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We derive one-point functions of the loop operators of hermitian matrix-chain models at finite N in terms of differential oper- 
ators acting on the partition functions. The differential operators are completely determined by recursion relations from the 
Schwinger-Dyson equations. The interesting observation is that these generating operators of the one-point functions satisfy the 
W~ +~ like algebra. Also, we obtain constraint equations on the partition functions in terms of the differential operators. These 
constraint equations on the partition functions define the symmetries of the matrix models at an off-critical point before taking 
the double scaling limit. 

1. Introduction 

Recently much progress has been made  on the matr ix  model  formula t ion  of  the 2D gravity to study the non- 
per turba t ive  effects [ 1 ], and an interest ing connect ion with the integrable systems has been made in the double 
scaling l imit ,  in which the size of  the matr ix  N becomes infinite and the matr ix  potentials  have critical forms 
[ 1 ]. In this l imit ,  the non-per turba t ive  results can be obta ined  from non-l inear  integrable differential  equations,  
such as KdV equations.  Fur thermore ,  the correlat ion functions satisfy their  hierarchical  equat ions [ 2,3 ]. 

It has been not iced recently that  the integrabil i ty  of  the matr ix  models  is main ta ined  even at off-critical points  
(f inite N) before taking the double  scaling limit.  At finite N, the Lax pair, zero-curvature condit ions,  and an 
infinite number  of  conserved quant i t ies  of  the matr ix  model  have been der ived and related to integrable systems 
in a more clear and direct  way. The underlying integrable systems have been identif ied with the 1D Toda hier- 
archy for the one-matr ix  model  [4] which becomes the KdV hierarchy in the scaling l imit  [5] ,  the 2D Toda 
hierarchy [4,6] ,  and the 2D Toda mul t i -component  hierarchy [ 7] for the two-matr ix  model  and for the general 
mul t imat r ix  models,  respectively. The par t i t ion  functions are the " r - funct ions"  of  these integrable systems. 

The next object  of  interest  is the correlat ion functions of  local operators.  For  the operators  appear ing in the 
action, the correlat ion functions are s imply given by the der ivat ives  of  the par t i t ion functions with respect to 
the coefficients of  the operators  in the action. It requires, however,  a non-tr ivial  analysis for the operators  which 
do not appear  in the action. In this paper,  we derive one-point  functions for the general local operators  which 
are the " loops"  in the matr ix  models  in terms of  differential  operators  acting on the par t i t ion  functions [ 8 ]. 
These operators  satisfy the recursion relat ions coming from the Schwinger-Dyson equations.  We notice that the 
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commutation relations of  these differential operators are similar to those of  the WI + ~ algebra and become exact 
in the continuum limit. 

One important related problem is the symmetry structure of the matrix models. The Virasoro and Wp+~ al- 
gebras have been conjectured for the p multi-matrix models as constraint equations on the partition functions 
in the double scaling limit [9,10 ]. The derivation of these symmetries, however, has not been made except for 
the one-matrix model (the Virasoro algebra) and a special two-matrix model [1 l]  (the W3 algebra). This 
derivation may be possible if one considers the constraint equations of the matrix models at finite N first. In- 
deed, it is at finite N that the Virasoro algebras have been derived for the one-matrix model [ 5,1,2,13 ] and for 
the multi-matrix model [7]. In this paper, we derive most general constraint equations for the multi-matrix 
models in terms of the generators of the W1 +~-like algebra. These constraint equations seem to be consistent 
with the conjectures made in the double scaling limit. 

2. Two-matrix model 

The partition function of the hermian two-matrix model is given by 

Z[{t~};{s~},c]= f ~U~Ve -s, 
q 

S = ~ i ( U ) + ~ 2 ( V ) = c U V ,  ¢((U)= ~ tkU k, ~(V)= ~ skV k. (1) 
k = l  k = l  

Note the difference in the two potentials ~/i and ¢2; ~i is an arbitrary polynomial potential and "t2 is with fixed 
order. We want to express correlation functions in terms of tk and their derivatives acting on the partition func- 
tions. These differential operators depend explicitly on the other parameters sk. 

