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Abstract

We extend the results on the RG flow in the next to leading order to the case of the supersymmetric 
minimal models SMp for p � 1. We explain how to compute the NS and Ramond fields conformal blocks 
in the leading order in 1/p and follow the renormalization scheme proposed in [1]. As a result we obtained 
the anomalous dimensions of certain NS and Ramond fields. It turns out that the linear combination ex-
pressing the infrared limit of these fields in term of the IR theory SMp−2 is exactly the same as those of the 
nonsupersymmetric minimal theory.
© 2014 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In this paper we extend the results of the paper [1] to the case of supersymmetric minimal 
models SMp , p → ∞, perturbed by the least relevant fields. The first order corrections were 
already obtained a long time ago in [3]. It was argued that there exists an infrared (IR) fixed point 
of the renormalization group (RG) flow which coincides with the minimal superconformal model 
SMp−2. In the paper [1] (see also [2]) the β function, the fixed point and the matrix of anomalous 
dimensions of certain fields were obtained up to the second order in perturbation theory. That 
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extends the famous results of A. Zamolodchikov [4]. Calculation up to the second order is always 
a challenge even in two dimensions. The problem is that one needs the corresponding four-point 
function which is not known exactly even in two dimensions. Fortunately, in the scheme proposed 
in [1] (which is an extension of that proposed by Zamolodchikov in [4]) one needs the value of 
this function up to the zeroth order in the small parameter ε = 2

p+2 .
Basic ingredients for the computation of the correlation functions in two dimensions are the 

conformal blocks. In the last years an exact relation between the latter and the instanton parti-
tion functions of certain N = 2 super YM theories in four dimensions was established by the 
so-called AGT correspondence [5–8]. For the N = 1 superconformal theories that motivated the 
computation of the recurrence relation for the conformal blocks of the NS [9–11] and Ramond 
[12,13] fields of the theory. Indeed it was shown in [14–16] that these conformal blocks coincide 
with the instanton partition functions of super YM theories in certain spaces. With these basic 
ingredients in hand we computed here the four-point functions up to the desired order.

The other difficulty arises in the regularization of the integrals. We follow here the regulariza-
tion proposed in [1] and show that it works perfectly in our case.

One can possibly further consider the more general SU(2) coset models. It was shown time 
ago [17] that the structure constants and conformal blocks (basic ingredients for the calculation) 
for these theories can be obtained from just the usual minimal models by certain projected tensor 
product (this was recently generalized for the super-Liouville theory [18]). On that basis also a 
generalized AGT relation was proposed [19–21].

The paper [1] was also motivated by an alternative approach to the perturbed minimal mod-
els, the so-called RG domain wall [22]. The comparison gives a perfect agreement with the 
perturbative calculations to the second order. Moreover it was found there that the eigenvectors 
corresponding to the fields of the IR CFT do not receive any ε corrections and speculated to be 
exact. We obtained the same result in the supersymmetric case. Moreover, the aforementioned 
eigenvectors are exactly the same as in the N = 0 minimal models. One can speculate that prob-
ably this result is universal for all the coset models perturbed by the least relevant field.

This paper is organized as follows.
In Section 2 we present the N = 1 SMp theory perturbed by the last component of the su-

perfield Φ1,3. The basic ingredients necessary for the calculations in the second order of the 
perturbation theory are presented.

In Section 3 we give some details needed for the computation of the conformal blocks in the 
NS sector. We mention also the important issue of the normalization of the fields.

Section 4 is devoted to the computation of the beta function and the IR fixed point. It is 
confirmed that it coincides up to the second order with the model SMp−2.

The matrix of anomalous dimensions for some components of the superfields Φn,n±2 and 
DD̄Φn,n was computed in Section 5. It is in perfect agreement with the first order result in [3]. 
The same is proved also for the first component φn,n.

In Section 6 we explain how to compute the mixed conformal blocks of the (last components 
of) NS and Ramond fields. They are necessary for the calculations of the anomalous dimensions 
for the Ramond fields which are also presented there. The results are again in agreement with the 
conjectured RG flow to SMp−2.

2. The theory

In this paper we consider a minimal superconformal theory SMp perturbed by the least rel-
evant field. This theory is invariant under N = 1 superconformal algebra with central charge 
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ĉ = 1 − 8
p(p+2)

with integer p ≥ 3. It contains primary fields in both NS and Ramond sectors 
labeled by two integers with conformal dimensions

�n,m = ((p + 2)n − pm)2 − 4

8p(p + 2)

(
+ 1

16

)
.

Here the NS (R) sector corresponds to m − n = even (odd) and the addition in brackets is for the 
Ramond fields. The fields in the NS sector are organized in superfields:

Φ(z, z̄, θ, θ̄ ) = φ + θψ + θ̄ ψ̄ + θ θ̄ φ̃.

The first (and the last) component of a spinless superfield of dimensions � = �̄ (� + 1
2 = �̄+ 1

2 ) 
is expressed as a product of “chiral fields” depending on z and z̄, respectively. We use the same 
notations φ and φ̃ below for these chiral components. If we fix the two-point function of the 
first component φ to one, that of the second components is (2�)2 by supersymmetry. Since it is 
assumed that these functions are all equal to one in the renormalization procedure, we have to 
normalize the second component φ̃ → 1

2�
φ̃.

We will consider the superminimal model SMp with p → ∞ perturbed by the least relevant 
field φ̃ = φ̃1,3 of dimension � = �1,3 + 1

2 = 1 − ε, ε = 2
p+2 → 0:

L(x) = L0(x) + λφ̃(x).

It is obvious that this theory is also supersymmetric, since the perturbation can be written as a 
covariant super-integral over the superfield Φ1,3.

The two-point function of arbitrary fields up to the second order is then given by:〈
φ1(x)φ2(0)

〉 = 〈
φ1(x)φ2(0)

〉
0 − λ

∫ 〈
φ1(x)φ2(0)φ̃(y)

〉
0d

2y

+ λ2

2

∫ 〈
φ1(x)φ2(0)φ̃(x1)φ̃(x2)

〉
0d

2x1d
2x2 + . . .

where φ1, φ2 can be the first or the last components of a superfield or Ramond fields of dimen-
sions �1, �2. Since the first order corrections were considered in [3], we will focus on the second 
order.

