the various 

corrections to e+e ---,  W+W . We begin with the external leg corrections shown in 
figs. 4a and b. These multiply the matrix element by an overall wave-function-renor- 
malization factor 

Z w = 1 + g ~ - / ~ 1 1  ~ (3.10) 
m~v 

For  the t-channel diagram, this is the only one-loop correction. If we recall that the 
bare tree diagram is proportional to g02, we can rewrite the overall factor so as to 
have the same g2 appearing in both channels 

g2gw = g2(p2)  __~_ g w  = g 2 ( p 2 ) ~ ,  (3 .11)  
gg 
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- 1 + g , 2 ( p 2 ) ( H ; , ( _ m  2 )  _ I I f Q ( p 2 ) ) .  (3.12) 

Since a Ward identity relates vertex and leg corrections, this is a finite object, as 
may be checked explicitly. 

The easiest way to analyze the s-channel diagrams is to use the effective-lagrangian 
insight in eq. (3.7) that the diagrams of the form of fig. 4c simply renormalize the 
parameters of the zeroth-order diagrams. Folding these corrections into the zeroth- 
order amplitude, we have 

( 13 - s2Q) s 
+ 

M 2 s .  ~ s - Z. 
(To)~"~Bd~*(q)NB*(q) , (3.13) 

where T o is the tensor (2.3). We then consider the diagrams of fig. 4b to multiply 
this amplitude by the additional and divergent factor 

Zw = ~(1 +g2, I I fQ(P2) ) .  (3.14) 

Finally, we must include the true vertex corrections shown in fig. 4d. In order to 
keep track of the electroweak currents as in eq. (3.1), we notate these corrections as 

e~g 

~ , 5 * ~ Q + -  , 
S,C, 

g (S ' "aB -- t'2'~'P'aB ] (3.15) 
* \ ~ 3 +  J * ~ Q + - J .  

using g0 2 = g,2 to the required accuracy. Then the diagrams of fig. 4d yield an 
additional term 

s / ~Y' " )  

[l'~ 5"uaB X [ ~ Q + _  -'["- 
(I3-,:Q) , )] 

(,_ m2) - -- o,--a+_ d~*(q)o~B*(q 1. (3.16 t 
S,¢ ,  

Here we can neglect the O(g2) difference between M 2 and m 2 although in eq. Z. Z, 
(3.13) we must retain corrections proportional to M 2 - m  2. There it is useful to Z. 
expand the denominator (s - Mz2,) to first order about (s - m2); then the zeroth- 
order term can enter the tree-level unitarity cancellation unchanged. The results of 
eqs. (3.13), (3.14) and (3.16) can thus be combined to form the following expression 
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for the sum of the s-channel diagrams 
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..¢g= - - -  ~(~y~,u) Q +  
s s 2 s - m 2 z  

+ ( I 3 - s 2 , Q )  s M2z. - m 2 T ~ , q  ~ 

sZ, s - m2z s - m 2 

..}_[Q.o2(s,t~aB ( I 3 - $ 2 Q )  s 
+- + rlPor&°  ) + 2 

s , c ,  s - m 2 z 

] 
× g2 (~,~+B_ __ va s~lzotB ,~2 FI p Tl~O~,8 ~ | 

. , ,~Q+_ + ~,~3Q~0 1] 

×d°* (q)  d°¢* ( q ) .  (3.17) 

Each line of eq. (3.17) has cancelling ultraviolet divergences, since "No+-, 2;3+-, 
and - H f Q T  o contain identical divergences. In the first line, we have separated out a 
piece proportional to the zeroth order s-channel amplitude; when this is added to 
the t-channel amplitude, the sum is simply the zeroth-order amplitude evaluated 
with running coupling constants and multiplied by ~. The remaining three lines of 
eq. (3.17) give intrinsically new corrections. 

We expect that the full one-loop-corrected amplitude should obey perturbative 
unitarity. In the combination of the t-channel amplitude with the first line of eq. 
(3.17), the unitarity cancellation is explicit; eq. (3.11) arranges for both channels to 
have g2(p2)  as the coupling and ~ as an overall factor. For the remaining terms in 
eq. (3.17), we can only check case-by-case that the leading, unitarity-violating s 
dependence cancels when s is large. If the loop diagrams contain a heavy species of 
mass M ,  we cannot expect this cancellation to occur except when s >> M 2. Thus, 
when s - M 2 >> m 2,  we expect the last three lines of eq. (3.17) to produce radiative 
corrections enhanced by a factor ( s / m 2 ) .  These are the dominant effects arising 
from our analysis. 

We conclude this section by converting the amplitude (3.17) into a set of form 
factors which can be inserted into the formulae of sect. 2. If we use T o = T 1 + 2T 3 
and decompose each vertex function according to 

7 
: I2 (3.18) 

i=1 
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we can read from eq. (3.17) 

f l  A-- 1 + g,2 [Z~)+  II~o ] , 

M 2 _ m2z z. 

s - m  2 

f a =  2 + g2,[Z(~) + 2H~o ] 3 

g,2 [ (Z (3) _ s2, ~0) 2c2,H~Q] + 2 f z = 2 +  c,2t, 3 ) +  
M 2. - m2z 

s - m 2 z  

L z g,2 
= - i : 2, 5. (3.19) 

To use these form factors, we must also make two modifications in the formulae of 
sect. 2. First, the coupling constants e 2, s 2 should be replaced by e 2, s,2; second, the 
final cross sections should be multiplied by the factor I~12 defined in eq. (3.12). 
Both of these corrections are numerically quite small, although one should note that, 
for light fermions or scalars, ~ contains logarithmic factors which are important in 
the correct coupling-constant evolution of the three-gauge-boson vertex. 

