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Abstract. In this paper we study the boundary effects for off-critical integrable field theories
which have close analogues with integrable lattice models. Our models are theSU(2)k ⊗
SU(2)l/SU(2)k+l coset conformal field theories perturbed by an integrable boundary and bulk
operators. The boundary interactions are encoded into the boundary reflection matrix. Using
the thermodynamic Bethe ansatz (TBA) method, we verify the flows of the conformal BCs by
computing the boundary entropies. These flows of the BCs have direct interpretations for the
fusion restricted solid-on-solid (RSOS) lattice models. For super conformal field theories (CFTs)
(k = 2) we show that these flows are possible only for the Neveu–Schwarz sector and are consistent
with the lattice results. The models we consider cover a wide class of integrable models. In
particular, we show how the impurity spin is screened by electrons for thek-channel Kondo model
by taking thel→∞ limit. We also study the problem using an independent method based on the
boundary roaming TBA. Our numerical results are consistent with the boundary CFTs and RSOS
TBA analysis.

1. Introduction

In the study of the two-dimensional quantum field theories and statistical models, conformal
field theories (CFT) [1] have provided both theoretical frameworks and powerful tools. This
applies to off-critical models, not to mention critical ones. Various off-critical quantities can be
related to those of CFTs. The two-body scattering amplitude (S-matrix) of a perturbed CFT [2]
can reproduce the central charge and identify the perturbing field using the thermodynamic
Bethe ansatz (TBA) [3] and provide a proof that most integrable quantum field theories
are CFTs perturbed by some relevant operator along which the theory extends away from
criticality. Two-dimensional lattice models with Boltzmann weights satisyfing the Yang–
Baxter equation (YBE) also show these properties. For example, the order parameters such as
local height probabilities (LHP) of the restricted solid-on-solid (RSOS) models can generate
critical exponents like the central charges of minimal CFTs [4] and are related to the characters
of the CFTs [5].

Relations between critical and off-critical theories in the presence of a boundary are
the main questions investigated in this paper. There has been much interesting progress in
quantum field theory in the space-time with boundary. In particular, existence of the boundary
in 1 + 1 dimensions changes conserved quantities, symmetries and integrability and requires
new formulations for both CFTs and integrable off-critical models. To maintain infinite-
dimensional conformal symmetries, the CFTs should introduce new quantities, the conformal
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boundary states, which have one-to-one correspondence with conformal boundary conditions
(CBC) [6].

Off-critical models which can be represented by a symbolic action

A = ACFT+CBC+3
∫

d2x 8 + λ
∫

dt φB (1)

can maintain the integrability if one chooses the perturbing fields carefully. For example, it is
shown in [8] that the minimal CFTs perturbed by the least relevant bulk and boundary primary
fields can be integrable. Once the integrability is implemented, we need new quantities called
the boundary reflection amplitudes (R-matrices) which are the probability amplitudes for a
particle to scatter off from the boundary. The boundary YBE and bootstrap arguments can
determine these amplitudes completely with a givenS-matrix, the bulk scattering amplitude,
as an input [8, 9]. As the bulk TBA based on theS-matrix gives the CFT data underlying in
the perturbed CFTs such as central charges, theR-matrix can be used to find the information
on the boundary conditions. This is our main question investigated in this paper.

TBA analysis with the boundary should be a natural method for this purpose. Recently,
TBA for the perturbed minimal CFTs with certain BCs has been used to find the boundary
entropies and corresponding CBCs [10]. With certainR-matrices, the CBCs flow into each
other which are consistent with an independent study based on the roaming TBA [11]. This
result appears very interesting since it can provide a general method to understand the relations
of theR-matrix and CFTs data in equation (1). In this paper, we generalize this result on the
minimal models to general coset CFTs [12] which include the superconformal series andZk
parafermionic algebras [13]. The minimal CFTs are only the first of many infinite series of
these CFTs. One can obtain a variety of off-critical integrable models associated with these
CFTs which include many interesting ones.

These questions are not merely of academic interest. They can be directly related to
physical quantities measurable in experiment. Recent progress has shown that these theoretical
tools can be very efficient for a quantitative understanding of the non-perturbative aspects of
boundary problems. For example, boundary CFTs [6] have been applied to multi-channel
Kondo models [14] and integrable field theories to transport phenomena in quantum impurity
problems [15]. The boundary entropies associated with CBCs are one of the main physical
quantities in these computations at UV and IR fixed points. Our methods for the general coset
theories with certain limits are used to quantitatively understand the flows between the CBCs.
Our results will be of use to establish the boundary TBA method to compute the boundary
entropy and to understand boundary behaviours in the intermediate boundary scale for a wide
class of integrable models including the multi-channel Kondo model.