One can use the conformal transformation properties of the fields to bring the double integral 
to the form:∫ 〈

φ1(x)φ2(0)φ̃(x1)φ̃(x2)
〉
0d

2x1d
2x2

= (xx̄)2−�1−�2−2�

∫
I (x1)

〈
φ̃(x1)φ1(1)φ2(0)φ̃(∞)

〉
0d

2x1 (2.1)

where

I (x) =
∫

|y|2(a−1)|1 − y|2(b−1)|x − y|2cd2y

and a = 2ε + �2 − �1, b = 2ε + �1 − �2, c = −2ε. It is well known that the integral for I (x)

can be expressed in terms of hypergeometric functions:

I (x) = πγ (b)γ (a + c)

γ (a + b + c)

∣∣F(1 − a − b − c,−c,1 − a − c, x)
∣∣2

+ πγ (1 + c)γ (a) ∣∣xa+cF (a,1 − b,1 + a + c, x)
∣∣2 (2.2)
γ (1 + a + c)
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This form is useful for evaluating I (x) near x = 0. Using the transformation properties of the 
hypergeometric functions, (2.2) can be rewritten as a function of 1 − x and 1

x
which is suitable 

for the investigation of I (x) around the points 1 and ∞, respectively.
It is clear that the integral (2.1) is singular. We follow the regularization procedure proposed 

in [1]. It consists basically in cutting discs in the two-dimensional surface of radius l ( 1
l
) around 

singular points 0, 1 (∞): Dl,0 = {x ∈ C, |x| < l}, Dl,1 = {x ∈ C, |x − 1| < l}, Dl,∞ = {x ∈ C,

|x| > 1/l} with 0 � l0 � l < 1 where l0 is the ultraviolet cut-off. Clearly l should be canceled in 
the calculations and should not appear in the final result. We call the region outside these discs as 
Ωl,l0 where the integration is well-defined. It is useful to do this integration in radial coordinates. 
Since the correlation function exhibits poles only at the points 0 and 1, the phase integration can 
be performed by using residue theorem and the resulting rational integral in the radial direction 
is straightforward. Near the singular points one can use the OPE. In doing that it turns out that 
we count twice two lens-like regions around the point 1 so we have to subtract those integrals. 
We refer to [1] for the explicit formulas as well as a more detailed explanation.

3. Computation of the conformal blocks in the NS-sector

Let us start with the correlation function that enters in the integral (2.1). The basic ingredients 
for the computation of the four-point correlation functions are the conformal blocks. These are 
quite complicated objects in general and closed formula were not known. Recently it was argued 
that they coincide (up to factors) with the instanton partition function of certain N = 2 YM 
theories on ALE spaces, which was proved by a recurrence relation for the conformal blocks 
[9–11]. We need the expressions for the first few levels conformal blocks in order to have a guess 
for the limit ε → 0.

The chiral components of the fields obey the OPEs:

φ1(x)φ2(0) = x�−�1−�2

∞∑
N=0

xNCNφ�(0)

φ̃1(x)φ2(0) = x�−�1−�2−1/2
∞∑

N=0

xNC̃Nφ�(0)

φ1(x)φ̃2(0) = x�−�1−�2−1/2
∞∑

N=0

xNC̃′
Nφ�(0)

φ̃1(x)φ̃2(0) = x�−�1−�2−1
∞∑

N=0

xNC′
Nφ�(0) (3.1)

where CN ’s are polynomials of order N in the generators of the superconformal algebra L−k

and G−α (k, α > 0) with coefficients depending on the dimensions �, �1, �2, which we omit-
ted, of dimension N usually called chain vectors. Here N runs over all nonnegative integers or 
half-integers depending on the fusion rules of SMp .

Acting by positive mode generators on the both sides of these OPEs and using the supercon-
formal transformation properties gives the chain equations for L’s:

LkCN = (� + k�1 − �2 + N − k)CN−k

(here C is any of the chain vectors with the corresponding dimensions of the fields) and for G’s:
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GkCN = C̃N−k, GkC̃N = (� + 2k�1 − �2 + N − k)CN−k

GkC̃
′
N = C′

N−k, GkC
′
N =

(
� + 2k�1 − �2 + N − k − 1

2

)
C̃′

N−k (3.2)

for k > 1
2 , and

G 1
2
C̃′

N = 2�2CN− 1
2
+ C′

N− 1
2

G 1
2
C′

N = −2�2C̃N− 1
2
+ (� + �1 − �2 + N − 1)C̃′

N− 1
2
.

There are two independent constants at the zeroth level in the OPEs (3.1), the other two are 
expressible through them:

C̃′
0 = −C̃0, C′

0 = (� − �1 − �2)C0.

The above chain relations could be solved order by order. As mentioned before, in [10,11], a re-
cursion relation for the chain vectors can be also found. We give here as an example and for 
further use the first terms for C′:

C′
1
2

= −� + �1 + �2 − 1
2

2�
C̃0G− 1

2
, C′

1 = � + �1 − �2

2�
C0L−1. (3.3)

The conformal blocks are readily obtained by the chain vectors. Presented as vectors in the basis 
of L’s and G’s, the conformal block can be expressed as:

F(�,�i) =
∞∑

N=0

xNFN =
∞∑

N=0

xNCN(�,�3,�4)S
−1
N CN(�,�1,�2)

where SN is the Shapovalov matrix at level N . What of CN ’s appear depends on the external 
fields involved.

The conformal blocks are in general quite complicated objects. Fortunately, in view of the 
renormalization scheme and the regularization of the integrals, we need to compute them here 
only up to the zeroth order in ε. This simplifies significantly the problem.

Once the conformal blocks are known, the correlation function of spinless fields for our SMp

models is written as:∑
n

Cn

∣∣F(�n,�i)
∣∣2

where the range of n depends on the fusion rules and Cn is the corresponding structure con-
stant. Let us stress that the various structure constants are connected. If we call the structure 
constant of three first-component operators C, and that of two-first and one last-component C̃, 
other remaining structure constants are given by〈

φ̃1(∞)φ̃2(1)φ3(0)
〉 = (�3 − �1 − �2)

2C(1)(2)(3)〈
φ̃1(∞)φ̃2(1)φ̃3(0)

〉 = (
1

2
− �1 − �2 − �3

)2

C̃(1)(2)(3). (3.4)

The structure constants C(1)(2)(3) and C̃(1)(2)(3) were obtained in [23]. We have to keep in 
mind also that our last components are normalized by 1/2�. In what follows we compute the 
conformal blocks up to sufficiently high level and then check also the crossing symmetry and the 
behavior near the singular points 1 and ∞.
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4. β-Function and fixed point

For the computation of the β-function in the second order, we need the four-point function of 
the perturbing field. Here we consider a more general function〈

φ̃(x)φ̃(0)φ̃n,n+2(1)φ̃n,n+2(∞)
〉
.

There are three “channels” (or intermediate fields) in the corresponding conformal block: two 
even, corresponding to the identity and φ1,5 and one odd – to φ̃ itself. From the procedure we 
explained above, we get the following expression for this correlation function:〈

φ̃(x)φ̃(0)φ̃n,n+2(1)φ̃n,n+2(∞)
〉

=
∣∣∣∣ (1 − 2x + 7/3x2 − 4/3x3 + 1/3x4)

x2(1 − x)2

∣∣∣∣
2

+ 2(n + 3)

3(n + 1)

∣∣∣∣ (1 − 3/2x + 3/2x2 − 1/2x3)

x(1 − x)2

∣∣∣∣
2

+ (3 + n)(4 + n)

18n(1 + n)

∣∣∣∣ (1 − x + x2)

(1 − x)2

∣∣∣∣
2

.

