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Abstract

In this paper, exact one-point functions ofN = 1 super-Liouville field theory in two-dimensional
space–time with appropriate boundary conditions are presented. Exact results are derived both for
the theory defined on a pseudosphere with discrete (NS) boundary conditions and for the theory
with explicit boundary actions which preserves super conformal symmetries. We provide various
consistency checks. We also show that these one-point functions can be related to a generalized
Cardy conditions along with corresponding modularS-matrices. Using this result, we conjecture the
dependence of the boundary two-point functions of the (NS) boundary operators on the boundary
parameter. 2002 Published by Elsevier Science B.V.

PACS: 11.25.Hf; 11.55.Ds

1. Introduction

Liouville field theory (LFT) has been studied actively for its relevance with non-critical
string theories and two-dimensional quantum gravity. This theory is also interesting on
its own as an example of irrational conformal field theory (CFT). Most CFT formalism
developed for rational CFTs do not apply to this class of theories mainly because they
have continuously infinite number of primary fields. Various methods have been proposed
to derive structure constants and reflection amplitudes, which are basic building blocks to
complete the conformal bootstrap [1–3].

E-mail addresses: ahn@dante.ewha.ac.kr (C. Ahn), rim@mail.chonbuk.ac.kr (C. Rim),
stanishkov@dante.ewha.ac.kr (M. Stanishkov).

1 On leave of absence from Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria.

0550-3213/02/$ – see front matter 2002 Published by Elsevier Science B.V.
PII: S0550-3213(02)00296-1

http://www.elsevier.com/locate/npe


498 C. Ahn et al. / Nuclear Physics B 636 [FS] (2002) 497–513

Another example of the irrational CFT is theN = 1 supersymmetric LFT (SLFT).
This model has some motivations. It is applicable to the superstring theories and the two-
dimensional supergravity with fermionic matter fields. One can also understand the role
of the extended conformal symmetry in the irrational CFTs by studying this model. The
methods introduced for the bulk LFT have been applied successfully to the bulk SLFT
although the latter becomes algebraically more complicated [4,5].

It is interesting to extend these formalisms to the CFTs defined in the two-dimensional
space–time geometry with a boundary condition (BC) which preserves the conformal
symmetry. Cardy showed that the conformally invariant BCs can be associated with the
primary fields in terms of modularS-matrix elements for the case of rational CFTs [6].
It has been an issue whether the Cardy formalism can be extended to the irrational CFTs.
Another motivation is to understand open string theories in various nontrivial background
space–time geometries [7].

Recently it has been shown that functional relation method developed in [2] can be used
in the boundary LFT with conformal boundary action to derive one-point function of a bulk
operator and correlation functions of two boundary operators for a given conformal BC [8].
Here the conformal BC is denoted by a continuous parameter related to the coupling
constant in the boundary action. Another development made in [9] is to generalize this
method to the boundary LFT defined in the classical Lobachevskiy plane, namely, the
pseudosphere. These works showed that the one-point functions of primary fields can be
related to the inner products of the conformal BCs and different Ishibashi states in the same
way as the rational CFTs [10].

It has been noticed that generalizing the Cardy formalism to the supersymmetric CFTs is
nontrivial even for rational theories mainly because the Ramond (R) sector transforms not
to Neveu–Schwarz (NS) sector but so-called (ÑS) sector under the modular transformation
[11,12]. In this paper we show that it is possible to derive exact one-point functions from
the functional relations and relate these to the Cardy formalism for the BCs introduced
in the pseudosphere and ordinary half plane with conformally invariant boundary action.
This shows that the Cardy formalism can be generalized to the irrational super-CFTs. We
also show that the boundary two-point functions of the (NS) boundary operators satisfy
the same relation as those of the LFT. This paper is organized as follows. In Section 2
we compute the one-point functions of the SLFT primary fields on the pseudosphere. In
Section 3 we propose the boundary action which preserves the superconformal symmetry
and compute the corresponding one-point functions. These results are used in Section 4 to
be related to the conformal BCs and are shown to be consistent with the Cardy formalism.
We conclude the paper with some comments in Section 5.

2. One-point functions of SLFT on a pseudosphere

The N = 1 SLFT describes a supermultiplet consisting of a bosonic field and its
fermionic partner interacting with exponential potential. In terms of the component fields,
the Lagrangian can be expressed by

(1)LSL = 1

8π
(∂aφ)

2 − 1

2π
(ψ̄∂ψ̄ +ψ∂̄ψ)+ iµb2ψψ̄ebφ + πµ2b2

2

(:ebφ:)2.
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The first interaction term in Eq. (1) containing exp(bφ) has (holomorphic) conformal
dimension 1/2. This is correct since the Majorana fermion field has dimension 1/2. The
SLFT is a superconformal field theory. With the background chargeQ

(2)Q= b+ 1

b
,

the SLFT has the central charge

(3)cSL = 3

2

(
1+ 2Q2).