This paper is orgarnized as follows. In section 2, we define the general CFTs and associated
lattice models. We derive the boundary entropies for the CBCs of these CFTs following
standard procedure. The boundary perturbations of these CFTs are understood in terms of
massless scattering matrices in section 3. TheseS-matrices are used to compute the boundary
entropies using the TBA. In section 4, we compute the flows of the boundary entropies using an
independent analysis, namely, boundary roaming TBA. The boundary roaming TBA of super
CFTs are obtained by analytic continuation of that of the supersymmetric sinh-Gordon (SShG)
model. Similar analysis is proposed for the parafermionic models. Numerical analysis shows
that the results are consistent with those obtained from the boundary CFTs and RSOS TBA.
We conclude with some discussions in section 5.
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2. Coset CFT with boundary

2.1. Coset CFTs

Most rational CFTs can be expressed as coset CFTs [12]. In particular, generalSU(2) coset
CFTsM(k, l) represented schematically as

M(k, l) = SU(2)k ⊗ SU(2)l
SU(2)k+l

with central charges

c(k, l) = 3k

k + 2

[
1− 2(k + 2)

(l + 2)(k + l + 2)

]
include many important and frequently used CFTs. Here,SU(2)k is the levelkWess–Zumino–
Witten (WZW) model with Kac–Moody algebra as an extended conformal symmetry [16].
Besides the minimal CFTs [1]M(1, l), there are many other series with some extended
symmetries which will be of our main concern. Our convention is that the first indexk of
M(k, l) denotes the extended symmetries.

In particular, the superconformal theoriesM(2, l)with c = c(2, l)with the primary fields
8(r,s) 16 r 6 p− 1, 16 s 6 p + 1 [17]. We will use oftenp for l + 2 throughout the paper.
Here,8(r,s) is identified with8(p−r,p+2−s). The super CFTs and their representations can be
classified into two sectors, the Neveu–Schwarz NS and Ramond R sectors, which are selected
by antiperiodic or periodic boundary conditions on fermionic fields, respectively. In the above
notations, the primary field8(r,s) belongs to the NS or R sectors depending onr − s even or
odd integers.

In general the coset CFTsM(k, l) (k fixed andl = 1, 2, . . .) are extended CFTs with
Zk parafermion currents [18]. The characters of the coset theories are defined as branching
functions

χ
[k]
t (τ, z)χ

[l]
r (τ, z) =

k+l+1∑
s=1

Btr,s(τ )χ
[k+l]
s (τ, z)

whereχ [l]
r is the character of the highest weightr (r = 1, . . . , l + 1) for theSU(2)l WZW

model. The primary fields for the coset CFTs,8t
r,s , have three weights which take values in

t = |(r − s) mod 2k| + 1 16 t 6 k + 1 (2)

16 r 6 l + 1 16 s 6 k + l + 1. (3)

The index t stands for the sectors of the extended symmetries. For example,t = 1, 3
corresponds to the NS andt = 2 to the R sector of the supersymmetry (k = 2). Since
M(k, l) ≡M(l, k), one can have two different realizations for the CFTs.M(2, 3) can be the
third CFT of the super CFTs or the second CFT of theZ3 parafermion theory by rearranging
the conformal modules.

One of the fundamental quantities in CFTs is the modularS-matrix forBtr,s(τ ) which can
be obtained by transformingτ →−1/τ in the above expression [7] and using that ofSU(2)l
WZW model. The results are†

S [t,t ′] (r
′,s ′)

(r,s) =
√

8

(k + 2)p(p + k)
sin

πtt ′

k + 2
sin

πrr ′

p
sin

πss ′

p + k
. (4)

† Strictly speaking, the characters of the coset CFTs are linear combinations of the branching functions belonging to
the same sector (t = 1 and 3 in the super CFTs). The modularS-matrix for the characters will be modified except
some sectors like the NS where this complicacy disappears.
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The modularS-matrix can be simplified by choosing special sectors as

S
(r ′,s ′)
(r,s) = const. sin

πrr ′

p
sin

πss ′

p + k
(5)

where the constant factor is not of our concern since it will be cancelled out in the quantities
of interest.

For the super CFTs, theS-matrices of the two sectors are in general complicated except
the NS–NSS-matrix [19] given by

S
(r ′s ′)
(rs) =

4√
p(p + 2)

sin
πrr ′

p
sin

πss ′

p + 2
. (6)

For the reason explained below, we will restrict our analysis to the NS sector.

2.2. Boundary conditions

CFTs can make sense in two dimensions with a boundary only with well-defined CBCs as
classified by Cardy [6]. With the boundary conditions on both sides of the stripα, β, the
partition functionZαβ can be expressed as

Zαβ(τ) =
∑
i

niαβχi(τ ) (7)

whereniαβ denotes the number of times that the irreducible representationi occurs under the
BC αβ. Using the modular transformationτ →−1/τ , one can re-express this as

Zαβ(τ) =
∑
j

〈α|j〉〈j |β〉χj (−1/τ)

from which one derives the Cardy equation,∑
i

S
j

i n
i
αβ = 〈α|j〉〈j |β〉.