We checked explicitly the crossing symmetry and the x → 1 limit of this function. The function 
that enters the integral is obtained by the conformal transformation x → 1/x (explicit formula is 
presented below):〈

φ̃(x)φ̃n,n+2(0)φ̃n,n+2(1)φ̃(∞)
〉

=
∣∣∣∣ (1 − 4x + 7x2 − 6x3 + 3x4)

3x2(−1 + x)2

∣∣∣∣
2

+ 2(n + 3)

3(n + 1)

∣∣∣∣ (−1 + 3x − 3x2 + 2x3)

2x2(−1 + x)2

∣∣∣∣
2

+ (3 + n)(4 + n)

18n(1 + n)

∣∣∣∣ (1 − x + x2)

x2(−1 + x)2

∣∣∣∣
2

. (4.1)

In order to compute the β-function and the fixed point to the second order, we just have to 
integrate the above function with n = 1.

The integration over the safe region far from the singularities yields (I (x) ∼ π
ε

):

∫
Ωl,l0

I (x)
〈
φ̃(x)φ̃(0)φ̃(1)φ̃(∞)

〉
d2x = −35π2

24ε
+ 2π2

εl2
+ π2

2εl2
0

− 16π2 log l

3ε
− 8π2 log 2l0

3ε

and we omitted the terms of order l or l0/l.
We have to subtract the integrals over the lens-like regions since they would be accounted 

twice. We need to expand the function around 1 and compute the integrals using the formulas 
in [1]. Here is the result of that integration:

π2

ε

(
− 1

l2
+ 1

2l2
0

+ 61

24
− 8

3
log

l

2l0

)
.

Next we have to compute the integrals near the singular points 0, 1 and ∞. For that purpose 
we can use the OPE of the fields and take the appropriate limit of I (x). Near the point 0 the 
relevant OPE is:

φ̃(x)φ̃(0) = (xx̄)−2(�1,3+ 1
2 )(1 + . . .) + Ĉ

(1,3)
(xx̄)−(�1,3+ 1

2 )
(
φ̃(0) + . . .

)
.
(1,3)(1,3)
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The channel φ1,5 gives after integration a term proportional to l0/l which is negligible. The 
structure constant is the one of the normalized second components of a superfield. Here and 
below we denote the normalized structure constant by Ĉ. Then, the correct value is

Ĉ
(1,3)
(1,3)(1,3) = ( 1

2 − 3�1,3)
2

(2�1,3)3
C̃

(1,3)
(1,3)(1,3) = 2√

3
− 2

√
3ε

to the first order in ε. The value of I (x) near 0 can be found by taking the limit in (2.2) written 
in terms of 1/x (explicit form is given in [1]). Finally one gets:∫

Dl,0\Dl0,0

I (x)
〈
φ̃(x)φ̃(0)φ̃(1)φ̃(∞)

〉
d2x = − π2

l2ε
+ 8π2

3ε2
− 16π2

ε
+ 8

3

π2 log l

ε
.

Since the integral near 1 gives obviously the same result, we just need to add the above result 
twice. To compute the integral near infinity, we use a relation〈

φ1(x)φ2(0)φ3(1)φ4(∞)
〉 = (xx̄)−2�1

〈
φ1(1/x)φ4(0)φ3(1)φ2(∞)

〉
(4.2)

and I (x) ∼ π
ε
(xx̄)−2ε . This gives∫

Dl,∞\Dl0,∞

I (x)
〈
φ̃(x)φ̃(0)φ̃(1)φ̃(∞)

〉
d2x = − π2

l2ε
+ 4π2

3ε2
− 8π2

ε
+ 8π2 log l

3ε
.

Putting all together, we finally obtain the finite part of the integral:

20π2

3ε2
− 44π2

ε
.

Here we want to mention that we follow the renormalization scheme proposed in [1]. Therefore 
we already omitted the terms proportional to l4ε−2

0 which could be canceled by an appropriate 
counterterm in the action.

Taking into account also the first order term (proportional to the above structure constant and 
computed in [3]), we get the final result (up to the second order) for the two-point function of the 
perturbing field:

G(x,λ) = 〈
φ̃(x)φ̃(0)

〉
= (xx̄)−2+2ε

[
1 − λ

4π√
3

(
1

ε
− 3

)
(xx̄)ε + λ2

2

(
20π2

3ε2
− 44π2

ε

)
(xx̄)2ε + . . .

]
.

(4.3)

Now we introduce a field φ̃g = ∂gL which is normalized by 〈φ̃g(1)φ̃g(0)〉 = 1. Under the 
scale transformation xμ → txμ, the Lagrangian transforms to the trace of energy–momentum 
tensor Θ ,

Θ(x) = ∂tL = β(g)∂gL = β(g)φ̃g.

Comparing these with the original bare Lagrangian where φ̃ = ∂λL and Θ = ελφ̃ lead to the 
β-function given by

β(g) = ελ
∂g = ελ

√
G(1, λ),
∂λ
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where G(1, λ) is given by (4.3) with x = 1. One can invert this and compute the bare coupling 
constant and the β-function in terms of g:

λ = g + g2 π√
3

(
1

ε
− 3

)
+ g3 π2

3

(
1

ε2
− 5

ε

)
+O

(
g4),

β(g) = εg − g2 π√
3
(1 − 3ε) − 2π2

3
g3 +O

(
g4). (4.4)

In this calculations, we keep only the relevant terms by assuming the coupling constant λ (and g) 
to be order of O(ε).

A nontrivial IR fixed point occurs at the zero of the β-function

g∗ =
√

3

π
ε(1 + ε). (4.5)

It corresponds to the IR CFT SMp−2 as can be seen from central charge:

c∗ − c = −8π2

g∗∫
0

β(g)dg = −4ε3 − 12ε4 +O
(
ε5).

The anomalous dimension of the perturbing field becomes

�∗ = 1 − ∂gβ(g)|g∗ = 1 + ε + 2ε2 +O
(
ε3)

which matches with that of the second component of the superfield Φp−2
3,1 of SMp−2.

5. Mixing of the superfields in the NS sector

The second component of a superfield as a perturbing field guarantees the preservation of su-
persymmetry along the RG flow. The dimension which is close to (1/2, 1/2) and the fusion rules 
between the superfields Φn,n±2 and DD̄Φn,n where D is the covariant superderivative suggest 
that the operators mix along the RG-trajectory. We will compute the corresponding dilatation ma-
trix for the anomalous dimensions of the second components while the mixing of the first ones is 
a consequence of the supersymmetry. For this purpose we compute the two-point functions and 
the corresponding integrals.