The bulk (NS) and (R) primary fields of the SLFT are given by

(4)Nα(z, z̄)= eαφ, Rα(z, z̄)= σ (ε)(z, z̄)eαφ,

whereσ (±) is the ‘spin field’ with dimension 1/16 with even Fermi number for(+) and
odd for (−) and satisfying an operator product expansion (OPE)σ (+)σ (−) = ψ .2 The
conformal dimensions become, respectively,

(5)∆Nα = 1

2
α(Q− α), ∆Rα = 1

16
+ 1

2
α(Q− α).

From these, one can see that physical states can be denoted by a real parameterP defined
by

(6)α = Q

2
+ iP .

In this section we are interested in the SLFT on a pseudosphere. This is a generalization
of [9] where the LFT is studied in the geometry of the infinite constant negative curvature
surface, the so-called Lobachevskiy plane, i.e., the pseudosphere. The equations of motion
for the SLFT are given by

(7)∂∂̄φ = 4π2µb2(µebφ − iψ̄ψ
)
ebφ,

(8)∂ψ̄ = −iµebφψ, ∂̄ψ = iµebφψ̄.

We will assume that the fermion vanishes in the classical limit so that the background
metric is determined by the bosonic field satisfying

(9)eϕ(z) = 4R2

(1− |z|2)2 ,

whereϕ = 2bφ andR−2 = 4π2µ2b3. The parameterR is interpreted as the radius of the
pseudosphere in which the points at the circle|z| = 1 are infinitely far away from any
internal point. This circle can be interpreted as the “boundary” of the pseudosphere. In the
same way as the LFT, we can now use the Poincaré model of the Lobachevskiy plane with
complex coordinateξ in the upper half-plane.

2 We will suppress the superindex(ε) as much as we can since the correlation functions of our interest do not
depend on it explicitly as we will show later.



500 C. Ahn et al. / Nuclear Physics B 636 [FS] (2002) 497–513

We want to compute exact one-point functions of the (NS) and (R) bulk operatorsNα
andRα . Due to the superconformal invariance, these one-point functions are given by

(10)〈Nα(ξ)〉 = UN(α)

|ξ − ξ̄ |2∆Nα ,

(11)〈Rα(ξ)〉 = UR(α)

|ξ − ξ̄ |2∆Rα .

We will simply refer to the coefficientsUN(α) andUR(α) as bulk one-point functions. To
derive the functional relations satisfied by these one-point functions, we should consider
the bulk degenerate fields which are defined by some differential equations with certain
orders [13].

The degenerate fields in the (NS) sector are given by

Nαm,n = eαm,nφ,

(12)αm,n = 1

2b
(1−m)+ b

2
(1− n), with m− n= even,

and those in the (R) sector by

(13)Rαm,n = σ (ε)eαm,nφ, with m− n= odd.

One of the essential features of these fields is that the operator product expansion (OPE)
of a degenerate field with any primary field is given by a linear combination of only finite
number of primary fields and their decendents. The simplest degenerate fields areN−b for
the (NS) sector andR−b/2 for the (R) sector. In particular,R−b/2 satisfies

(14)

[
1

b2∂ +G−1G0

]
R−b/2 = 0,

whereG is the fermionic part of the supercurrent. Similar equation holds for the anti-
holomorphic part.

The OPE ofR−b/2 with a (NS) primary field is given by

(15)NαR−b/2 = C
(N)
+ (α)[Rα−b/2] +C

(N)
− (α)[Rα+b/2],

where[. . .] stands for entire family of conformal decendents corresponding to a primary
field. The structure constants can be computed using Coulomb gas integrals. One can set
C
(N)
+ = 1 since no screening insertion is needed. The other structure constantC

(N)
− needs

just one insertion of the SLFT interaction and can be obtained by

C
(N)
− (α)= −iµb2

∫
d2ξ

〈
Nα(0)R−b/2(1)ψ(ξ)ψ̄(ξ̄ )ebφ(ξ,ξ̄)RQ−α−b/2(∞)

〉
(16)=µb2

∫
d2ξ |ξ |−2αb|1− ξ |b2−1 = πµb2γ

(
αb− b2

2 − 1
2

)
γ
(1−b2

2

)
γ (αb)
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with γ (x)= $(x)/$(1− x). Here, we used the following correlation functions of the spin
fields

(17)
〈
σ(ξ1, ξ̄1)σ (ξ2, ξ̄2)

〉= 1

|ξ12|1/4 ,

(18)
〈
σ(ξ1, ξ̄1)σ (ξ2, ξ̄2)ψ(ξ3)ψ̄(ξ̄3)

〉= i

|ξ12|−3/4|ξ13||ξ23| .
Similarly, the OPE with the (R) primary field is

(19)RαR−b/2 = C
(R)
+ (α)[Nα−b/2] +C

(R)
− (α)[Nα+b/2],

whereC(R)+ = 1 as before andC(R)− is given by a screening integral

C
(R)
− (α)= −iµb2

∫
d2ξ

〈
Rα(0)R−b/2(1)ψ(ξ)ψ̄(ξ̄ )ebφ(ξ,ξ̄)NQ−α−b/2(∞)

〉
(20)=µb2

∫
d2ξ |ξ |−2αb−1|1− ξ |b2−1 = πµb2γ

(
αb− b2

2

)
γ
(1−b2

2

)
γ
(
αb+ 1

2

) .
Now we consider the bulk two-point functions of the degenerate fieldR−b/2 and a (NS)

fieldNα ,

(21)GNα,−b/2(ξ, ξ
′)= 〈

Nα(ξ
′)R−b/2(ξ)

〉
.