4. Low- and high-energy behavior 

We are now in a position to evaluate the various Feynman diagrams contributing 
one-loop corrections to the process e+e --~ W+W - and to organize the results 
explicitly into finite corrections. For heavy fermions, we consider the diagrams 
shown in figs. 6a, b. The actual formulae for the various corrections are complicated 
and, in themselves, rather unilluminating, so we have chosen to display these 
expressions only in appendix B. In this section and the next, we will discuss their 
important properties. Here, we analyze the formulae analytically in the limits of 
high and low energy. For a heavy generation of mass M we will show explicitly the 
presence of enhanced radiative corrections when s << M 2 and also a perturbative 
unitarity cancellation in the radiative corrections for s >> M 2. In sect. 5 we will 
study the formulae numerically for general values of s. 

In our presentation of the complete results given in appendix B, we have followed 
the method of Passarino and Veltman [23] in expressing the various diagrams in 
terms of a fixed set of standard one-loop integrals. One can then evaluate these 
integrals analytically [24]; tailored computer programs exist for this purpose [25, 26]. 
In our analysis, we have found it convenient to make some further simplifications, 
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Fig. 6. Feynman diagrams renormalizing the amplitude for e+e ---, W+W-: (a) two-point functions; (b) 
three-point functions. 

including the explicit cancellation of ultraviolet divergences, and to write our results 
in terms of a set of finite and dimensionless reduced Passarino-Veltman functions. 
These functions are defined, and their asymptotic forms are presented, in appendix 
C. The results of this section can then be obtained by inserting the appropriate 
asymptot ic  formulae into the results for the form factors given in appendix B. 

4.1. NONDECOUPLING EFFECTS AT LOW ENERGY 

We consider first the case of radiative corrections for s well below the heavy 
fermion threshold. As we have explained, we expect in this region to find terms 
enhanced by a factor ( s /m2) .  Ordinarily, one might expect that loop corrections 
due to heavy fermions are suppressed by powers of ( s / M  2) because of 
Appelquis t -Carazzone decoupling. However, with chiral currents or large doublet 
mass splittings, it is possible to evade the decoupling theorem and isolate a finite 
contribution. Clearly, degenerate scalar particles will not exhibit this effect, as we 
discuss in sect. 5. 

Let us then expand the expressions of appendix B, for s in the range m 2  << s << 
M 2, assuming a fermion doublet with hypercharge Y and masses m u and m d. 
Defining 

2 m 2 1 Am2=mu--m2 a and = 7 ( m Z + m ~ ) ,  (4. l )  
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with A m 2 << m 2, we find 
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a [ 1 A m  2 

[ FI ~ 4rr'-s 2 - Y 3 c ~  m 2 

&--O, 

13( 2 12 m2)  
+ ~ - T c o - Y g s  o ~  ' 

SoCo 

[ (  2 m2)] a 7 A m  2 13 C 2 _ Y _ _  

F3 = 4~rs~o - Y l Z c ~  m ~ + ~SoC o - 3 12 m 2 ' 

(1) 13( 1 tl 1 a m  2 Y~ 1 + + __1 (4.2) 
24c~ m 2 7~ ~ 3Y see o 24 m 2 ] J '  F~ - 4~s---~ 

where  13 = - ~, 0 for e L , % .  These formulae simplify dramatical ly  if we include a 
full generat ion in which all the doublets have the same masses, namely,  

[Am2/mZ]lepto n = [Am2/m2]quark , and use the fact XdouUet s Y = 0; 

F 1 ~ - 3 s  2 , 
F2~O, 

~( 4'31 

 _li3 )( , m2 
Fs-~ 4qrs2 1 s~ + 1 6c 2 m2 (4.3) 

N o t e  that  only  F s depends on the mass splitting and F 1, F 2 and F 3 are zero for the 
r ight -handed electron. For  lef t-handed electrons, the process e+eL ---, WL~W{ will 
show leading behavior  

s a 1 
A , ( a  - loop) ~ m 2  47rs 2 6 s 2 ,  (4.4) 

and  the cross section for e+eL ---, W ~ W  Z becomes 

do do [ A s ( I - l o o p )  1 
- -  ~- - - ( t r e e )  1 + (4.5) 
d~2 dga 2 -~s ~-r~e  ) , 
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where As(tree ) is given by eq. (2.11); thus 
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3(do/d~) ( c~c~ t s s . (4.6) 
(do/da2) ~ 3-~s~J~ww ~ ( 2 " 9 X 1 0  3 ) m 2  

This radiative correction is proportional to the number of heavy generations; aside 
from the effects of isospin mass splittings on the P parameter, it does not depend on 
the masses of the heavy generation as long as s << m 2 and lepton/quark mass 
differences are small. The factor 10 -3 is typical of one-loop radiative corrections, 
but the enhancement factor s/rn2w yields a 10% effect for vrs -=  500 GeV. This 
relative enhancement continues rising, quadratically in energy, until it is cut off 
above threshold. In essence, the unitarity delay effect can be thought of as adding a 
constant 0.02 pbarn to a tree-level cross section which is falling like 1/s. The 
unitarity delay thus exists and is measurable at lower energies, but it would be 
advantageous to use as high an energy as possible. 