5.1. Two-point function 〈φ̃n,n+2(1)φ̃n,n+2(0)〉

The corresponding function in the second order of the perturbation was already written above 
(4.1). The integration over the safe region (far from the singularities) goes in the same way as 
before. The result is:∫

Ωl,l0

I (x)
〈
φ̃(x)φ̃n,n+2(1)φ̃n,n+2(0)φ̃(∞)

〉
d2x

= (n + 2)π2

6εnl2
0

+ 2(1 + 2n)π2

3nεl2
− 4(1 + 5n + 2n2)π2 log l

3ε(n + n2)

− 4(1 + n)π2 log 2l0 − (18 + 43n + 9n2)π2

2
.

3nε 24ε(n + n )
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Also the integration over the lens-like regions gives similarly:

π2

24n(1 + n)ε

[
(1 + n)(2 + n)

(
4

l2
0

− 8

l2

)
+ (

46 + n(53 + 23n)
) + 32(1 + n)2 log

l

2l0

]
.

Taking the integral around zero should be more careful. It turns out that one should take into 
account the descendents since they contribute nontrivial singular terms. Explicit OPE is

φ̃(x)φ̃n,n+2(0) = (xx̄)−(�1,3+1/2)Ĉ
(n,n+2)
(1,3)(n,n+2)φ̃n,n+2(0) + (xx̄)δ�−�1,3−1

× Ĉ
(n,n)
(1,3)(n,n+2)

(
1 + �1,3 + δ�

2�n,n

xL−1

)(
1 + �1,3 + δ�

2�n,n

x̄L̄−1

)
φn,n(0),

δ� = �n,n − �n,n+2 (5.1)

(the coefficient in front of L−1 is obtained from the chain relations (3.3)). Since L−1 acts as a 
derivative, we get〈

L−1φn,n(0)φ̃n,n+2(1)φ̃(∞)
〉 = (�n,n + �n,n+2 − �1,3)

〈
φn,n(0)φ̃n,n+2(1)φ̃(∞)

〉
.

Let us stress again that the structure constants needed for the calculation are the “normalized” 
ones:

Ĉ
(n,n+2)
(1,3)(n,n+2) = ( 1

2 − �1,3 − 2�n,n+2)
2

2�1,3(2�n,n+2)2
C̃

(n,n+2)
(1,3)(n,n+2) = (3 + n)2

3(1 + n)2
− 2(2 + n)(3 + n)2ε

3(1 + n)2

Ĉ
(n,n)
(1,3)(n,n+2) = (�n,n − �1,3 − �n,n+2)

2

2�1,32�n,n+2
C

(n,n)
(1,3)(n,n+2) =

√
n + 2

3n
. (5.2)

With the same I (x), the integral corresponding to the channel φn,n becomes

− (2 + n)π2

3εnl2
+ 2(−1 + n)2(2 + n)(5 + n)π2

3ε2n(1 + n)2(3 + n)2

+ (2 + n)π2(−4(−1 + n)(−1 + 23n + 9n2 + n3) + 4(−1 + n)2(3 + n)2 log l)

6εn(1 + n)2(3 + n)2
.

The channel φ̃n,n+2 is simpler since it is sufficient to take I (x) just to order of 1 without any 
descendant:

2(3 + n)2π2

3(1 + n)2ε2
− (3 + n)2π2(8 + 4n − 2 log l)

3(1 + n)2ε
.

The integrals around 1 are obviously the same, so the total contribution is twice the sum of above 
two terms.

Computation around infinity is almost the same as the one for the β-function if we put the 
correct structure constants:

− π2

εl2
+ 2(3 + n)π2

3(1 + n)ε2
− 2π2((3 + n)(5 + n) − (2n + 6) log l)

3(1 + n)ε
.

Finally, combining all the terms, we get:

−2π2(−20 − 143n − 121n2 − 33n3 − 3n4)

3n(1 + n)(3 + n)2ε2

− 2π2(5 + n)(8 + 151n + 143n2 + 45n3 + 5n4)

2
.

3n(1 + n)(3 + n) ε
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Note that the final result is very similar with [1] although the various integrals differ explicitly. 
This will be also the case with the next integrals.

5.2. Function 〈φ̃n,n+2(1)φ̃n,n−2(0)〉

The relevant four-point function in this case in the zeroth order of ε is

〈
φ̃(x)φ̃(0)φ̃n,n+2(1)φ̃n,n−2(∞)

〉 = 1

3

√
(−4 + n2)

n2

∣∣∣∣ 1

(1 − x)2

(
1 − x + x2)∣∣∣∣

2

.

φ1,5 is only channel appearing here. Transforming x → 1
x

and using (4.2), one obtains

〈
φ̃(x)φ̃n,n+2(1)φ̃n,n−2(0)φ̃(∞)

〉 = 1

3

√
(−4 + n2)

n2

∣∣∣∣ 1

x2(1 − x)2

(
1 − x + x2)∣∣∣∣

2

which can be inserted into (2.1) (note that this is different from [1]). For the integral over the safe 
region we need I (x) which can be extracted from (2.2):

I (x) = − 4π

(n2 − 4)ε
.

Then, the integral becomes∫
Ωl,l0

I (x)
〈
φ̃(x)φ̃n,n+2(1)φ̃n,n−2(0)φ̃(∞)

〉
d2x

= − 4π2

3εn
√−4 + n2l2

− 2π2

3εn
√−4 + n2l2

0

+ π2(9 + 16 log (2ll0))

6εn
√−4 + n2

.

Expanding around 1 and taking the integrals in the lens-like regions gives

−
π2(23 − 8

l2
+ 4

l20
+ 16 log l

2l0
)

6en
√−4 + n2

,

which should be subtracted.
The integral around the point 0 is very similar to that in the previous section. The only differ-

ence is that we take �n,n−2 instead of �n,n+2 in (5.1). Also, in the computation of the appropriate 
approximation of I (x) we have to expand the hypergeometric functions for the channel φn,n up 
to order x. The computation for the channel φ̃n,n−2 is the same as above. Finally, we need the 
structure constant:

Ĉ
(n,n)
(1,3)(n,n−2) = (�n,n − �1,3 − �n,n−2)

2

2�1,32�n,n−2
C

(n,n)
(1,3)(n,n−2) =

√
n − 2

3n
.

At the end we get:∫
Dl,0\Dl0,0

I (x)
〈
φ̃(x)φ̃n,n+2(1)φ̃n,n−2(0)φ̃(∞)

〉
d2x

= 4π2

2 2
√

2

[
10 + ε

(−9 + n2)

2
− 2ε

(
1 + n2) − 2ε

(−9 + n2) log l

]
.

3ε n(−9 + n ) −4 + n l
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In principle one should compute also the integral around 1. Just as [1], it turns out to be the same 
as that around 0. So it is enough to take the above result twice. Also, the integral around ∞ is 
not singular here and can be neglected. Collecting the integrals computed above gives

80(1 − 2ε)π2

3ε2n(−9 + n2)
√−4 + n2

.