It is straightforward from Eq. (15) to show that the two-point function satisfy

(22)

GNα,−b/2(ξ, ξ
′)= C

(N)
+ (α)UR

(
α − b

2

)
G+(ξ, ξ ′)+C

(N)
− (α)UR

(
α + b

2

)
G−(ξ, ξ ′),

whereG±(ξ, ξ ′) are expressed in terms of the special conformal blocks

(23)G±(ξ, ξ ′)= |ξ ′ − ξ̄ ′|2∆Nα −2∆R−b/2

|ξ − ξ̄ ′|4∆Nα F±(η)

with

(24)η= (ξ − ξ ′)(ξ̄ − ξ̄ ′)
(ξ − ξ̄ ′)(ξ̄ − ξ ′)

.

Here, the conformal blocks are given by the hypergeometric functions

(25)FN+ (η)= η
αb
2 (1− η)−

b2
4 + 3

8F
(
αb − b2, 1

2 − b2

2 ;αb− b2

2 + 1
2;η),

(26)FN− (η)= η
1
2+ b2

2 − αb
2 (1− η)−

b2
4 + 3

8F
( 1

2 − b2

2 ,1− αb;−αb+ b2

2 + 3
2;η).

In the cross channel, an equivalent expression for the two-point function can be obtained
as follows:

(27)GNα,−b/2 = |ξ ′ − ξ̄ ′|2∆Nα −2∆R−b/2

|ξ − ξ̄ ′|4∆Nα
[
B
(N)
+ (α)F̃+(η)+B

(N)
− (α)F̃−(η)

]
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with

(28)F̃+(η)= η
αb
2 (1− η)−

b2
4 + 3

8F
(
αb− b2, 1

2 − b2

2 ;1− b2;1− η
)
,

(29)F̃−(η)= η
αb
2 (1− η)

3b2
4 + 3

8F
(1

2 + b2

2 , αb;1+ b2;1− η
)
.

The boundary structure constantsB(N)± can be determined from the monodromy relations

(30)F+(η)= $
(
αb− b2

2 + 1
2

)
$(b2)

$
(
b2

2 + 1
2

)
$(αb)

F̃+(η)+ $
(
αb− b2

2 + 1
2

)
$(−b2)

$(αb− b2)$
( 1

2 − b2

2

) F̃−(η),

(31)

F−(η)= $
(−αb+ b2

2 + 3
2

)
$(b2)

$
(
b2

2 + 1
2

)
$(1+ b2 − αb)

F̃+(η)+ $
(−αb+ b2

2 + 3
2

)
$(−b2)

$(1 − αb)$
( 1

2 − b2

2

) F̃−(η).

The conformal blockF̃− corresponds to the identity boundary operator with dimen-
sion 0 appearing in the boundary as the bulk operatorR−b/2 approaches the boundary
with η→ 1. Another boundary operatorn−b appearing asR−b/2 approaches the boundary
generates thẽF+ block. As mentioned above, the geodesic distance to the boundary on
the pseudosphere is infinite. Therefore, the two-point function in the LHS of (15) can be
factorized into a product of two one-point functions and satisfies

(32)B
(N)
− (α)=UN(α)UR(−b/2).

Combining all these and using (27), we obtain the following nonlinear functional equation
in theη→ 1 limit:

(33)
$
( 1−b2

2

)
UN(α)UR

(− b
2

)
$(−b2)$

(
αb− b2

2 + 1
2

) = UR
(
α − b

2

)
$(αb − b2)

+ πµb2UR
(
α+ b

2

)
γ
(1−b2

2

)
$(αb)

(
αb− b2

2 − 1
2

) .
Analysis of the other two-point function

(34)GRα,−b/2(ξ, ξ ′)= 〈
Rα(ξ)R−b/2(ξ ′)

〉
goes along the same line and leads to the second functional equation

(35)
$
( 1−b2

2

)
UR(α)UR

(− b
2

)
$(−b2)$

(
αb− b2

2

) = UN
(
α − b

2

)
$
(
αb− b2 − 1

2

) + πµb2 UN
(
α+ b

2

)
γ
( 1−b2

2

)
$
(
αb+ 1

2

) .
Here, we used the following (R)-sector conformal blocks [14]

FR+ (η)= η
αb
2 + 1

8 (1− η)−
b2
4 + 3

8

(
1+

√
1− 1

η

)1/2

× F
(
αb− b2 − 1

2,
1−b2

2 ;αb− b2

2 ;η),
FR− (η)= η

b2
2 − αb

2 + 5
8 (1− η)−

b2
4 − 1

8

(
1−

√
1− 1

η

)1/2

× F
(−1−b2

2 , 1
2 − αb;−αb+ b2

2 + 1;η).
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It is worth mentioning on the superindices(ε) we have omitted in the correlation
function (34). When one (R) field hasε = + and the otherε = −, the two-point function
becomes proportional to〈σ (+)σ (−)〉 or 〈ψ〉. And the fermion one-point function should
vanish due to the Lorentz invariance. If both (R) fields have the same index, eitherε = +
or −, the previous derivation holds as it is and the same functional relations are obtained.