4.2. ASYMPTOTIC BEHAVIOR AT HIGH ENERGY 

We now consider the case s >> m 2 >> m 2 ,  including one heavy generation where 
all fermions are of equal mass m. As already mentioned in sect. 2, any uncancelled 
leading s o behavior in the form factors F i will violate unitarity because of the factor 
s/m 2 in A s. We check this cancellation below, keeping next-to-leading order terms 
as a check on our numerical results and to provide physical insight into the system's 
high-energy behavior. 

Referring to the appendices, the F, can be seen to tend asymptotically to 

~ 21~ 

F1-~ 4rrs~ 3 s~' 

s m I,( s )] 
m~v F'-- 4,n'-s~ s-7+ss--7 3 2 - 1 6 1 n T + 4 1 n m T - 4 ~ r 2  ' 

om214( I3)is  I3F2s 
F3= 4rrs~ s 7~ 1+77o2 l n ~ - - 2  - 2  7 l n T - r r 2  , 

F 5 ~ 0; (4.7) 

thus 

~x m 2 13 2 2 ln~-  2 - 2  (4.8) 
A s ( 1 - 1 ° ° P )  ~ 4¢r--s 2 m 2 ~ c ~ - 4  + c~ 
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Notice that the leading s o terms in the F i are cancelled in A 5, a result of unitarity 
cancellation at the one-loop level. Also cancelled are all dilogarithms. Even so, if 
m 2 >> m~v then the magnitude of As(i-loop) can be as large as that of As(tree ) in 
eqs. (2.10) and (2.11). The perturbative expansion requires careful examination at 
high energy with a sufficiently heavy fermion generation, as we shall discuss in 
detail in sect. 5. 

5. Numerical results and discussion 

We can now compare the above results with numerical calculations and discuss 
the experimental observability of the heavy-particle corrections. In assessing the size 
of these corrections, one should remember that nondecoupling effects generally arise 
from the breaking of global symmetries in association with large dimensionless 
parameters. For heavy fermions in the standard model, these parameters might arise 
either from isospin-breaking mass differences or from the large Yukawa couplings 
needed to generate even large isospin-symmetric masses. We should assess the 
relative importance of these two contributions. For scalars, only the isospin splitting 
of masses arises from a symmetry breaking, and so here there is only one possible 
source for the effect. 

Let us begin with the case of heavy, isospin-degenerate fermions. The detailed 
forms of the radiative corrections to the W form factors, valid over the full range of 
energies, are presented in appendix B. By inserting these expressions into eq. (2.9), 
we obtain the effects of the heavy fermions on the differential cross section for 
W-pair production. In fig. 7, we plot the corrected differential cross section at 
cos 0 = 0, incorporating effects of a degenerate heavy generation of fermions, for 
several different masses. (Integration over cos0 merely shifts the whole curve 
upward by including the unenhanced forward peak). We can see that the radiative 
correction gives a small but noticeable effect at low energies and contributes a 
significant enhancement of the cross section in a region within a factor of 2 in ~/~ of 
the pair-production threshold. The suggestion from the analytic formulae of an 
effect increasing quadratically with energy is actually well confirmed by the numeri- 
cal results shown in fig. 7. Note the rapid onset of unitarity cancellations above 
threshold. 

The physics of the correction terms is clarified by a more detailed look at the 
numerical results. Since the delayed unitarity cancellation affects mainly the cross 
section for producing pairs of longitudinal W bosons, we should expect that the 
enhanced radiative corrections appear mainly in that polarization state. Indeed, fig. 
8 shows the contributions to the cross sections of fig. 7 from longitudinally 
polarized W pairs; the enhancement of this polarization state is very large and 
accounts for essentially the whole effect. The heavy fermions make at most a 2% 
correction to the cross section due to the other polarization states. The importance 
of the longitudinal W pairs can be assessed in another way, which can be observed 
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directly in experiments: in fig. 9, we plot the distribution of the lepton decay angle 
cos X in the presence of heavy fermion corrections. The enhancement near cos X = 0 
indicates the increasing importance of longitudinally polarized W bosons. The 
dependence on cos0 of the heavy fermion corrections shows less structure; the 
corrections are roughly independent of cos 0. However, for cos 0 > 0.5, the W-pair 
production cross section is dominated by transversely polarized pairs, and the 
relative enhancement due to radiative corrections disappears. 

Eq. (4.6) displays the low-energy limit of the correction term. Well below 
threshold, this contribution is independent of the heavy fermion masses. We 
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Fig.  9. Corrections to the X distributions at cos 0 = 0, for degenerate fermions. 

confirm this result in fig. 10 by plotting the differential cross section at cos 0 = 0 for 
relatively low energies. The 3% shift indicated in the figure is just that predicted by 
eq. (4.6), diluted by the inclusion of the other W polarization states. 