Again, the finite result is similar to that of [1] even though individual integrals are different.

5.3. Function 〈φn,n(1)φ̃n,n+2(0)〉
The integration over the safe region is∫

Ωl,l0

I (x)
〈
φ̃(x)φn,n(1)φ̃n,n+2(0)φ̃(∞)

〉
d2x

= 8επ2

3(5 + n)

√
2 + n

n

[
(−5 + 3n) log l + (1 + n) log 2l0

]
where the integrand is given by

〈
φ̃(x)φn,n(1)φ̃n,n+2(0)φ̃(∞)

〉 = 2

3

√
n + 2

n
|x|−2,

with I (x) given above. The integration over the lens-like region is similarly given by

−8ε(1 + n)π2

3(5 + n)

√
2 + n

n
log

l

2l0
.

The OPE needed for computation around 0 was written above (5.1). One has to arrange the 
corresponding dimensions and structure constants from (5.2). So the contribution from the region 
near 0 is:∫

Dl,0\Dl0,0

I (x)
〈
φ̃(x)φn,n(1)φ̃n,n+2(0)φ̃(∞)

〉
d2x

= −
4(−1 + n)

√
2+n
n

π2

3(3 + n)(5 + n)

[
1 + (

n + (n + 3) log l
)
ε
]

−
2(n + 3)π2

√
2+n
n

3(5 + n)
(1 + 3ε + 2ε log l).

Surprisingly the computation around the point 1 again gives a result identical to that around 0. 
So we have to add again twice the above contribution.

To compute the contribution from the region near ∞, we perform again the x → 1/x map 
(4.2). The necessary structure constants are already written above and we take the appropriate 
(up to ε2) approximation for I (x). The result is:∫

Dl,∞Dl0,∞

I (x)
〈
φ̃(x)φn,n(1)φ̃n,n+2(0)φ̃(∞)

〉
d2

= −8(−3 + n)π2
√

n + 2 (
1 + (2 + n + 2 log l)ε

)
.

3(n + 5) n
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Combining all the terms, we get

− 4(−1 + n)π2

3(3 + n)(5 + n)

√
n + 2

n

[
11 + 3n + ε(1 + n)(9 + 2n)

]
.

5.4. Function 〈φn,n(1)φn,n(0)〉

Finally we need the function 〈φ̃(x)φn,n(1)φn,n(0)φ̃(∞)〉. This function happens to coincide 
exactly with the one reported in [1]. Therefore almost all integrals are the same. The only excep-
tion is the integral around ∞ due to a different structure constant:

Ĉ
(n,n)
(1,3)(n,n)Ĉ

(1,3)
(1,3)(1,3) = (−1 + n2)ε2

6n
(1 − 2ε).

With this, our final result is

(−1 + n2)π2

6
(1 + ε)

which is slightly different from [1].
Since the dimension of the first component φn,n is close to zero, it doesn’t mix with other 

fields. Therefore, we need to compute only its anomalous dimension. Taking into account also 
the first order contribution, the final result for the two-point function is:

Gn(x,λ) = 〈
φn,n(x)φn,n(0)

〉
= (xx̄)−2�n,n

[
1 − λ

(√
3π

6

(−1 + n2)ε(1 + 3ε)

)
(xx̄)ε

+ λ2

2

(
π2

6
(1 + ε)

(−1 + n2))(xx̄)2ε + ...

]
.

Computation of the anomalous dimension goes in exactly the same way as for the perturbing 
field:

�
g
n,n = �n,n − ελ

2
∂λGn(1, λ)

= �n,n +
√

3πg

12
ε2(1 + 3ε)

(−1 + n2) − π2g2

12
ε2(−1 + n2),

where we again kept the appropriate terms of order ε ∼ g. Then, at the fixed point (4.5), this 
becomes

�
g∗
n,n = (−1 + n2)(ε2 + 3ε3 + 7ε4 + ...)

8

which coincides with the dimension of the first component of the superfield Φ(p−2)
n,n of the model 

SMp−2.

5.5. Matrix of anomalous dimensions

Let us describe briefly the renormalization scheme of [1]. It is a variation of that originally 
proposed by Zamolodchikov [4]. The renormalized fields are expressed through the bare ones 
by:
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φg
α = Bαβ(λ)φβ

(here φ could be the first or last component). The two-point functions of the renormalized fields

G
g
αβ(x) = 〈

φg
α(x)φ

g
β(0)

〉
, G

g
αβ(1) = δαβ, (5.3)

satisfy the equation

(
x∂x − β(g)∂g

)
G

g
αβ +

2∑
ρ=1

(
ΓαρG

g
ρβ + ΓβρGg

αρ

) = 0

where the matrix of anomalous dimensions Γ is given by

Γ = B�̂B−1 − ελB∂λB
−1 (5.4)

where �̂ = diag(�1, �2) is a diagonal matrix of the bare dimensions. The matrix B itself is 
computed from the matrix of the bare two-point functions we computed using the normalization 
condition (5.3) and requiring the matrix Γ to be symmetric. Exact formulas can be found in [1], 
here we present our results for the supersymmetric case.

We computed above some of the entries of the 3 × 3 matrix of two-point functions in the 
second order. This matrix is obviously symmetric. It turns out also that the remaining func-
tions 〈φ̃n,n−2(1)φ̃n,n−2(0)〉 and 〈φn,n(1)φ̃n,n−2(0)〉 can be obtained from the computed ones 
〈φ̃n,n+2(1)φ̃n,n+2(0)〉 and 〈φn,n(1)φ̃n,n+2(0)〉 by just taking n → −n. Let us denote for con-
venience the basis of fields:

φ1 = φ̃n,n+2, φ2 = (
2�n,n(2�n,n + 1)

)−1
∂∂̄φn,n, φ3 = φ̃n,n−2,

where we normalized the field φ2 so that its bare two-point function is 1. It is straightforward to 
modify the functions involving φ2 taking into account the derivatives and the normalization.

We can write the matrix of the two-point functions up to the second order in the perturbation 
expansion as:

Gα,β(x,λ) = 〈
φα(x)φβ(0)

〉 = (xx̄)−�α−�β

[
δα,β − λC

(1)
α,β(xx̄)ε + λ2

2
C

(2)
α,β(xx̄)2ε + ...

]
.