The SLFT satisfies the dualityb → 1/b. This property requires considering another
degenerate (R) operatorR−1/2b which generates two more functional equations in addition
to Eqs. (33) and (35). These additional equations can be obtained by just replacing the
coupling constantb with 1/b and the parameterµ by the “dual”µ̃ satisfying

(36)πµ̃γ

(
Q

2b

)
=
[
πµγ

(
bQ

2

)]1/b2

.

Therefore, the one-point functionsUN(α) and UR(α) should satisfy four nonlinear
functional equations.

We have found the solutions to these overdetermined nonlinear equations as follows:

(37)UNmn(α)= sin
(
πQ
2b

)
sin
(
πbQ

2

)
sin
[
mπ

(
Q
2b − α

b

)]
sin
[
nπ
(
bQ
2 − bα

)]
sin
(
mπQ

2b

)
sin
(
nπbQ

2

)
sin
[
π
(
Q
2b − α

b

)]
sin
[
π
(
bQ
2 − bα

)] UN11(α),

(38)

URmn(α)= sin
(
πQ
2b

)
sin
(
πbQ

2

)
sin
[
mπ

(
Q
2b − α

b
+ 1

2

)]
sin
[
nπ
(
bQ
2 − bα+ 1

2

)]
sin
(
mπQ

2b

)
sin
(
nπbQ

2

)
cos
[
π
(
Q
2b − α

b

)]
cos
[
π
(
bQ
2 − bα

)] UR11(α),

where the ‘basic’ solutions are given by

(39)UN11(α)=
[
πµγ

(
bQ

2

)]−α/b $
(
bQ
2

)
$
(
Q
2b

)
Q
2

$
(−αb+ bQ

2

)
$
(−α

b
+ Q

2b

)(
Q
2 − α

) ,
(40)UR11(α)=

[
πµγ

(
bQ

2

)]−α/b $
(
bQ
2

)
$
(
Q
2b

)
Q
2

$
(−αb+ bQ

2 + 1
2

)
$
(−α

b
+ Q

2b + 1
2

) .
This is our main result in this section. There are infinite number of possible solutions
which are parametrized by two integers(m,n). For these to be solutions, we find that the
two integers should satisfym − n = even. The basic solutions, Eqs. (39) and (40), can
be interpreted as the one-point functions of the bulk operatorsNα andRα corresponding
to the vacuum BC, the BC corresponding to the bulk vacuum operatorN0. Then, the
general solutions, Eqs. (37) and (38), can be identified with the one-point functions with
the conformal BC(m,n) classified by Cardy [6]. We will discuss more about this issue in
Section 4. Sincem−n= even, the one-point functions we obtained correspond to the (NS)-
type BCs only. This seems consistent with the fact that only the (NS) boundary operators
arise when the (NS) or (R) bulk degenerate operators approach the boundary corresponding
to the vacuum BC.

We also note that Eqs. (37) and (38) satisfy so-called bulk “reflection relations”:

(41)UNm,n(α)=D(N)(α)UNm,n(Q− α), URm,n(α)=D(R)(α)URm,n(Q− α),



504 C. Ahn et al. / Nuclear Physics B 636 [FS] (2002) 497–513

whereD(N)(α) andD(R)(α) are the (NS) and the (R) reflection amplitudes derived in [4,5].
One can also notice that new functions defined by

(42)ŨNm,n =UNm,n, ŨRm,n = −URm,n,
become again solutions to the above nonlinear equations. We will discuss the meaning of
the solutions from the viewpoint of the generalized Cardy formalism later.

Finally, we consider a special case whereα = 0. From Eq. (37), one can notice that
one-point function of the identity operator is normalized in such a way thatUN(0) = 1.
Then, one-point function of the spin field with(m,n) BC is given by Eq. (38)

(43)
〈
σ (±)

〉
(m,n)

=URmn(0).

3. Bulk one-point function with boundary

In this section, we define the SLFT on half plane, where superconformally-invariant
boundary action is imposed. We choose the following boundary action aty = 0

(44)LB = µB

2
ebφ/2a(ψ − iγ ψ̄)(x)+ 1

2
a∂ya

with γ = ±1 and the fermionic zero-modea satisfying [15]

(45)σ (±) = aσ (∓) and a2 = 1.

This action includes additional boundary parameterµB which generates continuous family
of the BCs. The boundary equations of motion are given by

(46)
1

2π
∂yφ = −1

2
bµBa(ψ − γ ψ̄)ebφ/2,

(47)
i

2π
ψ = µBe

bφ/2a,
i

2π
ψ̄ = iγµBe

bφ/2a,

which lead to

(48)(ψ + iγ ψ̄)= 0.