The state|α〉 satisfying this equation defines the CBC. It is found that for each primary field
8l there corresponds a CBC|l̃〉 which is defined in such a way so that the partition function
with this CBC on one side is identified with the character of8l , namely,

Z0̃h̃i
= χi(τ ). (8)

This boundary state is expressed as a linear combination of the primary states of the CFT,

|h̃i〉 =
∑
j

S
j

i√
S
j

0

|j〉. (9)

Since|0〉 defines the ground state of the CFT,〈0|l̃〉 defines the ground degeneracy of the
boundary state. This boundary degeneracyg is given by

gi ≡ 〈0|h̃i〉 = S0
i√
S0

0

(10)

and the boundary entropy, defined bysB = logg, can be completely determined by the modular
S-matrix elements.

For the general coset CFTs, one can use equation (5) to get the boundary degeneracies for
a simplest sector,

g
[k,l]
(r,s) = const.

sin πr
l+2 sin πs

k+l+2√
sin π

l+2 sin π
k+l+2

.
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In particular, degeneracies for the boundary states(1, s) and(r, 1) are given by

g
[k,l]
(1,s) = const.

(
sin π

l+2

sin π
k+l+2

)1/2

sin
πs

k + l + 2
(11)

g
[k,l]
(r,1) = const.

(
sin π

k+l+2

sin π
l+2

)1/2

sin
πr

l + 2
. (12)

Using (4) and (10) one can find the boundary degeneracies for the NS sectorh̃(1,s) andh̃(r,1)
of the super CFTs as follows (r, s odd):

g
[2,p−2]
(1,s) =

(
16

p(p + 2)

)1/4
(

sin π
p

sin π
p+2

)1/2

sin
πs

p + 2
(13)

g
[2,p−2]
(r,1) =

(
16

p(p + 2)

)1/4
(

sin π
p+2

sin π
p

)1/2

sin
πr

p
. (14)

2.3. Fusion RSOS lattice model

For later purposes, it is useful to have lattice model realizations for the general coset CFTs.
The generalizations of the original RSOS model [4] have the Boltzmann weightsW(a, b, c, d)

defined by four heights at four corners of a square, each taking values in theAk+l+1-Dynkin
diagram, where two adjacent heights are subject to the following conditions [5]

a = 1, 2, . . . , k + l + 1

a − b = −k,−k + 2, . . . , k − 2, k

(a + b − k)/2= 0, 1, . . . , l + 1.

(15)

From theZ2 automorphism of the Dynkin diagram, the model is equivalent under the
simultaneous change ofa → k + l + 2− a. The LHPP(a/b, c) and the probability for a
height to bea under the boundary heights to have(b, c), have been computed and related to
the branching function ofM(k, l) in the regime III,

Bed,a with e = b − c + k

2
+ 1 d = b + c − k

2
. (16)

Notice that the range ofd, e with equation (15) is consistent with equations (2), (3).
It is interesting to express the boundary states in terms of the RSOS lattice models. It

is found in [20] that the partition function of the RSOS lattice model (k = 1) with boundary
heights fixed as(a/b, c) in figure 1 is given by

Z(a/b, c) = χd,a
whered is inf(b, c), a smaller one ofb, c. From equation (8), one can conclude that(1/b, c)
BC of the RSOS lattice model corresponds to the CBC|h̃(d,1)〉. Another BC we will consider
is the case of freeb while a = 1 andc are fixed, which corresponds to the CBC|h̃(1,c)〉.

Now let us consider the boundary conditions for the generalk > 2 cases, namely the
‘fusion’ RSOS models. If the arguments of the conformal transformation of the strip to the
annulus in [20] are still valid for the fusion RSOS lattice, the transfer matrix with fixed BC on
the strip will be related to the corner transfer matrix. This means that the partition function
Z(a/b, c) on the strip is related to the LHPP(a/b, c), and hence to the the branching function
in equation (16). Therefore, we can conjecture that analogous results can hold for the fusion
models; namely,(1/b, c) BC of the fusion model corresponds to the CBC|h̃e(d,1)〉 with d, e
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Figure 1. RSOS lattice with(a/b, c) BC.

given above. Using the invariance underc→ k +p− c, we will restrict the boundary heights
to 16 b, c 6 (k + p)/2.

From (15),b can take three values, namelyc − 2, c + 2, c for k = 2. Plugging into (16),
one can find thatb = c ± 2 andb = c correspond to the NS and R sectors, respectively. One
can also see thatc−a should be even since the differences of two neighbouring heights should
be even. This means the BC(1/b, c) makes sense only for oddb, c. Because equation (2)
with r = d ands = a gives t = 1, 3, the boundary states should always belong to the NS
sector withb = c ± 2. Similarly(1/c) BC with oddc is identified with the CBC|h̃NS

(1,c)〉. We
summarize as follows (d, c are odd integers):

(1/c ± 2, c)↔ |h̃NS
(d,1)〉 with 16 d = [(c − 1)± 1] 6 p

2
− 1 (17)

(1/c)↔ |h̃NS
(1,c)〉 with 16 c 6 p

2
+ 1. (18)