Introducing an isospin-breaking mass splitting for the fermion or doublets breaks 
the standard model's custodial SU(2) symmetry. This is known to lead to a large 
renormalization of the O parameter. In W-pair production, however, such a mass 
splitting does not generate additional large contributions; rather, its main effect is 
simply to split the existing peak of the correction term into two. Fig. 11 illustrates 
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Fig.  10. Corrections to the differential cross section at cos 0 = 0 at low energies, showing the approxi- 
mate mass independence of the fermion corrections. The 300 GeV fermions are approaching threshold. 
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this behavior in the differential cross section at c o s 0 = 0 ,  for m u - - m d =  _+100 
GeV. The vertex corrections do give a small additional effect proportional to the 
mass splitting, visible in the last line of eq. (4.3). However, this term contributes 

only to 2~LT of eq. (2.9), and so it is unimportant  at high energies. The pattern of 
shifts at low energy shown in fig. 12 comes simply from the shifts of m w and 
s . 2 ( - m  2) due to the renormalization of the p parameter; we note again that present 
data  limit isospin mass splittings to Am 2 < (200 GeV) 2 [22]. 

Since the corrections to the tree-level cross sections we have found are so large, 
we must address the question of their reliability. On the one hand, we have seen that 
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the tree-level amplitudes for W-pair production are unusually small, due to a 
cancellation of amplitudes. The large size of the corrections is the result of the fact 
that they do not exhibit the cancellation. On this ground, we would not expect 
radiative corrections of still higher order to show a further enhancement. 

This argument cannot be complete, however, because the size of our correction 
term, at threshold and above, increases rapidly with the mass of the heavy genera- 
tion. For example, the residual term (4.8) at very high energies is proportional to 
m 2. We can understand this dependence by recalling that the production of 
longitudinal W bosons at high energy is governed by the Equivalence Theorem [27], 
which states that the production amplitude is equal to that for production of the 
Goldstone scalars eaten by the W bosons in their mass generation. Indeed, the 
amplitude for production of scalars through a heavy fermion loop precisely repro- 
duces eq. (4.8), with the prefactor arising from the large fermion-Higgs-Yukawa 
coupling 

X 2 _ 1 [ m /  12 -- OL m} 
(5.1) 

4~r 4~r ~ (0} ] 2s2 m 2 "  
/ / 

It has been shown by Chanowitz et al. [28] that quarks with masses above 550 GeV 
cannot be treated perturbatively, since their Yukawa couplings are sufficiently large 
to violate tree-level unitarity in four-fermion processes. For such heavy quarks, we 
must expect large corrections to our calculation, proportional to additional powers 
of the Yukawa coupling, due to virtual Higgs bosons coupling to the fermion loop. 
Thus, while our calculations should be trustworthy for small enough quark masses 
(plausibily, for masses as high as 400 GeV), for higher masses they should be taken 
only as an indication of the size of the correction to be expected. We should recall, 
though, that for the main case of interest, s << m 2, we predict an effect which is 
independent of mass and so extrapolates smoothly into the high-mass regime. 

Heavy scalars exhibit much smaller effects than heavy fermions. Scalars with no 
mass splitting can acquire a large mass without coupling to the Higgs sector; at low 
energies these scalars decouple and at high energies they have no strong couplings to 
longitudinal W's. The only significant corrections for scalars, then, are proportional 
to the mass-squared splittings within isodoublets. Fig. 13 exhibits this behavior; we 
see that even for 200 GeV mass splittings in either direction, the vertex effect is 
small and only the 0 parameter effect is observable. Without a mass splitting, it is 
impossible to separate the corrected and tree-level curves. 

Let us finally discuss the size of the corrections we have found in terms of the 
expected event samples for future e+e colliders. A design for such a collider which 
is well matched to the requirements of the physics should provide data samples 
containing a few thousand events for typical annihilation processes; at ~/s = 1 TeV, 
such a sample would correspond to a luminosity of 3 × 10 33 cm -2 sec 1 over a 
running time of a year (3 × 10 7 sec), for a total integrated luminosity of 9 × 10 4 
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Fig. 13. Effect of a supersymmetric generation of scalar partners; cos 0 = 0, m d = 500 GeV. The upward 
shift arises almost entirely from the shift in the O parameter. 

p b -  1 or 9000 R ~. The heavy fermion corrections could be sought either in the gross 
form of the distribution in cos 0 or in the shape of the cos X distribution. The 
measurement  of cos X requires a leptonic decay. Determining the sign of cos 0 also 
requires a lepton or a tightly constrained count of charged particles. However, 
measures of the differential cross section which are symmetric about cos 0 = 0 can 
be evaluated with essentially the whole sample of W-pair events. Our corrections 
predict a substantial percentage increase in the cross section except at forward 
angles, suggesting use of the ratio 

do /Jc do 
fie 0 - -  d cos 0 - - .  (5.2) R 0 = d cos 

osOl<0.4 dcosO o~01<0.8 dcosO 

This cancels luminosity measurement errors. At v~-= 1 TeV with a degenerate 
generation of fermions of mass 750 GeV, using our calculation as an estimate of the 
effect, we find 

[ 0.305 heavy fermions, (5.3) 
R°  = ~ 0.289 standard model.  

For  the conditions described at the beginning of this paragraph, the numerator of 
R o corresponds to 11200 events; these should be accepted with efficiency well 
above 50%. Thus, the statistical error on R o should be about 1.1%, and the effect 
indicated in eq. (5.3) should be readily observable at nearly 5 standard deviations. 
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An orthogonal measure of the heavy fermion corrections is 

Rx = fl~ dc°s  0 d c ° s x  do /f 
os xL < o.6 d cos 0 d cos X 

do 
d cos 0 d cos X d cos 0 d cos X ' (5.4) 

where the denominator includes all events with semileptonic decays and both 
integrals are taken over I cos 01 < 0.6. For a heavy generation of fermions of mass 
750 GeV and v~-= 1 TeV, we predict 

= t 0.563 heavy fermions, (5.5) 
Rx [0.543 standard model. 