The two-point functions in the first order are proportional to the structure constants [4]:

C
(1)
α,β = Ĉ(1,3)(α)(β)

πγ (ε + �α − �β)γ (ε − �α + �β)

γ (2ε)
, (5.5)

which is symmetric. Collecting all the dimensions and structure constants, we get

C
(1)
1,1 = −2(3 + n)(−1 + 2ε + εn)π√

3ε(1 + n)
, C

(1)
1,2 =

8(−1 + ε)

√
2+n
n

π
√

3ε(1 + n)(3 + n)
, C

(1)
1,3 = 0,

C
(1)
2,2 = 8π√

3(−1 + n2)ε
− 4(1 + n2)π√

3(−1 + n2)
, C

(1)
2,3 =

8(−1 + ε)

√
−2+n

n
π

√
3ε(−3 + n)(−1 + n)

,

C
(1)
3,3 = −2(−3 + n)(−1 + 2ε − εn)π√

3ε(−1 + n)

for the first order, and
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C
(2)
1,1 = −2(−20 − 143n − 121n2 − 33n3 − 3n4)π2

3n(1 + n)(3 + n)2ε2

− 2(5 + n)(8 + 151n + 143n2 + 45n3 + 5n4)π2

3n(1 + n)(3 + n)2ε

C
(2)
1,2 = −

16
√

2+n
n

(11 + 3n)π2

3(1 + n)(3 + n)(5 + n)ε2
+

16
√

2+n
n

(57 + 18n + n2)π2

3(1 + n)(n + 3)(n + 5)ε

C
(2)
1,3 = 80(1 − 2ε)π2

3ε2n(−9 + n2)
√−4 + n2

C
(2)
2,2 = 32π2

3(−1 + n2)ε2
− 8(19 + n2)π2

3(−1 + n2)ε

C
(2)
2,3 = −

16
√

−2+n
n

(−11 + 3n)π2

3(−1 + n)(−3 + n)(−5 + n)ε2
−

16
√

−2+n
n

(57 − 18n + n2)π2

3(−1 + n)(−3 + n)(−5 + n)ε

C
(2)
3,3 = −2(−20 + 143n − 121n2 + 33n3 − 3n4)π2

3n(−1 + n)(−3 + n)2ε2

+ 2(−5 + n)(8 − 151n + 143n2 − 45n3 + 5n4)π2

3n(−1 + n)(−3 + n)2ε

for the second order.
Now we can apply the renormalization procedure of [1] and obtain the matrix of anomalous 

dimensions (5.4). Bare coupling constant λ is expressed through g by (4.4) and the bare dimen-
sions, up to order ε2. The results are:

Γ1,1 = �1 − (3 + n)(−1 + ε(2 + n))πg√
3(1 + n)

+ 4g2π2(2 + n)

3(1 + n)

Γ1,2 = Γ2,1 = −
(−1 + ε)(−1 + n)

√
2+n
3n

πg

(1 + n)
+

2g2(−1 + n)

√
2+n
n

π2

3(1 + n)

Γ1,3 = Γ3,1 = 0, Γ2,2 = �2 − 2
√

3π(−2 + ε + εn2)g

3(−1 + n2)
+ 2g2(3 + n2)π2

3(−1 + n2)

Γ2,3 = Γ3,2 = −
(−1 + ε)

√
−2+n

3n
(1 + n)πg

(−1 + n)

Γ3,3 = �3 + (1 + ε(−2 + n))(−3 + n)πg√
3(−1 + n)

+ 4g2π2(−2 + n)

3(−1 + n)
,

where

�1 = 1 − n + 1

2
ε + 1

8

(−1 + n2)ε2, �2 = 1 + 1

8

(−1 + n2)ε2,

�3 = 1 + n − 1

2
ε + 1

8

(−1 + n2)ε2.

Evaluating this matrix at the fixed point (4.5), we get



C. Ahn, M. Stanishkov / Nuclear Physics B 885 (2014) 713–733 727
Γ
g∗

1,1 = 1 + (20 − 4n2)ε

8(1 + n)
+ (39 − n − 7n2 + n3)ε2

8(1 + n)

Γ
g∗

1,2 = Γ
g∗

2,1 =
(−1 + n)

√
2+n
n

ε(1 + 2ε)

n + 1
, Γ

g∗
1,3 = Γ

g∗
3,1 = 0

Γ
g∗

2,2 = 1 + 4ε

−1 + n2
+ (65 − 2n2 + n4)ε2

8(−1 + n2)

Γ
g∗

2,3 = Γ
g∗

3,2 =
√

−2+n
n

(1 + n)ε(1 + 2ε)

n − 1

Γ
g∗

3,3 = 1 + (−5 + n2)ε

2(−1 + n)
+ (−39 − n + 7n2 + n3)ε2

8(−1 + n)

whose eigenvalues are (up to order ε2):

�
g∗
1 = 1 + 1 + n

2
ε + 7 + 8n + n2

8
ε2, �

g∗
2 = 1 + −1 + n2

8
ε2

�
g∗
3 = 1 + 1 − n

2
ε + 7 − 8n + n2

8
ε2.

This result coincides with dimensions �(p−2)

n+2,n + 1/2, �(p−2)
n,n + 1 and �(p−2)

n−2,n + 1/2 of the model 
SMp−2 up to this order. The corresponding normalized eigenvectors should be identified with the 
fields of SMp−2:

φ̃
(p−2)

n+2,n = 2

n(1 + n)
φ

g∗
1 +

2
√

2+n
n

1 + n
φ

g∗
2 +

√−4 + n2

n
φ

g∗
3

φ
(p−2)

2 = −
2
√

2+n
n

1 + n
φ

g∗
1 − −5 + n2

1 + n2
φ

g∗
2 +

2
√

n−2
n

n − 1
φ

g∗
3

φ̃
(p−2)

n−2,n =
√−4 + n2

n
φ

g∗
1 −

2
√

−2+n
n

n − 1
φ

g∗
2 + 2

n(n − 1)
φ

g∗
3 .

We used as before the notation φ̃ for the last component of the corresponding superfield and:

φ
(p−2)

2 = 1

2�
p−2
n,n (2�

p−2
n,n + 1)

∂∂̄φ
(p−2)
n,n

is the normalized derivative of the corresponding first component. We notice that these eigen-
vectors are finite as ε → 0 with exactly the same combinations just as in (nonsupersymmetric) 
minimal models.

As we mentioned in the beginning of this section the corresponding first components of 
Φn,n±2 and the last component of Φn,n will be also mixed along the RG flow in an analogous 
way. This is thanks to the supersymmetry conserved by a perturbation with the last component 
of a superfield. So we do not present a separate calculation for them.
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6. Mixing of the fields in the Ramond sector

6.1. Conformal blocks in the Ramond sector

The computation of the conformal blocks in the Ramond sector is more involved. A way of 
computing them was recently proposed in [12] where conformal blocks in the first few levels 
were shown to coincide with the instanton partition function of certain N = 2 YM theories in 
four dimensions by a generalized AGT correspondence up to prefactors.

Following [12] one can compute NS-R conformal blocks only for a special choice of the 
points. After that we can get the function necessary for the integration in the second order by 
using its conformal transformation properties.

The difficulties arise because of the branch cut in the OPE of Ramond fields with the super-
current:

G(z)Rε(0) = βR−ε(0)

z
3
2

+ G−1R
ε(0)

z
1
2

(6.1)

where β =
√

� − ĉ
16 , ε = ±1. Therefore one cannot obtain the usual commutation relations. 