3. Massless boundary scattering

3.1. Bulk RSOS TBA

It has been claimed years ago that the minimal CFTs perturbed by the least relevant operator
are integrable and can be described by RSOS scattering theories [21]SRSOS(k)(θ), the RSOSS-
matrix whose quantum group parameter is given byq = −eiπ/(k+2). For the perturbed general
coset CFTs, similar results have been obtained where the particles carry two sets of RSOS
spins, namely,|Ka,b(θ)〉 ⊗ |Kc,d(θ)〉 with S-matrices [22]

S(θ) = SRSOS(k)(θ)⊗ SRSOS(l)(θ). (19)

The first set of RSOS spins (a, b) acting on the firstS-matrix is considered as the index for
internal symmetries such as supersymmetry (k = 2). These particles, ‘kinks’, are obtained
by restricting multi-soliton Hilbert space when the quantum group parameterq is a root of
unity. These massive theories correspond to the perturbed CFTs with negative coefficients.
We denote this byMA(−)(k, l).
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If the coefficients of the perturbing operator are positive, the perturbed CFTs will flow
between two fixed points [24]. These flows of the central charges have been reproduced
using the aboveS-matrix in the TBA analysis by changing only the dispersion relation to
E = ±P = ±Me±θ [25] which means the left-moving (−) and right-moving (+) massless
particles.M is a mass scale which is connected with the dimensionful perturbing parameter
3. These theories, denoted byMA(+)(k, l), with SLL andSRR given by equation (19) and
with appropriateSLR are interpolating two adjacent CFT series in the following way [26]:

M(k, l)→M(k, l − k). (20)

Notice that there are more than one sequences of the flows within CFTs with fixedk > 2.
Furthermore, it has been claimed in [27] that in the vanishing limit of3, one can still

preserve the massless kink spectrum along with the RSOSS-matrices. Since the perturbed
CFTs in the limit of vanishing perturbations are obviously the CFTs, these scattering theories
can describe the CFTs. Only difference from theMA(+)(k, l) is thatSLR = 1, i.e. trivial
scattering betweenL andR-movers. All these theories are invariant underk ↔ l.

Non-pertubative results can be obtained by the TBA. It is very complicated to derive the
TBA equations for the RSOSS-matrices and is not of our concern. For detailed derivations,
see [28]. Instead, we briefly sketch only the conceptual aspects which will be useful to
understand the boundary cases. With nondiagonalS-matrices, one needs to diagonalize the
transfer matrices arising in the periodic BC. The eigenvalues depend on the particle rapidities
as well as the ‘magnonic’ mode which, in turn, satisfies some constraint equation. To define
this constraint, one needs to introduce another mode and so on. For RSOS(k), one needs
k − 1 massless magnonic modes. By interpreting these modes as massless particles and the
constraints as the periodic BC, one can transform the nondiagonal problem into the diagonal
one. The rest of the derivation is straightforward. Since only the first magnon rapidity will
enter to define the eigenvalues, the massive particle scatters with the first magnon and the first
with the second etc.

For the general cases with anS-matrix (19), the transfer matrix will also be the tensor
product form and the eigenvalues are products of two factors which have two sets of magnons
(k − 1 for RSOS(k) andl − 1 RSOS(l)). In the effective diagonal TBA, the massive particle
scatters with two first magnons and the first with the second for a given factor and so on.
This is represented in the TBA diagram of figure 2(a) TBA for MA(+)(k, l) andM(k, l) are
conjectured similarly and represented in figure 2(b) and (c). Here, the indexk is the smaller
of k, l. The exchange ofk andl does not change the TBA.

Figure 2. TBA diagrams (a)MA(−)(k, l) (b)MA(+)(k, l) (c)M(k, l).
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Explicit TBA equations are expressed as follows:

εa(θ) = νa(θ)−
k+l−1∑
b=1

labϕ ∗ Lb(θ) a = 1, . . . , k + l − 1

where

ϕ(θ) = 1

coshθ
Lb(θ) = log(1 + e−εb(θ))

f ∗ g(θ) =
∫

dθ ′

2π
f (θ − θ ′)g(θ ′)

and the source termsνa(θ) are given by

νa(θ) = δakr coshθ for MA(−)(k, l)

νa(θ) = δakr eθ

2
+ δalr

e−θ

2
for MA(+)(k, l)

(21)

νa(θ) = δakr eθ

2
for M(k, l) (22)

where a dimensionless parameterr definded byM/T with temperatureT interpolates the UV
(r → 0) and IR (r →∞) limits. lab is the incidence matrix whose elements are 1 if two nodes
a, b are connected in the TBA diagram figure 2 or 0 otherwise.

In the UV and IR limits,εa only at θ = ±∞, 0 are important and can be determined
by simple algebraic equations. Two of the massless TBA have the same solutions in the UV
limit [26,28]

1 + e−εa(−∞) =
[

sin π(a+1)
k+l+2

sin π
k+l+2

]2

16 a 6 k + l − 1 (23)

1 + e−εa(∞) =
[

sin π(a+1−k)
l+2

sin π
l+2

]2

k 6 a 6 k + l − 1 (24)

1 + e−εa(∞) =
[

sin π(a+1)
k+2

sin π
k+2

]2

16 a 6 k (25)

while the IR behaviours are all different.MA(−)(k, l) becomes massive with e−εa = 0.
M(k, l) remains the same and independent ofr whileMA(+)(k, l) generates the flows (20)
where theεa are given as above with replacingl→ l − k.