Roughly 40% of W-pair events will involve one leptonic decay to e or/~, and these 
events will be readily reconstructed. Thus, for the same conditions, we expect a 
statistical error on R x of 1.4%. At better than 2.5 standard deviations, this can serve 
to at least independently confirm an effect discovered in the cos 0 distribution. New 
fermions of lower mass, but still above threshold, will produce even larger devia- 
tions from the standard model predictions, while higher luminosity would lower the 
statistical errors. 

6. Conclusion 

Adding a finite, gauge-invariant heavy sector to the standard model gives rise to 
large effects in e + e - ~  W +W-, which we have analyzed in terms of nondecoupling 
and unitarity delay. Broken global symmetries and large dimensionless parameters 
are responsible for nondecoupling, while the standard model's gauge cancellations 
are responsible for unitarity delay. Unitarity delay is most important in the case of 
longitudinal W's with their kinematicaly enhanced s dependence. Since boson 
vertex corrections generate the main part of the effect, we are able to glean from this 
process important information which no fermion production experiment can pro- 
vide; the three-boson-vertex corrections ZQ+_ and Z 3 +_ give new and independent 
contributions from the virtual states. Effects occurring in four-fermion processes 
(and most easily measured there), including isospin splitting effects on the O 
parameter and running of coupling constants and boson masses, are all summarized 
in the running electroweak parameters discussed in sect. 3. 

At low energy the new contributions are not yet in the asymptotic regime; they 
disturb the delicate tree-level unitarity cancellation and allow us to probe the 
nonabelian structure of the standard model's radiative corrections. At higher en- 
ergies the cancellations are reestablished. For sufficiently heavy fermions or suffi- 
ciently split scalars there is also a strong-coupling regime; either strong-coupling 
effects or our calculated results will be measurable, with a cross-section shift on the 
order of 0.02 pb. 
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COMPUTATION OF DIFFERENTIAL CROSS SECTIONS 

In this appendix, we give some details of the derivation of the general formulae 
for the e+e---* W+W - differential cross sections ((2.9), (2.13)). These formulae 
follow straightforwardly from eq. (2.8) by inserting explicit forms for the fermion 
spinors and the W-bosons' polarization vectors. 

To define the electron spinor matrix elements, choose the electron-beam direction 
as the 3 axis. Then the matrix elements for spinors of definite helicity are given by 
the simple expression 

U~{#/dR, L = ~'S-" (E+,0),  where E+= i _+ i2. (A.1) 

+ The The upper sign refers to the helicity state e~ + e+L, the lower sign to e L + e R. 
W polarization vectors may be specified more directly as 

OX~ - = ( E T , 0 )  w i t h  q .  £T = 0 ,  for transverse polarization, 

° ~  = q o ~ ~ ,  i]ql  , for longitudinal polarization. (A.2) 

With these choices, it is straightforward though a bit tedious to work out the 
explicit values of eq. (2.8) and the t-channel exchange diagram for each polarization 
state. This calculation yields the following expression for the e+e---*W+W - 
scattering amplitudes between states of definite helicity 

J d  = - ie 2~¢, (A.3) 

where for the various cases of W polarizations: 

AI +. + A2( " + 

d~TL = A3~ + • t T - A 4 3 .  CT~ + • q ,  

~ L T =  --A3E_+" E~--}-A43.~-~E_+. q ,  

• .2~tLL = A5¢ _+. q ,  (A.4) 

where ~ is a unit vector in the direction of the W -  momentum, ~ are the 
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transverse polarization vectors, and the factors A t are just those listed in eqs. (2.10) 
and (2.11). 

Squaring this expression and summing over the transverse unit vectors e r ,  e~" 
produces precisely the formula (2.9). To obtain eq. (2.13), we require only a small 
extra piece of analysis. The square of the amplitude for the decay of W to f - ~ ,  
evaluated in the W -  rest frame, is proportional to 

ci*[ s i J -  nin j _ ieiJknk ]cJ, (A.5) 

where c is the polarization vector of the W and n is a unit vector in the direction 
of the lepton's momentum as viewed from this frame. We may specify the direction 
of n in terms of two angles - the angle X and an azimuthal angle ~b about the 
axis. We may define X to be the polar angle between n and c~. Although we can 
obtain interference terms between different polarizations from this formula, we find 
it simplest to average over ) ;  then we may replace in eq. (A.5) 

n* ~ ~ * c o s x ,  ninJ~?7'~Jcos2x+ ½(SiJ - c~'c~J)sin2 X. (A.6) 

This simplified form of eq. (A.5) may be combined with the squares of the 
amplitudes (A.4) and summed over W polarizations, to yield eq. (2.13) in the 
narrow-width, on-shell approximation. 

Appendix B 

EXPLICIT FORMULAE FOR THE W +W FORM FACTORS 

In this appendix, we present explicit expressions for the Feynman diagrams of fig. 
6, and we convert these expressions to formulae for the one-loop corrected form 
factors, eq. (3.19). We express these formulae in terms of the one-loop integrals 
defined by Passarino and Veltman [23], and in terms of a set of reduced 
Passarino-Veltman functions defined in appendix C. 