Here the Ramond field Rε is doubly degenerate because of the zero mode of G in this sector.
The difficulty can be removed in the following way. Consider the OPE between NS and Ra-

mond fields:

φ1(x)Rε
2(0) = x�−�1−�2

∞∑
N=0

xNCε
NRε

�(0),

φ̃1(x)Rε
2(0) = x�−�1−�2− 1

2

∞∑
N=0

xNC̃ε
NR−ε

� (0). (6.2)

Here N runs over nonnegative integers as G’s have integer valued modes in the Ramond sector. 
Applying G0 on both sides of (6.2) and taking into account (6.1), we obtain:

G0C
ε
N = C̃ε

N + β2C
−ε
N , G0C̃

ε
N = (� − �2 + N)Cε

N − β2C̃
−ε
N . (6.3)

From the consistency conditions, C̃ε
0 is given by

C̃ε
0 = βCε

0 − β2C
−ε
0 .

Acting with Gk with k > 0 gives chain relations:

GkC
ε
N = C̃ε

N−k, GkC̃
ε
N = (� + 2k�1 − �2 + N − k)Cε

N−k (6.4)

and Lk acts as usual with the appropriate dimensions (see [12] for the details).
One has to solve these chain relations order by order or to use the recursion formulae. Then 

the conformal block for the function 〈N(x)R(0)N(1)R(∞)〉 (N here stays for the first or the last 
component of a NS field) is obtained in the same way as in the NS case:

F(x,�,�i) =
∞∑

N=0

xNCN(�,�3,�4)S
−1
N CN(�,�1,�2)

where CN could be actually CN or C̃N depending on the function in consideration. Finally the 
correlation function is constructed as:
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〈
N(x)R(0)N(1)R(∞)

〉 = ∑
n

Cn

∣∣Fn(x)
∣∣2

,

where Cn’s are the structure constants and the range of n is dictated by the fusion rules. The 
function that enters into the integral is then obtained by the conformal transformation.

As already mentioned, the conformal block in general is very complicated. Fortunately, it is 
sufficient to compute the finite term as ε → 0. We did the computation for the functions below 
up to high order and then check the behavior near the singular points. It turns out also that the 
two-point function do not depend on which of the fields Rε are involved. So we drop the subscript 
ε from our notations in what follows.

6.2. Function 〈Rn,n+1(1)Rn,n+1(0)〉

Our calculation for the corresponding second order gives:〈
φ̃(x)Rn,n+1(0)Rn,n+1(∞)φ̃(1)

〉
= n2 − 1

12n2

∣∣∣∣ 1

x(1 − x)2

(
1 + n

n + 1
x − 1

n + 1
x2

)∣∣∣∣
2

+ (2 + n)2

48n2

∣∣∣∣ 1

x(1 − x)2

(
1 + 2n

n + 2
x + n − 2

n + 2
x2

)∣∣∣∣
2

+ n + 3

12(n + 1)

∣∣∣∣ 1

(1 − x)2
(1 + x)

∣∣∣∣
2

.

To obtain the function that enters the integral, we use the conformal transformation properties. 
One can easily get:〈

φ̃(x)Rn,n+1(0)Rn,n+1(1)φ̃(∞)
〉

= (xx̄)−2�1,3−1
〈
φ̃

(
x − 1

x

)
Rn,n+1(0)Rn,n+1(∞)φ̃(1)

〉

= n2 − 1

12n2

∣∣∣∣ (2x − 1)(nx + 1)

(n + 1)x(x − 1)

∣∣∣∣
2

+ (2 + n)2

48n2

∣∣∣∣ (2x − 1)(n(2x − 1) + 2)

(n + 2)x(x − 1)

∣∣∣∣
2

+ n + 3

12(n + 1)

∣∣∣∣2x − 1

x

∣∣∣∣
2

. (6.5)

We first integrate over the safe region, where I (x) ∼ π/ε. The result is:∫
Ωl,l0

I (x)
〈
φ̃(x)Rn,n+1(0)Rn,n+1(1)φ̃(∞)

〉

= π2

εl2
− π2(20 + 13n) log l

24εn
− π2(4 + 5n) log 2l0

24εn
− π2

2ε
.

From this we have to subtract the lens-like region integral:

π2(5n + 4)

24nε
(log l − log 2l0).

Next we proceed with the calculation of the integrals near the singular points. Near 0 (and 
near 1 which gives the exactly same result) we use the OPE:
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φ̃(0)Rn,n+1(0) = (xx̄)−�1,3−1/2C̃
(n,n+1)
(1,3)(n,n+1)Rn,n+1(0)

+ (xx̄)�n,n−1−�n,n+1−�1,3−1/2C̃
(n,n−1)
(1,3)(n,n+1)

Rn,n−1(0)

+ (xx̄)�n,n+3−�n,n+1−�1,3−1/2C̃
(n,n+3)
(1,3)(n,n+1)Rn,n+3(0). (6.6)

We can approximate here I (x) ∼ π/ε − π log |x|2, the necessary structure constants read:

(
C̃

(n,n+1)
(1,3)(n,n+1)

)2 = −(2 + n)2(−1 + ε(−2 + 4n))

48n2(
C̃

(n,n−1)
(1,3)(n,n+1)

)2 = (1 + 2ε)(−1 + n2)

12n2
. (6.7)

We remind again that all the structure constants involving the field φ̃ should be divided by 2�1,3
and we keep in what follows the same notation C̃.

Then, the result of the integration is:∫
Dl,0\Dl0,0

I (x)
〈
φ̃(x)Rn,n+1(0)Rn,n+1(1)φ̃(∞)

〉

= π2(28 + 40n + 12n2 + n3)

24ε2n(2 + n)2
− π2(4 + 24n + 36n2 + 15n3 + 2n4)

12εn(2 + n)2

+ π2(4 + 5n) log l

24εn
.

Around ∞, we make the transformation x → 1/x and then x → 0 as usual. The structure 
constant is:

Ĉ
(1,3)
(1,3)(1,3)C̃

(n,n+1)
(1,3)(n,n+1) = (2 + n)(1 − 2ε − 2εn)

6n

and we found:∫
Dl,∞Dl0,∞

I (x)
〈
φ̃(x)Rn,n+1(0)Rn,n+1(1)φ̃(∞)

〉

= − π2

l2ε
+ (2 + n)π2

6nε2
− (2 + n)π2(1 + n − log l)

3nε.

Collecting all the terms, we obtain:

π2[44 + 64n + 24n2 + 3n3 − 8ε(1 + n)(5 + 14n + 7n2 + n3)]
12ε2n(2 + n)2

.

6.3. Function 〈Rn,n−1(1)Rn,n+1(0)〉

The calculation of the four-point function with the perturbing fields can be done in the same 
way:

〈
φ̃(x)Rn,n+1(0)φ̃(1)Rn,n−1(∞)

〉 =
√

n2 − 1

12n

∣∣∣∣ 1

x(1 − x)
(1 + x)

∣∣∣∣
2

.