3.2. Boundary RSOS TBA

Now we introduce the boundary. The formal action is in the form of equation (1). The
perturbed CFTs can be well-defined only after specifying the CBCs. Once the integrability is
maintained by specific BCs, the boundaryR-matrix, obtained by the boundary YBE, can be
used in the boundary TBA to compute the entropies [29]. For diagonalS- andR-matrices,

log〈Bα|0〉〈0|Bβ〉 =
∫ ∞
−∞

dθ

2π
καβ(θ) log(1 + e−ε(θ)) + const.

ε(θ) = 1
2re

θ + φ ∗ L(θ)
καβ(θ) = 1

i

d

dθ
log[Rα(θ − θBα )Rβ(θ − θBβ )]
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where ‘boundary rapidity’θB is defined bymB = MeθB and the boundary mass scalemB is a
certain power ofλ in (1). The UV (IR) limit isθB →−∞(∞).

The simplest example isM(1, 1), namely the Ising model withR given by

R(θ − θB) = −i tanh

[
1

2
(θ − θB)− iπ

4

]
which produces the boundary entropysB = log〈0|B〉 as

sB =
∫ ∞
−∞

dθ

2π

log
(
1 + e−ε(θ)

)
cosh(θ − θB)

+ const.

This gives the correct flow of the boundary degeneracy,gUV/gIR =
√

2.
Generalizing this result to the RSOS(k > 2) theory is nontrivial. The authors in [10]

claimed that the boundary perturbation of the minimal CFT with the CBC|h̃(1,a)〉 is the quantum
group reduction of the massless limit of the boundary sine-Gordon model with the anisotropic
spin-j Kondo interaction at the boundary. Therefore, the boundaryR-matrices of the boundary
RSOS(k) theory are given by the RSOS version of theR-matrix of the Kondo model given
in [30]:

R(θ) = 1 a = 1

R(θ) = −i tanh

(
θ − θB

2
− iπ

4

)
a = 2

R(θ) = R1/2,(a−2)/2(θ − θB) 36 a 6 p + 1

2

(26)

with a = 2j + 1. Noticej = 1
2 (a = 2) where the boundary spin is fixed at spin-1

2 gives the
sameR as the Ising model. Based on theseR-matrices, the boundary entropy for the CBC
|h̃(1,a)〉 has been conjectured as

s
(a)
B =

∫
dθ

2π

log(1 + e−εa−1(θ))

cosh(θ − θB)
(27)

whereεa are determined by usual RSOS bulk TBA. With solutions of the bulk TBA, the ratios
of the boundary degeneracies become

g
(a)
UV

g
(a)
IR

= 1 + e−εa−1(−∞)

1 + e−εa−1(∞) . (28)

These results can be a guideline for the general coset CFTs. Considering the bulkS-matrix
(19), one can look for theR-matrix in the form of

R(θ) = RRSOS(k)(θ)⊗ RRSOS(l)(θ).

The first factor is related to the internal symmetry. The fractional supersymmetry is defined
in the S-matrix of the RSOS(k) [21]. In the bulk conformal limit3 → 0, this symmetry
will remain as extended conformal symmetries generated by theZk parafermion. Even in the
presence of the boundary, we require that the CFTs should preserve these extended symmetries
along with the conformal ones. Among many solutions [31] for the boundaryR-matrix of the
RSOS(k) model, no one can preserve the conserved currrents of fractional spin except the
trivial case ofR ∝ 1. This is consistent with the results in [32] where theR-matrix of massless
particles with topological charges corresponding to the Dirichlet BC is1. We will use the
R-matrix (26) for the secondR. To summarize, our conjecture for theR-matrix of the CBC
|h̃(1,a)〉 is 1⊗ R1/2,(a−2)/2.

The boundary TBA can be similarly derived. While boundary part will be the same as
before, equations (27), (28), since the reflection amplitudes do not change, bulk part will be
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described by TBA ofM(k, l). Let us first consider the case ofa > k. Plugging equations (23),
(24) into (28), one gets

g
(a)
UV

g
(a)
IR

= sin πa
k+l+2

sin π
k+l+2

sin π
l+2

sin π(a−k)
l+2

. (29)

Comparing (29) with equations (11), (12), we find that the boundary reflection matrices
generate the flows

|h̃(1,a)〉 → |h̃(a−k,1)〉. (30)

This means the UV CBC|h̃(1,a)〉 of the perturbed boundary CFTsM(k, l) changes to|h̃(a−k,1)〉
in the IR (a > k + 1).