The most interesting loop operators in the two-matrix models are T r ( V " U ' ) .  The one-point functions of 
these loops are 

( T r ( V n U m ) )  = j" ~U~Ve-S[Tr(VnUm)]. (2) 

From the Schwinger-Dyson (SD) equations, 

f ~ U ~ V ~ ,  [(VnU")gje-S]=O (X=U,V) (m,n>~O), (3) 
iU=l 

one can derive two recursion relations as follows: 

m - -  1 

c(Tr(Vn+'U'"))=(Tr(VnUm~-'I(U)))- ~ ( T r ( V % ;  . . . . . .  I ) T r U  r ) ,  (4) 
r=0 

n - - I  

c(Tr(V"U'"+'))=(Tr(V"~"2(V)U"))-  ~ ( T r V ~ T r ( V  . . . . .  I U ' " ) ) .  (5) 
s=0 

Differential operators generating the one-point functions, defined by 

W}#+,] 'Z[{tk }; {sk}, c] - - c n ( T r ( V " U ' " )  ) (6) 

satisfy the recursion relation from eq. (4), 

W ( n + 2 )  m ( n +  1 ) ~.~ l / v ( n +  1 ) 1 = Y~ 77. rt . . . . . .  +r-,, o m - - n - - r - -  1 ~ 
r=O-- O l r  r =  1 
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0 0 
W ~') -= N ,  for In, n>~0, (7) 

'" - O t , , ,  ' 0to 

where the symbol o is defined by ( A o B ) Z = A  (BZ) .  This recursion relation can be rewritten in a simple form, 

r e + n - -  1 

W},','+'>= ~] ~<J, oW},','2~ x ( n > ~ O , m > ~ - n ) ,  J~=O/Ot,., i f r > 0 ,  
r= --oc, 

=rt,., i f r < O ,  
(8)  

where x x denotes the normal ordering. The operator J, satisfy the U ( 1 )  current algebra [J,,,,J,,] = 
in6,,, + ~.o ( J ( z )  - ~ m J,,,~ = O~0 ). Eq. ( 8 ) defines recursively the generating differential operators of  the one- 
point functions. If  there is no upper limit in the summation range ( tn + n--, oo ), it is obvious that 

w ' ( z ) =  Z --w<")'- '"+"-,-  _~ - ~(0_-0)" ~ • (9) 

These infinite number  of  currents W ~''> (z) ( n =  1, 2 .... ) generate the W~ +~ algebra [ 14]. For the finite values 
of  m + n, however, the commution relations are not exactly the same as those of  the W ~ + ~ algebra. This W ~ + ~- 
like algebra generates the one-point functions of  the loops. It is remarkable that in the continuum limit the loop 
operators are given by the operators like Tr(  U w) with "lattice spacing" a--.0 and "lattice size" M ~ o o  while 
keeping a M  finite. Therefore, the Wx + ~ algebra generates the one-point functions in the double scaling limit. 

For explicit examples and later use, we write explicit expressions for W}, 2), W~, 3~ , 

W},~'= ~. O~O ..... + E rtrO,,,+,., 
r = O  r > 0  

, +  ..... (,, ) 
--H/'(3)m = ~ ~ Or3sO. . . . . . . .  -~- ~. rt,. 3~3,,,+,.. - . ~ +  3~3, , ,+, ._,  + rt , .s t~3, , ,+, .+,  

r = O  s = 0  r >  0 .s'= s = 0  r , s = O  

+ ~ ( m +  2 ) ( r n +  1)3 .... (10)  

where O,,=O/Ot,, and W},, 2~ can be identified with the Virasoro generator L,, as it satisfies the classical Virasoro 
algebra [Lm, L,,] = ( m - n ) L , , + , .  

Now consider the constraint equations on the partition function. One can express eq. ( 5 ) with the one-point 
generating operators as follows: 

l~} , ' , '+ ' )Z[{ tk} ;{&},c ]=0 ,  forn>~0, m ~ > - n ,  

i ~ V ( n + l ) ~ w ( n + l  ) ~ k&. W(k+,, ) 
?l-- I 

- -  Vl/rtn-/,-) o j 4 , ( k +  1 ) 
- ' "  ' " '  U . . . .  , - X , . + ,  _ ~  . ( l l )  

k = l  k = O  

Not all of  these constraints are independent. In fact, we can prove that only the 14"},J ) are independent by show- 
ing the following relation from eqs. (4) and ( 11 ) 

m + n  1 

m = XUr°'" t . . . .  XX ( n > ~ O , m > ~ - n ) .  (12) 
r =  - o o  

If  I~ },~ ~ Z = 0, If/},~' > ~ ) Z =  0 are automatically satisfied. Therefore, the constraint equations for the two-matrix 
models become 

. . . . . .  WI,,k~, Z = 0  (13) 
k = l - ~  7 --  . 