Notice that Eq. (48) is the well-known fermion BC imposed by Cardy. Plugging these
constraints back into the action, one can simplify the boundary action

(49)LB = µBe
bφ/2aψ + 1

2
aȧ.

While this action is different from that preserving boundary integrability such as
considered in [16], a similar action has been considered for the supersymmetric sine-
Gordon model in [17]. Main difference is that our action is preserving not only integrability
but also superconformal symmetry. Indeed, the boundary action is nothing but the
screening operator which guarantees the symmetry.

One can see that physical quantities should contain only even powers ofµB because
of the fermionic zero-mode. While the bulk properties of the boundary SLFT should be
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identical, we should define the boundary operators. As in the bulk, there are two sectors,
the (NS) and (R) boundary operators

(50)nβ = eβφ/2(x), rβ = σ (ε)eβφ/2(x).

The procedure to derive the functional equations satisfied by the bulk one-point
functions are identical to that in Section 2. Major difference arises when the bulk
degenerate operatorR−b/2 approaches the boundary asz→ z̄. The LHS of Eq. (22) can
be evaluated by the boundary OPE which generates the boundary operatorn0 andn−b. We
choose the identity operatorn0, or the boundary vacuum state, since we are interested in
the bulk one-point function. The fusion of the degenerate fieldR−b/2 can be computed by
a first-order perturbation from the boundary action:

R(ε)(−b/2,Q)= −µB
∫
dx
〈
R
(ε)
−b/2(i/2)aψ(x)e

bφ/2(x)eQφ/2(∞)
〉

(51)= µB

∫
dx |x − i/2|b2−1 = 2πµB

$(−b2)

$
( 1−b2

2

)2 .
Here, we used the formula

(52)
〈
σ(ξ, ξ̄ )aψ(x)

〉 = −1

|x − ξ |1/2|ξ − ξ̄ |3/8 .

Again, the dependence on the superindexε disappears so that we can suppress it. With the
vacuum state on the boundary, the two-point function becomes the bulk one-point function
of the operatorNα . Equating this with the RHS of Eq. (22) gives the functional equation

2πµB

$
( 1−b2

2

)
UN(α)

= $
(
αb− b2

2 + 1
2

)
$(αb − b2)

UR
(
α − b

2

)
(53)+ πµb2$

(
αb− b2

2 − 1
2

)
γ
(1−b2

2

)
$(αb)

UR
(
α + b

2

)
.

Similar consideration for theGRα,−b/2 leads to

2πµB

$
( 1−b2

2

)
UR(α)

= $
(
αb− b2

2

)
$
(
αb− b2 − 1

2

)UN (α − b
2

)
(54)+ πµb2$

(
αb− b2

2

)
γ
(1−b2

2

)
$
(
αb+ 1

2

)UN (α+ b
2

)
.

As before, one should consider the dual equations coming from the dual degenerate
operatorR−1/2b.

The solutions of Eqs. (53) and (54) can be found as

UN(α)=Nb
[
πµγ

(
bQ
2

)]Q−2α
2b $

((
α − Q

2

)
b
)
$
(
1+ (

α − Q
2

) 1
b

)
(55)× cosh

[(
α− Q

2

)
πs
]
,
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UR(α)=N
[
πµγ

(
bQ
2

)]Q−2α
2b $

((
α − b

2

)
b
)
$
((
α − 1

2b

) 1
b

)
(56)× cosh

[(
α− Q

2

)
πs
]
,

where the normalization factorN is given by

(57)N =
[
πµγ

(
bQ

2

)]−Q/2b[
b$(−Qb/2)$(1−Q/2b)cosh(Qπs/2)

]−1
,

so thatUN(0)= 1. Here, the boundary parameters is related toµB by

(58)
µ2
B

µb2 sin

(
πbQ

2

)
= cosh2

(
πbs

2

)
.

It is possible to find another conformal BC by changinga → −a. This introduces extra
‘−’ sign in the LHS of the functional equations, Eqs. (53) and (54), so that the solutions
are found to be

(59)Ũ (N) = U(N), Ũ (R) = −U(R).
The solutions Eqs. (55) and (56) are our main result in this section. Notice that these are
self-dual if the parameters is invariant andµ→ µ̃ as Eq. (36). The continuous parameter
s coming fromµB generates a continuous family of conformally invariant BCs. We will
discuss how these BCs can be consistent with the generalized Cardy formalism in the next
section. One can also check that these satisfy the bulk reflection relations Eq. (41).