It will be more instructive to intepret this result in the fusion RSOS lattice model language.
Fork+16 a 6 (k+l+2)/2, equation (30) means simply the flow from(1/a)BC to(1/a−k, a).
For(k+l+2)/26 a 6 k+l+1 the CBC|h̃(1,a)〉and|h̃(a−k,1)〉correspond to the lattice BCs(1/a′)
and(1/a′ + k, a′) with a′ = k + l + 2− a due to theZ2 symmetry. According to equation (16),
these boundary states are identified with the CBC|h̃(1,a′)〉 and|h̃(a′,1)〉, respectively. Therefore,
the boundary TBA results give two flows withk + 16 a 6 (k + l + 2)/2,

|h̃(1,a)〉 → |h̃(a−k,1)〉 or (1/a)→ (1/a − k, a) (31)

|h̃(1,a)〉 → |h̃(a,1)〉 or (1/a)→ (1/a + k, a). (32)

Our results reproduce [10] fork = 1 where it is claimed that these flows are associated with
the signs ofλ in (1). Sinceλ is only a free parameter, this conclusion should be also true for
general cases.

For the case ofa 6 k, the boundary degeneracies can be computed from (23), (25). The
result is

g
(a)
UV

g
(a)
IR

= sin πa
k+l+2

sin π
k+l+2

sin π
k+2

sin πa
k+2

= g
[l,k]
(1,a)

g
[l,k]
(a,1)

(33)

where we used equations (11), (12) at the last equality. Notice that the indicesk and l are
switched. This means the BC flow for theZl , notZk, parafermion CFTs;

|h̃(1,a)〉 → |h̃(a,1)〉.
For the lattice model, this is the flow(1/a)→ (1/a + k, a) and with (32)a is now extended
to 16 a 6 (k + l + 2)/2.

Our model covers a wide range of integrable models for eachk andl. In particular, the
result for thel → ∞ limit is interesting and also has physical applicability. The coset CFT
in this limit becomes the level-k WZW model with boundary interaction. This is the multi-
channel Kondo model of the spin current considered in [14]. Fora = 2j +1> k, equation (29)
gives

g
(a)
UV

g
(a)
IR

= a

a − k a > k

which means that the spin degeneracy of 2j + 1 at the UV limit flows into 2(j − k/2)+ 1 in the
IR. This is nothing but the screening effect of the impurity spin byk-channel electrons in the
underscreened case which can be obtained by ‘fusion hypothesis’ [14]. The case of 2j +16 k
is more interesting. Equation (33) gives

g
(a)
UV

g
(a)
IR

= a · sin π
k+2

sin πa
k+2

.
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Figure 3. Flows of the boundary entropy as the boundary scale changes fork = 3, l = 4 (sB versus
θB ) for various boundary statesa.

This is exactly the result for the overscreened Kondo model previously obtained by the Bethe
ansatz and boundary CFT.

Our TBA result can be used to understand the flows quantitatively. We show the numerical
result of the boundary entropies for several boundary spins (k = 3 andl = 4) as the boundary
scale changes in figure 3. This graph illustrates nonperturbatively the ‘g-theorem’ that the
boundary entropy always decreases as the system goes from UV to IR [14].

3.3. Massless flows in the bulk and boundary

We have considered so far the case of3 = 0, λ 6= 0 which shows only the boundary flows.
A natural extension will be the simultaneous flow of the bulk and boundary. Due to nontrivial
scattering between the right- and left-movers, the bulk TBA is given by (21). For the boundary
entropy, an educated guess is

s
(a)
B =

1

2

∫ ∞
−∞

dθ

2π

[
log(1 + e−εa−1(θ))

cosh(θ − θB)
+

log(1 + e−εk+l+1−a(θ))

cosh(θ + θB)
+ const.

]
. (34)

This is the same conjecture used in [10].
Analysis of this boundary TBA is a little more complicated. In the bulk UV limit

r = M/T → 0, we defineθB = θ̄ + βB with θ →∞ so thatreθ is finite. Then redefine the
rapidity asθ = ±(θ + β) for R(L)-movers. ForR-movers, the source term at nodel vanishes
reducingνa to those ofM(k, l) and the second term in (34) also vanishes and the boundary
entropy is the half ofM(k, l). ForL-movers, the source term at nodek and the first term
in (34) vanish. The resulting TBA and boundary entropy are the same as those byR-movers
using the obvious symmetry of the TBA diagram and the solutions (23), (24) underk ↔ l.
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These two contributions cancel the half in front of the entropy and give the same formula as
before. This result is expected since the two TBA systems are equivalent atUV .

Now consider the opposite limit, i.e. the bulk IR limitM/T → ∞. Sincer → ∞, we
redefine the rapidities differently, namely,θB = −θ +βB andθ = ±(θ −β)with θ →∞. For
R-movers, the source term at nodek becomes infinite and the TBA diagram forMA(+)(k, l)

is cut atk. The remaining diagram is that ofM(k, l − k) and the first term in (34) vanishes.
With a similar result for theL-movers, one gets the boundary TBA system withl → l − k.
Therefore, we get the boundary flows for the IR CFTMA(+)(k, l).

Fixing the boundary scalemB and varying the bulk scale shows another interesting
behaviour. For example, we consider (1) with CBC|h̃(1,a)〉 andλ = 0. In the bulk UV
limit, the boundary degeneracy is given as before by

g
(a)
UV = const.

(
sin πa

k+l+2

sin π
k+l+2

)
.