As one can see in eq. ( 13 ), the constraints are linear combinations of  the generators of  the Wj +x-like algebra 
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with the coefficients of  the second potential t2- In the continuum limit, the constraint equations are given by 
the W~ +oo algebra. Furthermore, for a special potential ~2~ the operators lYi},1 ~ may generate a subalgebra of  the 
Wj +oo, say, the W,, algebra. 

One can realize the W~ +oo-like algebra as a symmetry of  the matrix model in the context of  quantum field 
theory. In the ordinary quantum field theory, the symmetry can be found as infinitesimal changes of  the quan- 
tum fields which leave the action invariant. For the matrix model, this can be done by the following generators 
A ....... B ...... defined by 

A ...... I e - " l =  V'"V" , , , : l ~ [ ( U " ' V " ) , . j e - S ] ,  S ..... [ e - S l = , , j = l ~ , j  [( ) , , i e -S] .  (14) 

The generators A ...... and B ...... satisfy the following closed commutat ion relations: 

[A,,.o, Bkj]+kB,,,+k_l,t, [A ...... B o j ] = - n A  ...... +i-l, [Am, l,Bl,I]=B,,,l+l-A,,,+l.I. (15) 

Note that (A ..... [e - s ]  > = ( B  ...... [e-S]  ) = 0 from the SD equations (3),  which become the constraint equations 
as shown above. This realization makes it simple to prove the statement that only the n =  1 constraints are 
independent. This comes from the fact that (B  ..... [e - s ]  ) = 0  can be obtained from (Bm.o[e - s ]  > = 0 by using 
the commutat ion relations ( 15 ). In fact, it is not difficult to see that {Ao.o, A2,~, B~,o, Bo,z} are enough to generate 
the constraints. 

3. Multi-matrix models 

The multi-matrix models with p hermitian matrix variables U~ have the partition function 

s - ) P ,elUde-S, S = T r  ~,,~(U~)- ~ c<,LSU,+l . (16) z[{t~}; {s~.,}, {co}] = ~:fI, , a: ,  

We will choose the matrix potentials 

qa 

~ i ( U . ) =  tkU k, ~U(L~)= ~ sa,xU ] ,  (17) 
k = l  k = l  

considering the tk as variables and the Sa,k as fixed parameters. The loop operators in the multi-matrix models 
are given by Tr[  i t , ,  rTn2 rl,,, ~p .-.~ 2 ~ 1 ]- Again, we want to express one-point functions of  these operators in terms of  the 
linear differential operators. 

We start with the SD equations: 

f [ ~ u ]  0 : . . . . .  ,.J=, ~ [ (U?  ~,, ...U2 L/e -s] = 0 ,  

~ [ t  a-I  . . . .  p . . . .  a+lJ~j,- j---0 (2~<a~<p-1 , 
i , / =  l 

,,,=~ ~ [(U~'_-?...UT' U~"Lje-Sl = 0 .  (18) 

Eq. (18) can be used to derive recursion relations for the one-point functions of  the loop operators: 

n l - - I  

c,(Tr(U~,. . .U~2+~U~t))=- ~ (TrU~Tr(U~,...U'~2U~'-"-'))+(Tr(U'~p...U'~zU'III"~(U~))>, (19) 
r = O  
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. . . . . .  U . . . . .  + l , . . U r ~ l ) ~ . 3 1 . . C a  n . . . . .  + 1 U  . . . .  . . , U 7 1 ) )  ca_~ ( T r ( U v  ...Ua+l ~-l ( T r ( U . . . . U a + l  ~-l 

= ( Y r (  U~,"...U~,%' V'~(Ua) U2%-? ...U'~') ) ,  2 <~a<~p- 1, (20 )  

rip-- 1 

c p - I ( T F ( U ~ p U g P - - I ~ + I " ' U T ' ) )  = -  E (TrUgTr(U~ . . . . .  U p p _ l l . . . U ~ t l ) )  
r = 0  