The one-point function can be checked by a perturbative analysis. Defining the third and
fourth terms in Eq. (1) asVb and the boundary action in Eq. (44) asBb, one can express an
one-point function as an infinite sum of these perturbation terms,

(60)
〈
Oα(ξ, ξ̄ )

〉=∑
p,q

1

p!q!
〈
Oα(ξ, ξ̄ ) V

p

b B
q

b

〉
0,

where the evaluation is made withµ = µB = 0. It is well known that the perturbative
results are non-vanishing only at the on-shell conditionα = Q/2 − (p + q/2)b and
correspond to the residue of the one-point function as follows:

residueUN(α)
∣∣
α=Q/2−(p+q/2)b =N

〈
eαφ(i/2)

〉
,

(61)residueUR(α)
∣∣
α=Q/2−(p+q/2)b = N

〈
σeαφ(i/2)

〉
,

wherep is a non-negative integer andq is a non-negative even integer for the (NS)-sector
and odd for the (R)-sector. From Eqs. (55) and (56), one can find nontrivial pole structure
of UN atp+ q/2 = 0,

(62)UN(α)∼= N
α − Q

2

,

and atp+ q/2= 1,

(63)UN(α)∼= πµb2γ

(
bQ

2

)
$
(−b2)cosh(πbs)

N
α − Q

2 + b
.
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On the other hand, the perturbative calculation forp+ q/2= 0 gives

(64)
〈
eαφ(i/2,−i/2)〉0 = 1

and forp+ q/2= 1〈
eαφ(i/2,−i/2)Vb

〉
0 = µb2

∫
Im z>0

d2ξ |ξ − i/2|−2αb|ξ + i/2|−2αb|ξ − ξ̄ |−bQ

(65)= (πbQ)µb2$(−bQ)γ
(
bQ

2

)
,

〈
eαφ(i/2,−i/2)B2

b

〉
0 = −µ2

B

∞∫
−∞

dx1dx2 |x1 − i/2|−2αb|x2 − i/2|−2αb|x1 − x2|−bQ

(66)= −4πµ2
BbQ$(−bQ)γ

(
bQ

2

)
sin

(
πbQ

2

)
.

Combining the two contributions gives the correct residue of the one-point function.
The first non-trivial check for the (R)-sector arises atp+ q/2= 1/2

(67)UR(α)∼= µBπN
α − 1

2b

.

This is consistent with the perturbative result

(68)
〈
σeαφ(i/2,−i/2)Bb

〉
0 = µBπ.

4. Boundary states for the super-LFT

For the super-CFTs, Virasoro characters are defined for the (NS) sector, the (R)-sector,
and the(ÑS)-sector. The characters of the primary states for the generic value ofP , which
have no null-states, are given by [18]:

(69)χNS
P

(
q2)=

√
θ3(q)

η(q)

qP
2/2

η(q)
,

(70)χ ÑS
P (q)=

√
θ4(q)

η(q)

qP
2/2

η(q)
,

(71)χRP (q)=
√
θ2(q)

2η(q)

qP
2/2

η(q)
,

whereq = exp(2πiτ). Under the modular transformationτ → τ ′ = −1/τ , the characters
transform:

(72)χNS
P (τ )=

∞∫
−∞

dP ′ e−2πiPP ′
χNS
P ′ (τ ′),
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(73)χ ÑS
P (τ )=

∞∫
−∞

dP ′ e−2πiPP ′
χRP ′(τ ′),

(74)χRP (τ)=
∞∫

−∞
dP ′ e−2πiPP ′

χ ÑS
P ′ (τ ′).

On the other hand, the modular transformations of the characters for the (NS) degenerate
fields in Eq. (12) are given by

(75)χNS
m,n(q)=

∞∫
−∞

dP χNS
P (q ′)2 sinh(πmP/b)sinh(πmPb),

(76)χ ÑS
m,n(q)=

∞∫
−∞

dP χRP (q
′)
{

2 sinh(πmP/b)sinh(πmPb), m,n= even,
2 cosh(πmP/b)cosh(πmPb), m,n= odd.

According to Cardy’s formalism, one can associate a conformal BC with each primary
state [6]. Since the SLFT is an irrational CFT with infinite number of primary states, there
will be infinite number of conformal BCs. One can classify these into ‘discrete BCs’ and
‘continuous BCs’ for the degenerate and non-degenerate primary states, respectively. It is
natural to start with the discrete BCs(m,n). With m− n= even, there are the (NS)-type
BCs corresponding to the (NS) degenerate fieldsNαm,n . We will denote the corresponding
boundary states by|(m,n)〉. Due to the super conformal symmetry, one needs to introduce
additional BCs(m̃, n) and corresponding boundary states|(m̃, n)〉 [12]. Let us consider
(m,n) BCs first. Through the modular transformation, one can obtain

(77)χNS
m,n(τ )=

∞∫
−∞

dP Ψ NS
m,n(P )Ψ

NS
1,1 (P )

†χNS
P (τ ′),

where the amplitude is defined by

Ψ NS
m,n(P )= 〈(m,n)|α,NS〉〉,

where|α,NS〉〉 is the (NS) Ishibashi state withα =Q/2+ iP .
Using Eq. (75) into Eq. (77), one can obtain a relation

(78)Ψ NS
1,1 (P )

†Ψ NS
m,n(P )= 2 sinh(πmP/b)sinh(πmPb).

We can set the basic amplitude form= n= 1 as

(79)Ψ NS
1,1 (P )= π

√
2

$(−iPb)$(−iP/b)
[
πµγ

(
bQ

2

)]−iP /b
.