In the bulk IR limit with r →∞, the source terms diverge and thek nodes from each end of
the TBA diagram should be removed. The solutions can be obtained from (23) with replacing
a→ a − k andk + l + 2→ l − k + 2 and the boundary entropy becomes

g
(a)
IR = const.

(
sin π(a−k)

l−k+2

sin π
l−k+2

)
.

Using equations (11), (12), one can confirm that these are the flows

|h̃[k,l]
(1,a)〉 → |h̃[k,l−k]

(a−k,1)〉.

4. Roaming on boundary

4.1. Super roaming TBA

Roaming model [11] is obtained by taking the analytic continuation of the coupling constant of
the sinh-Gordon model which generates all the minimal CFTs in one equation. As suggested
in [33], this model can be used to describe the correlation functions via form factors of all the
minimal series and their perturbations. Its application to the boundary problem is also tested
in [10]. In the same spirit, we can derive the following super roaming TBA equations from
the SShG model with the same complex coupling constant (See the appendix):

ε1(θ) = r coshθ − ϕ ∗ L2(θ)

ε2(θ) = −ϕ ∗ L1(θ)

with the kernel

ϕ(θ) = 1

cosh(θ − θ0)
+

1

cosh(θ + θ0)
.

This result is exactly the one conjectured in [35] which corresponds to the superconformal
series with Witten index 1.

For the boundary roaming, one needs to relate the boundary entropy with the boundary
reflection amplitudes of the SShG model obtained from the boundary YBE [36]. We conjecture
that the boundary entropy is given by

sB = 1

4π

∫
dθ κ(θ) log(1 + e−ε1(θ)) (35)

whereκ(θ) = −i∂θ logR. By suppressing unnecessary parameters,κ(θ) is given by

κ(θ) = 2 coshf coshθ

cosh2 θ + sinh2 f
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Figure 4. Roaming of the boundary entropies fork = 2, s = 0 with θ0 = 40 (f versus
sB ). 1. p = 4: (a) |h̃(1,3)〉 → |h̃(1,1)〉 (0.693. . . → 0). 2. p = 6: (a) |h̃(1,3)〉 → |h̃(1,1)〉
(0.881. . .→ 0), (b) |h̃(1,3)〉 → |h̃(3,1)〉 (0.881. . .→ 0.693. . .). 3.p = 8: (a) |h̃(1,5)〉 → |h̃(3,1)〉
(1.173. . .→ 0.881. . .), |h̃(1,3)〉 → |h̃(1,1)〉 (0.962. . .→ 0), (b) |h̃(1,3)〉 → |h̃(3,1)〉 (0.962. . .→
0.881. . .).

wheref is a dimensionless parameter determined by the mass scale of the bulk theory and the
dimensionful parameter in the boundary potential. This expression means that particle scatters
off the boundary with the same reflection amplitude as the minimal roaming model while the
magnon is decoupled from the boundary interaction.

The boundary entropies for super CFTs can be obtained numerically using (35) which are
plotted in figure 4 forp = 4, 6, 8. Analysing this figure, we can confirm that these values at
the plateaus are consistent withsB = logg with g given in equations (13), (14). We can find
that there are two types of boundary flows, all in the NS sector (p = 4n or 4n + 2):

|h̃(1,a)〉 → |h̃(a−2,1)〉 for a = 3, 5, . . . ,2n + 1

|h̃(1,a)〉 → |h̃(a,1)〉 for a = 3, 5, . . . ,2n + 1.

These are consistent with equations (17), (18) based on the boundary CFTs and with
equations (31), (32) based on the RSOS TBA analysis.

4.2. Boundary roaming for general coset

Bulk roaming TBA equations for the general coset CFTs are conjectured in [37] as follows
(we will consider only theSU(2) coset CFTs):

ε(i)(θ) = ν(i)(θ)− ϕ− ∗ L(i−1)(θ)− ϕ+ ∗ L(i+1)(θ)

ν(i)(θ) = 1
2(δi,0re

−θ + δi,sre
θ ) i = 0, . . . , k − 1
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Figure 5. Roaming of boundary entropies fork = 3, s = 0 with θ0 = 50 (f versussB). 1.p = 5:
(a) |h̃(1,4)〉 → |h̃(1,1)〉 (0.9605. . . → 0). 2. p = 8: (a) |h̃(1,4)〉 → |h̃(1,1)〉 (1.172. . . → 0),
(b) |h̃(1,4)〉 → |h̃(4,1)〉 (1.172. . .→ 0.960 54. . .). 3.p = 11: (a)|h̃(1,7)〉 → |h̃(4,1)〉 (1.502. . .→
1.172. . .), |h̃(1,4)〉 → |h̃(1,1)〉 (1.256. . .→ 0), (b) |h̃(1,4)〉 → |h̃(4,1)〉 (1.256. . .→ 1.172. . .).

where the index is defined cyclici ≡ i +k andϕ±(θ) = 1/ cosh(θ ± θ0) ands = 0, . . . , k−1.
Without knowing anyS-matrix interpretation of these equations, we can rely on our previous
experience to conjecture the boundary roaming TBAs. Our conjecture is that the bulk part is
the same as before and the boundary entropy is given by equation (35) withε1 replaced by
ε(0). The bulk TBA is claimed to generate the roaming

· · · →M(k, 2k + s)→M(k, k + s)→M(k, s).