~t np np - 1 n 1 + ( T r ( ' l  p(Uo)Up Up_,. . .UI ) ) .  (21) 

Eq. (19) can be rewritten in the form of  the recursion relations in terms of  the differential operators 

r e + n - -  1 

--qg"(n+l)(n3m . . . .  , n p ) =  E XJro~'(n),n_rk.3,[" . . . ,  F l p ) ~  , 
r= --oo 

~ ' ( '+~(n3  .... , r ip )Z[{&}]= " "' ~p ( T r ( U / . . . U ~ U ? ' ) )  (22) m - - n  - - C 1 C 2  " " C p - I  • 

We want to show that any one-point function can be expressed in terms of  the variables tk and their derivatives. 
Since eq. (22) for n3 . . . . .  r i p = 0  with the identification c=c~ is exactly the same as eq. (8),  #~,7 +t~ (0, ..., 
0) = ..mw('+~) of  the two-matrix model. 

To derive other one-point functions, we consider other recursion formulae coming from eq. (20) (2 ~< a ~<p- 1 ) 

# ( ' + l ) ( n 3 ,  n~_t,O, na+~ + l  .... , n  v) m • • •, 

~ kSa.k SF.(n+l)(n3 ' n ~ _ t , k - 1  n~+l,. . . ,nv) - - -  C a - I  --qu'(n+ 1) ( H 3 , m  ..., n , _ ~ + l , O ,  na+~, ..., nv)+ ~ - ,n .", , 
C a - 2  k = l  C a - - I  

(23) 

Assuming that we can express all operators ~t~}, "~ (0, ..., 0, n,, n~+~, ..., n;) in terms oftk, we can find ~q'~(m ~) (0, 
• .., 0, n,  + ~ ..... n,) by repeatedly using eq. (23 ). Therefore, we showed inductively that all the one-point functions 
can be found as differential operators o f  the tk acting on the partition function. Finally, if one finds all the 
operators in terms of  the &, one can find the constraint equations on the partition function from eq. (21 ). 
Among others, the case of  np--= 0 gives the following equations: 

l~ / ( l )  (r/3 . . . . .  nv_, + 1, 0)Z[{&};  {s~,k}, {ca}] = 0 ,  

I ~ ) ( n 3 ,  ..., nv-~ +1 ,  O) = ~ ' ( l ~ , ,  ,~ t-3,  -.., np_l + 1, O)--Cp_2 7 ~}2)(n3 .... , rip_l, k - l )  (p>~4) (24) 
k = l  C p - i  

and we must treat carefully the index n in eqs. (23 ) and (24) for :" ~" 3. 
We apply the above general analysis to the three-matrix model. D "tfdng 

~,'~('+' )¢ 1)Z[ {&} ] = - c7c~ ( T r (  W ' V ~ U  m) ) (25) m - - .  ~ 

they satisfy the following recursion relations: 

q2 m + n - - I  ~ kS2,k 
-,,- ( 1 ) "#"~;+~)(l)= ~ ~J~o~"(")- m-,,-,×tl~x , ~ t ' ~ ) ( l + l ) = - c ~ n m + ~ ( l ) +  " # ~ ) ( l )  . (26) 

r= - -o~  = 2 C 1 - - - ~  ~1 

As explained above, from "#'}#) (0) = W~m ") one can find the #"~ ) ( 1 from the second equation and the "#'~y) (l) 
from the first one. Continuing this step, one can find all the "W~ ", t t). Finally, the constraint equations come 
from eq. (24).  For an explicit example, consider the following potentials: # ~ ( V ) = u 2 V 2 - { - I ) 3  V 3  and 
¢3(W) = w2 W 2 + w3 W 3. From eq. (26),  one can find the explicit expressions 

3v3 
~ / ' ( m l ) ( 1 ) = - - C l  W(ml+)1-~ 2V2 W(m2) -Jff - -  W ~  3 )  ( 2 7 )  

C a C 2 ' 
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#'tm2)(1)= ~o~," .... (1) ~-<,) , o~rm_, (1 )+  rt, , ,+ r~ l ) ,  
r= r= 1 

m ~ l  0 o3q.}2)r (1)_l t .  ~ r C ~ m + r ( 1 ) ,  
# " ~ 3 ) ( 1 ) =  r=O ~ r  -- r : l  "(2) 

, , ,+j(1) + 
3/) 3 2v2 "#"~)(1) + - -  ~q'(m3)(1) 

C 1 C 2 ' 

and the constraint equations are 

2cl Wz - ,'(l)/1 ) - -  3cl w____ 2 ,#..~1)(2))Z=0 ' 
, ~ ' ~ 2 ) l ( 0 ) Z =  W ( 2 )  l C22 ')b~ m \ C3 

where W~m 2), W<~ 3> are given in eq. (10). 