Then, one can obtain the relation

(80)Ψ NS
m,n(P )= Ψ NS

1,1 (P )
sinh

(
mπP
b

)
sinh

(
nπPb

)
sinh

(
πP
b

)
sinh

(
πPb

)
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by the Cardy formula.
It has been shown in [10] that the amplitudes are related to the one-point functions by

(81)Uk̃(φ)=
〈k̃|φ〉〉
〈k̃|1〉〉 .

For the SLFT, this formula becomes

(82)UNm,n(α)= 〈(m,n)|α,NS〉〉
〈(m,n)|0,NS〉〉 .

From this and Eq. (80), one can obtain

UNm,n(α)

UN1,1(α)
= 〈(m,n)|α,NS〉〉

〈(m,n)|0,NS〉〉
〈(1,1)|0,NS〉〉
〈(1,1)|α,NS〉〉

(83)= sinh
(
mπP
b

)
sinh(nπPb)

sinh
(
πP
b

)
sinh(πPb)

sin
(
πQ
2b

)
sin
(
πQb

2

)
sin
(
mπQ

2b

)
sin
(
nπQb

2

) .
This result is identical to Eq. (37), which shows that the one-point functions obtained from
the functional relations are consistent with the modular transformation properties.

Now let us consider the partition function on a strip with(m,n) and(m′, n′) BCs on
both boundaries. Using the fusion procedure, one can obtain

ZNS
(m,n),(m′,n′)(τ )

=
∞∫

−∞
dP χNS

P (τ ′)Ψ NS
m,n(P )Ψ

NS
m′,n′(P )†

=
∞∫

−∞
dP χNS

P (τ ′)2 sinh(mπP/b)sinh(nπPb)sinh(m′πP/b)sinh(n′πPb)
sinh(πP/b)sinh(πPb)

(84)=
min(m,m′)−1∑

k=0

min(n,n′)−1∑
l=0

χNS
(m+m′−1−2k),(n+n′−1−2l)(τ ),

in accordance with the fusion algebra. The character for the non-degenerate case with
P = s/2 satisfies

(85)χNS
s (τ )=

∞∫
−∞

dP χNS
P (τ ′)cos(πsP )=

∞∫
−∞

dP χNS
P (τ ′)Ψ NS

s (P )Ψ NS
1,1 (P )

†,

with Ψ NS
s (P )= 〈s̃|α,NS〉〉.

From this, one can find the amplitudes for a general non-degenerate (NS) boundary state
satisfy

(86)Ψ NS
s (P )= Ψ NS

1,1 (P )
cos(πsP )

2 sinh
(
πP
b

)
sinh(πPb)

.
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Again, from Eq. (81), the amplitudes are related to the one-point functions by

(87)
UN(α)

UN1,1(α)
= 〈s̃|α,NS〉〉

〈s̃|0,NS〉〉
〈(1,1)|0,NS〉〉
〈(1,1)|α,NS〉〉 = cos(πPs)

cosh
(
Qπs

2

) sin(πQ/2b)sin(πQb/2)

sinh(πPb)sinh(πP/b)
.

This can be checked to be correct by Eqs. (39) and (55).
The partition function with a discrete BC on one side and a continuous BC on the other

is given as follows:

ZNS
(m,n),s(τ )=

∞∫
−∞

dP χNS
P (τ ′)Ψ NS

m,n(P )Ψ
NS
s (P )†

=
∞∫

−∞
dP χNS

P (τ ′)sinh(mπP/b)sinh(nπPb)

sinh(πP/b)sinh(πPb)
cos(πsP )

(88)=
m−1∑
k=0

n−1∑
l=0

χNS
s+i(m−1−2k)/b+i(n−1−2l)b(τ ),

which goes with the fusion algebra.
The partition functionZNS

s,s ′(τ ) with continuous BCs on both boundaries,s and s′, is
given as

(89)ZNS
s,s ′(τ )=

∞∫
−∞

dP χNS
P (τ ′)Ψ NS

s (P )Ψ NS
s ′ (P )

†.

This can be rewritten as

ZNS
s,s ′(τ )=

∞∫
−∞

dP

∞∫
−∞

dP e−2iπPP ′
χNS
P (τ )Ψ NS

s (P ′)Ψ NS
s ′ (P

′)†

(90)=
∞∫

0

dP χNS
P (τ )ρNS

ss ′ (P ),

whereρNS
ss ′ (P ) is the density of states,

(91)ρNS
ss ′ (P )=

∞∫
−∞

dt

π
e−2iP t cos(st)cos(s′t)

sinh(t/b)sinh(tb)
.

This quantity is not well-defined atP = 0 and is to be properly regularized. This density of
states is, on the other hand, conjectured to be related with the boundary two-point function
of nss

′
β with β =Q/2+ iP , dNS

B (P |s, s′), by

(92)ρNS
s,s ′(P )= − i

2π

d

dP
logdNS

B (P |s, s′).
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It is remarkable that this relation is identical to that of the LFT. This means that the
boundary (NS) two-point functions have the same dependence on the boundary parameters
as the LFT which is obtained in [8].