B.1. HEAVY FERMIONS 

We consider first the case of one generation of heavy fermions. To cancel 
anomalies, we must consider a full generation; our formulae will be written as sums 
over f =  ui, d ~, p, E or doublets d = (ui, d~)0,, f ) ,  where i runs over 3 colors. When 
we sum over doublets, the subscripts u and d will denote the up and down 
components. Q will denote the electric charge of a particle and 13, Y its isospin and 
hypercharge: Q = 13 + Y. 
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The vacuum polarization insertions defined in eq. (3.1) are given in terms of the 
functions b i, defined in appendix C, by the following expressions [5, 29] 

16~r 2H~)o(p2) ___ 8 E Q}[-  1A -t- b3( p2, my, my)], 
f 

16w 2/-/fQ(p2) : 4 Y', (QI3) f [ -  16A + b3( p2, my, my )], 
f 

16~r 2/733 ( p 2 )  = 2 Y'.(13) ~ , [2p2(-  ~A + b3( p2, my, my )) 
/ 

-my(A+bo(p2,  my, m2) ~] f ]1' 

16~2//11(p2)___ E[2p2( -61A +b3(P2,m 2,m2))_ ~(m2u+m 2)A 
d 

+m2dbl(p2, m2d,m 2) + m2ubl(p2, m2u, m2d)]. (B.1) 

Here, A is the divergence of dimensional regularization, A = rr- (2- d/2)F( 2 _ 2~d) 
1 / ( 2 -  ½ d ) - 3 ' -  ln~r. An arbitrary mass parameter In m 2, arising from coupling- 
constant dimensions and serving to eliminate dimensionful logarithms, follows A 
and cancels out along with it. From these formulae, we can immediately assemble 
expressions for the heavy particle contributions to the running coupling constants, 
the running Z mass, and the wave function factor ~. For the running couplings, 

1 1 
e2(p  2) e,2(/~ 2) 

m _  1_j_~2 O}(b3 ( e2, my, my) - b3(~ 2, my, my))], 

1 1 
g2(p2) g2(~2) - - - ~ . / [ l ~ - ~ ( Q I 3 ) / ( b 3 ( P 2 ,  my, my)-b3(Ix2, my, my))]. 

(B.2) 

The factor ~ becomes 

g,2 [ 0 
(~ - -1 ) - -  16~. 2 ~ [ ~ ( 2 P 2 b 3 ( P  2,m u,2 m2d)+m2ubl(P2, m u,2 m2d) 

q_m2dbl(p2, m 2, m 2) }lp2 =-m2w 

m2u) + ½(7 Y)b3 (P2, m 2, m2)}].  -4(½(½+ Y)b3(e2,  mu,2 , _  / (B.3) 
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We require the running Z mass in the particular form in which it appears in eq. 
(3.17); for a generation of fermion doublets this is 

M 2 Z. -- /9"12 

g2, 
- 16~r2c,2 ~-,[8Q~mZ[b3(PZ)-b3(-maz)] 

f 

+4(I3Q)I{[P 2 + m2z(1 - 2s2,)]b3(P 2) + 2m2zsZb3(-m2z) } 

-PZb3(PZ)-m2zb3(-m2z) + lm}[bo(P2)-bo(-m2)]]. (B.4) 

The computation of the vertex diagrams, fig. 6b, is less straightforward. After 
performing the Dirac algebra, one must gather terms together into the Lorentz 
structures given in eq. (2.1), ignoring terms proportional to the electron mass and 
using the trick given in appendix A of ref. [18] to eliminate additional structures. 
After this rearrangement, the coefficients of the structures T4, T 6 and T 7 disappear 
as required. Evaluating the integrals using dimensional regularization, we find 
additional finite terms of the form 

k ( 2 -  ~d) -~  1, (B.5) 

arising from fermion traces. It is essential to keep these terms in order to obtain the 
unitarity cancellation in the one-loop corrections. The final result can be written as 
follows 

z,+_= E 
doublets 

E 
doublets 

[(13)dH(P2, mZu, m 2) _ (i3)u/~ (P2, m~, m2u)] 

[ Q d [ H ( 8  2 , m2u, m 2) -- G ( p 2 ,  m 2, m 2 ) ]  

--Qu[I~(P2, m2d, m~)--C(p2, m2d, m2)]], (B.6) 

where H = F.iH(i)Ti and /~ = H -  2H(4)T4- 2H(S)Ts, i.e. T 4 and T 5 reverse sign, 



C. Ahn et al. / e + e  - ~ W + W  - 

and similarly with G. Finally, in terms of Passarino-Veltman integrals 

251 

m 2 

16~r2G ( P  2, rn 2, m 2) = (T o - T 3 - Ts)_.~-(c 2 - c 3 )  , 
m R  

{ 
16¢r2H( p2,  m2, m 2) = To 12(1 _ k ) + c o + C l -  - -  

+ ~  

+ ~  

m 2 1  s ) 

m~W (2c3-- 5C4 + 3CS) + --~R(C6 + 3CT) ) c° - 3c1  - m--~-R 

m~V(c 4 - c 5 ) +  ~ ( c  6 - c v )  • (B.7) - ~o + 3 <  - - ~ -  

the c i have arguments ( p 2 ,  m 2, m22). 