Our interest is the boundary entropy generated by the general roaming TBA. For example,
we study numerically the boundary entropies fork = 3 ands = 0 and plot the result in figure 5.
From this, we conclude the following BC flows:

|h̃(1,a)〉 → |h̃(a−3,1)〉 for a = 4, 7, . . . ,3n + 1

|h̃(1,a)〉 → |h̃(a,1)〉 for a = 4, 7, . . . ,3n + 1.

Again, this result is consistent with (31), (32) based on the boundary CFTs and RSOS scattering
theories.

In figures 4 and 5, the second type flows(1, a)→ (a, 1) are ‘inverted’ flows in the sense
that the boundary entropies increase as the scale decreases. While this is not forbidden by the
g-theorem since we are dealing with theories with complex coupling constant, hence complex
dimensions, the origin is mysterious considering the roaming flows satisfy the ‘c-theorem’
faithfully. A method developed in [37] seems useful to understand these boundary roaming
behaviours more analytically and will be reported elsewhere.



Boundary flows in general coset theories 2523

5. Conclusion

In this paper, we have investigated a wide class of massless scattering theories originated as
perturbed coset CFTs. The boundary scattering amplitudes are used to find the boundary
entropies through the boundary TBA methods. Our key result is to verify the flows of the BCs
both for the boundary CFTs and for the fusion lattice models. These results are cross-checked
with the extended roaming TBAs.

Several points are not clarified. First of all, we have considered only the NS sector of the
super CFTs and the corresponding results make sense only in that sector. For the fusion lattice
model, it is shown that this is the only possible case. The lattice realization of the R sector and
the analysis based on the boundary CFT and TBA remain to be resolved. Even for the NS, we
have considered only special BCs, namely(r, 1) and(1, s), equivalently(1/a) and(1/b, c)
for the lattice model. TheR-matrix we used describes the flows within this subset of BCs.
Similarly, for k > 2, we considered only special sector and special type of the BCs. It would
be very interesting to find more general reflection matrices which can generate flows between
other BCs.

We considered a wide class of integrable models, ‘an integrable zoo’ [22]. Putting a
boundary for the zoo is a quite interesting project. In particular, various interesting results on
the boundary can be obtained by taking various limits. The cases ofk = 4,∞ with l → ∞
give the bulk CFT withc = 2, 3, which can be realized with two and three free bosons. The
boundary behaviour of these theories may be interesting for string theory formulation.

Good agreement between the two results based on the RSOS and roaming TBAs suggest
that the roaming limit of the SShG model with simpleS-matrix can be useful to compute off-
shell quantities such as correlators for more physically relevant models, such as multi-channel
Kondo models.
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Appendix. Super roaming TBA from SShG model

Using an inversion relation of the transfer matrices based on the fact that theS-matrix is the
trigonometric limit of the eight-vertex free fermion model, one can find the TBA equation of
the SShG model [34]

mR coshθ = ε1(θ) + ([ϕY − 1
2ϕ ∗ ϕ] ∗ ln[1 + e−ε1])(θ) + (ϕ ∗ ln[1 + e−ε2])(θ)

0= ε2(θ) + (ϕ ∗ ln[1 + e−ε1])(θ)

where convolution is defined by

[f ∗ g](θ) =
∫ ∞
−∞

dθ ′

2π
f (θ − θ ′)g(θ ′)

and the kernels are given by

ϕ(θ) = 1

i

∂

∂θ
ln

[
sinhθ − i sinπα

sinhθ + i sinπα

]
= 4 coshθ sinπα

cosh 2θ − cos 2πα
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ϕY (θ) = 1

2i

∂

∂θ
ln

[
sinh(θ/2)− i sinπα

sinh(θ/2) + i sinπα

]
+
∫ ∞
−∞

dk
sinh(παk) sinh(π(1− α)k)

cosh2(πk/2) coshπk
eikθ

Using Fourier tranforms of the kernels,

ϕ̂(k) = cosh(πk( 1
2 − α))

cosh(πk/2)

ϕ̂Y (k) =
cosh(πk( 1

2 − α))
cosh(πk/2)

+
sinh(παk) sinh(π(1− α)k)

2 cosh2(πk/2) cosh(πk)

one can show that

ϕ̂Y (k)− 1
2 ϕ̂(k)

2 = 0.

This simplifies the TBA equations to

ε1(θ) = r coshθ − ϕ ∗ ln[1 + e−ε2](θ) ε2(θ) = −ϕ ∗ ln[1 + e−ε1](θ).

By taking an analytic continuation of the SShG coupling constant,

πα = π

2
± θ0i with θ0� 1

we obtain the roaming TBA with new kernel

ϕ(θ) = 1

cosh(θ − θ0)
+

1

cosh(θ + θ0)
.
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