Performing the same transformation as in (6.5), the integrand becomes:
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〈
φ̃(x)Rn,n+1(0)Rn,n−1(1)φ̃(∞)

〉 =
√

n2 − 1

12n

∣∣∣∣ 2x − 1

x(1 − x)

∣∣∣∣
2

.

This function is almost the same as in the nonsupersymmetric case but we should calculate again 
because the various structure constants and dimensions of the fields are different. The integration 
over the safe region and lens-like regions are exactly the same and the results are, respectively,

8
√

n2 − 1π2(5 log l + log 2l0)

3nε(n2 − 16)
, −8

√
n2 − 1π2(log l − log 2l0)

3nε(n2 − 16)
.

For the calculation around 0 we use the same OPE that appeared in the previous Section 6.2
(without the last line because of the fusion rules). In addition to the structure constants presented 
above, we need also:

C̃
(n,n−1)
(1,3)(n,n−1) = n − 2

4
√

3n

[
1 + (2n + 1)ε

]
.

The result is:∫
Dl,0\Dl0,0

I (x)
〈
φ̃(x)Rn,n+1(0)Rn,n−1(1)φ̃(∞)

〉

= −2
√

n2 − 1π2[−28 + n2 + 2ε(4 + 5n2) + 4ε(n2 − 4) log l]
3nε2(64 − 20n2 + n4)

.

The integral around 1 gives in the same result as around 0. The integral around ∞ with the 
structure constants (6.7) gives:∫

Dl,∞\Dl0,∞

I (x)
〈
φ̃(x)Rn,n+1(0)Rn,n−1(1)φ̃(∞)

〉 = 16
√

n2 − 1π2(−1 + 2ε − 2ε log l)

3nε2(n2 − 16)
.

We collect now all the terms and obtain the final result in the second order:

4π2
√

n2 − 1(44 − 5n2 − 2ε(20 + n2))

3ε2n(n2 − 16)(n2 − 4)
.

6.4. Matrix of anomalous dimensions

The functions we computed above are enough for our computation since the other two
functions 〈Rn,n−1(1)Rn,n−1(0)〉 and 〈Rn,n+1(1)Rn,n−1(0)〉 can be obtained from
〈Rn,n+1(1)Rn,n+1(0)〉 and 〈Rn,n−1(1)Rn,n+1(0)〉 by just changing n → −n as in the case of 
NS fields. Let us introduce again a basis: R1 = Rn,n+1, R2 = Rn,n−1. From the general formula 
(5.5) and the bare dimensions of the fields

�1 = 3

16
−

(
n

4
+ 1

8

)
ε + 1

8

(
n2 − 1

)
ε2, �2 = 3

16
+

(
n

4
− 1

8

)
ε + 1

8

(
n2 − 1

)
ε2,

we get for the 2 × 2 matrix of two-point functions in the first order:

C
(1)
1,1 = (2 + n)π

2
√

3nε
− (2 + n)(−1 + 2n)π

2
√

3n
, C

(1)
1,2 = C

(1)
2,1 = −4

√
n2 − 1π(1 + ε)√
3n(n2 − 4)ε

,

C
(1)
2,2 = (n − 2)π√ + (n − 2)(2n + 1)π√ ,
2 3nε 2 3n
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and, in the second order

C
(2)
1,1 = (44 + 64n + 24n2 + 3n3)π2

12ε2n(n + 2)2
− 2(n + 1)(5 + 14n + 7n2 + n3)π2

3εn(2 + n)2
,

C
(2)
1,2 = C

(2)
2,1 = 4

√
n2 − 1(44 − 5n2)π2

3ε2n(n2 − 1)(n2 − 4)
− 8

√
n2 − 1(n2 + 20)π2

3εn(n2 − 16)(n2 − 4)
,

C
(2)
2,2 = (−44 + 64n − 24n2 + 3n3)π2

12ε2(n − 2)2n
+ 2(n − 1)(−5 + 14n − 7n2 + n3)π2

3ε(n − 2)2n
.

Now, following the same procedure as in the NS case, we get for the matrix of anomalous 
dimensions up to order ε2 ∼ g2:

Γ1,1 = �1 − g(n + 2)(−1 − ε + 2εn)π

4
√

3n
+ g2π2

4
, Γ1,2 = Γ2,1 = (1 + ε)g

√
n2 − 1π

2
√

3n
,

Γ2,2 = �2 + g(n − 2)(1 + ε + 2εn)π

4
√

3n
+ g2π2

4
,

which becomes at the fixed point (4.5):

Γ
g∗

1,1 = 3

16
+ (4 + n − 2n2)ε

8n
+ (8 + n − 4n2 + n3)ε2

8n
,

Γ
g∗

1,2 = Γ
g∗

2,1 =
√

n2 − 1ε(1 + 2ε)

2n
,

Γ
g∗

2,2 = 3

16
+ (−4 + n + 2n2)ε

8n
+ (−8 + n + 4n2 + n3)ε2

8n
.

The eigenvalues of this matrix are

�
g∗
1 = 3

16
+

(
1

8
+ n

4

)
ε + 1

8

(
1 + 4n + n2)ε2,

�
g∗
2 = 3

16
+

(
1

8
− n

4

)
ε + 1

8

(
1 − 4n + n2)ε2.

As expected, they coincide with the dimensions of the Ramond fields �(p−2)

n+1,n and �(p−2)

n−1,n of 
the SMp−2. The corresponding fields are expressed as a (normalized) linear combination:

R
(p−2)

n+1,n = 1

n
R

g∗
1 +

√
n2 − 1

n
R

g∗
2 , R

(p−2)

n−1,n = −
√

n2 − 1

n
R

g∗
1 + 1

n
R

g∗
2 .

7. Concluding remarks

To conclude, we considered here the RG flow of the minimal superconformal model SMp

with p � 1 up to the second order in the perturbation theory. It is confirmed that there is a 
nontrivial fixed point that coincides with the model SMp−2, which was established before up to 
the first order calculations. We computed the anomalous dimensions of certain fields in both NS 
and Ramond sectors along the RG flow. At the fixed point they coincide with the dimensions of 
the corresponding fields from SMp−2.

We would like to make two comments at the end. Firstly, we have found that the linear com-
binations (i.e. the eigenvectors of the matrix of anomalous dimensions) expressing the fields in 



C. Ahn, M. Stanishkov / Nuclear Physics B 885 (2014) 713–733 733
the SMp−2 do not depend on ε in both the NS and Ramond sectors. This happens also in the 
nonsupersymmetric case. So one can speculate that they are actually exact. Secondly, the coef-
ficients in this linear combination are exactly the same. This may suggest that the same linear 
combination becomes the eigenvectors for all the SU(2) coset theories perturbed by the least 
relevant field.
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