B.2. H E A V Y  S C A L A R S  

We now consider a hypothetical heavy scalar doublet ~ = (~u, q~d) with SU(2) × 
U(1) quantum numbers 13 = + ½, Q = (Q~, Qa), masses (mu, rnd), and vanishing 
vacuum expectation value. We obtain vertex corrections 

1 [ (  ) 
SQ+_= 16~r ~ Qu (~A-cl)To-  2m---~RcvT 2 -.].-(3Cl-Co)T3 (P2, m~,m2u) 

-Qd ({A-c l )To-  2rn---~RcvT2 +(3cl-co)T3 (p2, m2u, m~) , 

2 ? 3 + - -  
o2 ) 

16~.2 ~A-cl)To-2---S-c7T2+(3cl-co)T3 (P2, m u, m~. 

m2 ) ] 
2) (B.8) + (~A-cl)To-2m~CvT2+(3ct-co)T3 (p2, m2, mu , 
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and two-point corrections [29, 30] 

ri~Q 

//33 - -  

1111 

1 2 2 
16w 2 [Q2(~ A + 4b 3 + bo)(p2,  mu ' rnu) 

2 1 bo)(p2, mZ, m~)] +Od(X A + 4b 3 + 

1 1 2 m~) 2 16~r 2[ou(~A+4b3+b°)(P2'mu' 

16qr 2 

__ Qd(1A q_ 4 b  3 + bo)( p2,  m 2 ' m 2 ) ] ,  

P2[ 2 2 2  (4b3+bo)(p2, m2, m2a) ] 4 -3 a+(4b3+b°)(P2'mu'm'')+ 

1 1 ~m~) 
2 16~r 2[P2(13A+4b3+b°)(P2'mu' 

+(m2-m2u)[bl(p2, m2, mZ)-bl(p2, m2u, m2)] ] . (B.9) 

For  the case of a full generation of superpartners, we can sum over sleptons and 
squarks. 

Appendix C 

REDUCED PASSARINO-VELTMAN FUNCTIONS 

All higher Passarino-Veltman functions may be uniquely decomposed into linear 
combinations of the scalar integrals B 0 and Co, for which closed-form expressions 
are known [23, 34]. The decomposition algorithm has been implemented in an 
algebraic manipulation program [26]; for purposes of asymptotic analysis, however, 
we have found it convenient to define reduced Passarino-Veltman functions repre- 
senting finite, dimensionless parts of two- and three-point one-loop integrals. All of 
these functions include an arbitrary mass scale m R, which cancels out of all physical 
results. For the two-point functions, it is straightforward to determine the asymp- 
totic forms of these functions. For the three-point functions, the asymptotic analysis 
requires some effort, and so we have catalogued the required formulae. 
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The  funct ions  bi(P 2, m 2, m 2) which appear  in appendix  C are defined as follows 

[bo, bl, b31 = L l d x  log([xm 2 q- (1 - x ) m  2 q-- x ( ]  - x ) p 2  i£]//m 2) 

× [ - 1 ,  x,  x (1  - x ) ] .  (C.1) 

These  funct ions are related to the corresponding Pas sa r ino -Ve l tman  integrals [23] 
by  

B0(m2,  ml )  = bo (ml ,  m2)  + ( A - -  in m 2 ) ,  

B 1(m2, ml )  = b l ( m l ,  m2)  - ½(A - in m 2 ) ,  

B3(m2,  ml )  = b3(ml ,  m2)  - ~(A - In m 2 ) ,  (C.2) 

with B 3 = B21 + B1; B 3 and B 0 are symmetr ic  in m 2, m22. 
Passar ino and Vel tman 's  C functions are defined by 

Co,;,,i,~,tm,(q2, gl2, p2, m2, m2, m 2) 

ddk { 1, k~, k~k. ,  k~k.kp } 

- f ( k 2 + m ~ ) [ ( k + q ) 2 + m 2 l [ ( k + p ) 2 + m 2  ] , (C.3) 

and  can be writ ten in terms of form factors; 

g = gt~Cll + q~C12, 

C.. = gt~.C21 + q.q~C22 + { q~ } ..C23 + 8.~C24 , 

C~.p = qS1~77oC31 + quq~qoC32 

+ ( q ~ }  p, voC33 q- { ?tqq } l~vpC34 

+ { ~8 } ,,oG5 + { q8 } ,.0C36, (C.4) 

with braces  summing  over distinct permuta t ions  and P = q + ?/always.  
In  the present  case we may  set m 2 = m 2 --+ m 2 and m~ ~ m2; then we define the 

reduced P a s s a r i n o - V e l t m a n  functions e;(P 2, m 2, m 2) in terms of the denomina to r  

D = zm21 + (1 - z ) m  2 -  z(1 - z ) m  2 + xyP 2 -  ie, (C.5) 
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as follows 

+ __~ C. A h n e t a l .  / e e W + W  

t£.0, £.,1 = f dxdydzS(x  + y + z -  1) log (D/m~) [1 ,  z], 

[c2, c3,c4,c5, c6,c71 = f d x d y d z S ( x  + y + z -  1)(m~/D) 