Now we consider the (R) operator propagating in the strip. From the relation

(93)χ ÑS
m,n(τ )=

∞∫
−∞

dP ΨR
m,n(P )Ψ

R
1,1(P )

†χRP (τ
′),

one can obtain

(94)ΨR
1,1(P )

†ΨR
m,n(P )=

{
2 sinh(πmP/b)sinh(πnPb), m,n= even,
2 cosh(πmP/b)cosh(πnPb), m,n= odd.

Here, we define the amplitudeΨR
m,n(P )= 〈(m,n)|α,R〉〉 as before.

These amplitudes are related to the one-point functions by

(95)URm,n(α)= 〈(m,n)|α,R〉〉
〈(m,n)|0,NS〉〉 ,

and satisfy

(96)
URm,n(α)

UR1,1(α)
= 〈(m,n)|α,R〉〉

〈(m,n)|0,NS〉〉
〈(1,1)|0,NS〉〉
〈(1,1)|α,R〉〉 .

One can check that this relation is consistent with Eqs. (94) and (38). This shows again that
the functional relations are consistent with the modular transformation.

The partition function with(m,n) and(m′, n′) BCs is written as

ZÑS
(m,n),(m′,n′)(τ )=

∞∫
−∞

dP
√

2χRP (τ
′)Ψ R

m,n(P )Ψ
R
m′,n′(P )†

(97)=
min(m,m′)−1∑

k=0

min(n,n′)−1∑
l=0

χ ÑS
(m+m′−1−2k),(n+n′−1−2l)(τ )

and is consistent with fusion algebra.
The character for the continuous boundary parameters satisfies

(98)χ ÑS
s (τ )=

∞∫
−∞

dP χRP (τ
′)cos(πsP )=

∞∫
−∞

dP χRP (τ
′)Ψ R

s (P )Ψ
R
1,1(P )

†.

The (R) amplitude for a general boundary parameters is given as

(99)ΨR
s (P )= ΨR

1,1(P )
cos(πsP )

2 cosh
(
πP
b

)
cosh(πPb)

.

Again, from Eq. (81), the amplitudes are related to the one-point functions by

(100)

UR(α)

UR1,1(α)
= 〈s̃|α,R〉〉

〈s̃|0,NS〉〉
〈(1,1)|0,NS〉〉
〈(1,1)|α,R〉〉 = − sin(πPs)

cosh
(
Qπs

2

) sin(πQ/2b)cos(πQb/2)

cosh(πPb)cosh(πP/b)
.
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This can be checked to be correct by Eqs. (40) and (56).
The partition function with mixed BCs is given as follows:

ZÑS
(m,n),s(τ )=

∞∫
−∞

dP χRP (τ
′)Ψ R

m,n(P )Ψ
R
s (P )

†

(101)=
m−1∑
k=0

n−1∑
l=0

χ ÑS
s+i(m−1−2k)/b+i(n−1−2l)b(τ ).

One can consider(m̃, n) BCs in the same way and can associate the amplitudesΨ NS
m̃,n

andΨR
m̃,n with ŨNm,n andŨRm,n, respectively. From Eq. (42), one can see that

(102)Ψ NS
m,n = Ψ NS

m̃,n, Ψ R
m,n = −ΨR

m̃,n.

Similar result holds for the continuous BCs and can be compared with Eq. (59). These
results are consistent with those of the rational super-CFTs considered in [12].

5. Conclusions

In this paper, we have studied the SLFT in two-dimensional space–time with boundary
applying the same method used for the LFT. However, the one-point functions of the SLFT
satisfy more complicated functional relations due to the existence of two sectors, the (NS)
and (R). By solving the functional relations, we find not only the one-point functions but
also the relation between the parameterµB in the boundary action and that for the boundary
condition.

We have also related the one-point functions in the pseudosphere to the conformal BCs
and showed that they are consistent with the Cardy formalism if one takes care of the
peculiar aspects of the super-CFTs in the same way as the rational cases [11,12]. Then,
this result has been used to understand boundary two-point functions for the SLFT with
the boundary action. We conclude that the boundary (NS) two-point functions have the
same dependence on the boundary parameters as the LFT while explicit expression of this
quantity needs more work. We hope to present it in another publication.

There are still other problems which should be further explored. The solutions of
Eqs. (37) and (38) are possible only form − n = even. The functional equations for the
other case may also exist. This becomes necessary when one relates to the conformal BCs.
So far, we have considered only the (NS)-type BCs. The (R)-type BCs associated with
m− n= odd can be obtained similarly by noting that there is a symmetryψ̄ → −ψ̄ and
µ→ −µ. Again, the one-point functions are give by Eqs. (37) and (38), but withm− n=
odd.

Based on the successful results of the LFT and the SLFT, it seems the approach based
on the functional relation associated with some degenerate fields are quite efficient way
of dealing with irrational CFTs. In this respect, it would be interesting to apply this
method to such irrational CFTs as finite Toda field theories and the LFT withN = 2
and fractional supersymmetries. Another interesting problem is to derive the boundary
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reflection amplitude from the boundary two-point functions of theN = 1 SLFT and to
obtain off-critical scaling function developed in [19].
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