(27 cont 'd) 

(28) 

4. Discussions 

In this paper, we computed one-point functions of the multi-matrix models in terms of the differential oper- 
ators acting on the partition functions. The operators are completely determined by the recursion formulae, 
derived from the SD equations and generate the W~+~-like algebra. Furthermore, we derived the constraint 
equations on the partition functions using these operators. Since the partition functions are the "z functions" of 
the 2D Toda hierarchies [4,6,7 ], this means the one-point functions as well as the partition functions are com- 
pletely determined by the integrable systems and symmetry structures. Our method can be generalized to the 
multi-point functions. Again, the generating operators are determined by the recursion relations which come 
from the SD equations. 

It is also possible to consider the Sk as variables such that one can introduce another differential operators for 
the two-matrix model. For the potentials ~ti°(U) = ~k tkU k, ~2(V)  = ~ k s ~ V  k, one can define 

w ( n +  1)71- f j, 1 . . . .  -~t~:k/, {sk}] = - c n ( T r ( v n u m ) )  , l~}#+~)Zf{tk}, {Sk}]-= - c " ( T r ( U " V m ) )  , (29) 

where both W~# ) and I ~  ") satisfy the recursion relation (8). The constraint equations are just 

[ c m J w ( n + l  ) n - ( m + l )  - c  w._m ]z[{t~}, {sk}]=0 (30) 

Another interesting point we want to mention is that the constraint equations for the multi-matrix models like 
eq. (28) have a very similar form as those of the two-matrix models (24). The coefficients of the second poten- 
tial of the two-matrix model can be decided on by those of the multi-matrix potentials. The correspondence, 
however, is not quite exact. There appear some terms in the constraint equations of the multi-matrix models 
which do not exist in those of the two-matrix model. This observation reminds us of the recent conjectures that 
all the multi-critical points can be achieved by the two-matrix model [ 15 ]. If  the extra terms at finite N are 
suppressed in the double scaling limit, our observation can be a proof of this claim. Related to this and other 
motivations, it would be very interesting to consider the double scaling limit of our formalism. Our discovery 
that the correlation functions are generated by the W~ +oo, algebra acting on the "z-functions" of the 2D Toda 
hierarchy seems to be consistent with the results in the double scaling limit in that the correlation functions of 
the one-matrix model are given by KdV-hierarchy equations [ 2 ] and that the r-function of the p reduced KP- 
hierarchy satisfies the W~ +p constraint equations [ 10]. 

Recently, there have been several papers which mention the Wj +~ algebra. Our Wl +~ algebra is different 
from that of ref. [ 16 ] in that the latter comes from the higher order terms under the change of M to M +  6M. 
Therefore, this constraint exists even for the one-matrix model. Our WI +~ constraints exist only for the multi- 
matrix models and will have a direct connection with the W, algebra structures conjectured in ref. [9 ] in the 
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doub le  scaling l imit .  Also,  the W~ +o~ algebra appears  f r o m  the KP-h i e r a r chy  in the double  scaling l imi t  [17] .  

Th is  is a d i rec t  p ~  ~ l imi t  o f  the  Wj +p cons t ra in t  equa t ions  cons ide red  in ref. [ 10 ]. It  wou ld  be  in te res t ing  to 

cons ide r  the p - ~  l imi t  o f  ou r  result  to unde r s t and  these results  f r o m  the ma t r ix  m o d e l  po in t  o f  view. 

Note added 

While  typ ing  this paper ,  we r ece ived  a pape r  [ 18 ] f r o m  Y.-X.  Cheng  where  cons t ra in t  equa t ions  for the two- 

ma t r ix  m o d e l  like eq. (30 )  have  been  ob ta ined .  
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