× [1, z,  z 2, z 3, xy ,  x y z ] .  (C.6) 

m ~ C o  

m 2 C 2 1  

m 2 C2 2 

m2C23 

m~C31 

m2C32 

m 2 C33 

m 2 C34 

C24 

= £.2,  mZCll,lZ = - -  l ( c  2 -I- C3) , 

= 1 ( £ . 2  + £.4)  - £.~, 

= ~ ( £ . 2  + £.4) - £.3 - £ .~,  

= 1 ( £ . 2  - £.3) - £ .6,  

= - ~ ( £ . 2  + £.5) + ~ ( £ . ~  + £ . 7 ) ,  

= - ~ ( £ . 2  - 3£.3 + 3£.4 - £.5) + ~ ( £ . ~  - £ .7)  , 

3 1 
= - ~ ( £ . 2  - £ . 3 )  + ~£ .6  + ~ £ . 7 ,  

= __ 1(£.2  qt_ £.4) -}- £.3 q- 3£'6 1 
- -  3__£.7, 

= --½c o+ ¼(A-Inm~), 

C35 = ¼(c o + cl) - ~ ( A -  In m l ) ,  

C36 = ¼(c o -  cl) - ~ ( A  - In m ~ ) ,  (c.8) 

N o t e  that 

= _ _  m~ (m~- m~-  ~ v )  
[c6,c7] m 2 [ - ½ , - 1 6 ]  + ~ - [ ¢ 2 , c 3 ] +  [e3,c4] 

S S 

m~v 
+ [¢4, ¢5]- (C.7) 

S 

These functions are related to the corresponding Passarino-Veltman integrals by 
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where 

Ci j = Ci j ( _  m 2,  _ rn 2, p 2, m 2 ' rn 2, m2 ) , 

c i=ci (p2 ,  m2, m2). (C.9) 

We reduce the integrations over three Feynman parameters to one-parameter 
integrations for numerical analysis and asymptotic expression. 

(A ) ) [c0,cl l  = f01dz ( l - z )  l n ~ R -  2 - i ~ r O ( - A )  + IR(z,s)I1/2K(2) [1, zl 

[C2, C3, C4, C5] = f01dz ? , R ( z . s ) ,  1 / 2 Q ( z ) K ( z ) [ ' , Z ,  Z2, Z3],  

where we define 

A ( z )  = zm 2 + (1 - z )m 2 -  z(1 - z)m2w, (c.m 

4A 
R ( z ,  s) (1 - z) 2, (C.12) 

S 

1 for z >z+  , (C.13) 
Q ( z ) =  - 1  for z < z + ,  

2 arctan[(1 - z) lR(z ,  s)]-1/2] , f o r  

K ( z ) =  In iR-~(~,~l iT]- irrO(A ) , for 

z+<z-%<l, 

0 ~ z < z + ,  
(C.14) 

and z+, a solution for R(z, s) = 0, is given by 

s + 2(m 2 -  m 2 -  m 2 )  

s - 4m~v 

2 [m~s + (m 2 -  m2) 2 -  2m~v(m 2 + m 2) + m4] 1/2 (C.15) 
s - 4m 2 

For present purposes, we may disregard the imaginary parts. 
For large and small values of s, the functions c i take the following asymptotic 

forms. We always assume that the mass difference between m i and m 2 is small and 
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s e t  A m  2 = m 2 - m 2 ,  m 2 1 2 m 2 m 2. = 7(ml  + 2), with A m  2 << Then for m 2 << s << m 2 

s 1 A m  2 1 s 

c o = ½ 1 n m ~  12 m 2 24 m 2 '  

s 1 s 
e l = ~ l n m ~  120 m 2 '  

m 2 [ 1 Am 2 

C2 = 7 L ½ + 1~ m ~ 
1 2] 

+ 24 ' 

m~[ 1 s 1 
c 3 =  ~ -  ~ +  12----Om - -~  ' 

m2[ l m2 1 
c 4 =  ~ -  ~ 12~ m ~ + 3 6 ~ m  ~ ' 

m2R [ 1 A m  2 1 s 

[ c 5 = - -  1 ° m 2 + m 2 120 840 m 2 

m2[ . . . .  l m2 1 s] 
C6 = 7 1 + 8 0  m 2 q- 180 m 2 ' 

m211 1 
e T = - -  ~o + - -  + -  (C.16) 

m 2 720 m 2 1260 m 2 " 

When  s >> m 2, dropping Am2/m 2 and nonasympto t ic  terms 

S 

c 0 = ~ln m2  2 
m 2 [ ± [ l n 2 ( S l  + I n  • + 1 

s L2L km=] -'.2 

S 11 [l_[ln2[ s t ~r z in + 3 , 
q = ~ l n  m2 18 S [ 2 [  k m  2 ] 

S 
i in 2 + 2 In m 2 c2  ~ 712 s 

s [ (s)  ] s m2[ (~) ] 
m 2 c 3 = - ~  ln2 ~-7 -~ r2  + 2 1 n ~ - - ~ - 4 +  s - 2 1 n  - 4  , 
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+ m Z I - [ l n 2 ( m ~ ) - r r z ] - 4 1 n ( m ~ ) - 6 ] ' s  

m~tC 5 ~ ~.2 l l ln  ( s 85 

m 2 s 

m 2 c6 = 2 + --s  - ln2 ~ - - q T 2  ' 

m2[ ] ] s 1 in  2 s s 
m~ c7= 6 + - - s  - - 2  -,17 .2 + 2 1 n  - 4 .  (C.17) 
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