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We present an infinite set of higher equations of motion in N = 2 supersymmetric Liouville field theory.
They are in one to one correspondence with the degenerate representations and are enumerated in
addition to the U (1) charge ω by the positive integers m or (m,n) respectively. We check that in the
classical limit these equations hold as relations among the classical fields.

© 2010 Elsevier B.V. All rights reserved.

In Ref. [1] it has been shown that in the Liouville field theory (LFT) an infinite set of relations holds for quantum operators. These
equations relate different basic Liouville primary fields Vα(z) (Vα can be thought of as normal ordered exponential field exp(αφ) of the
basic Liouville field φ). They are parameterized by a pair of positive integers (m,n) and are called conventionally “higher equations of
motion” (HEM), because the first one (1,1) coincides with the usual Liouville equation of motion. The equations are derived on the basis
of a conjecture of the vanishing of all singular vectors, imposed by the requirement of irreducibility of the corresponding representation.
They are easily verified in the classical LFT. Higher equations turn out to be useful in practical calculations. In particular, in [2–5], they
were used to derive general four-point correlation function in the minimal Liouville gravity.

Similar operator valued relations have been found also for N = 1 supersymmetric Liouville field theory (SLFT) [6] and for SL(2, R)

Wess–Zumino–Novikov–Witten model [7,8]. Recently it was shown in [9] that such relations hold for the boundary operators in the LFT
with conformal boundary.

It is the purpose of this Letter to reveal a similar set of higher equations of motion in N = 2 SLFT. The N = 2 SLFT has a wide
variety of applications in string theory [10–12]. This theory is quite interesting because of the fact that it has actually few properties
in common with the N = 0,1 SLFTs. For example, unlike the Liouville theories with less supersymmetry, the N = 2 SLFT does not have
a simple strong–weak coupling duality. In fact, under the change b → 1/b of the coupling constant, the N = 2 SLFT flows to another
N = 2 supersymmetric theory as proposed in [13,14]. Another important difference between the N = 2 SLFT and the N = 0,1 SLFTs is
the spectrum of the degenerate representations [15–17] (see also [18,19]). We will show below that the N = 2 SLFT still possesses higher
equations of motion despite these differences.

1. N = 2 SLFT

The N = 2 SLFT is based on the Lagrangian:

L= 1

2π

(
∂φ−∂̄φ+ + ∂φ+∂̄φ− + ψ−∂̄ψ+ + ψ+∂̄ψ− + ψ̄−∂ψ̄+ + ψ̄+∂ψ̄−)

+ iμb2ψ−ψ̄−ebφ+ + iμb2ψ+ψ̄+ebφ− + πμ2b2ebφ++bφ−
(1)
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where (φ±,ψ∓) are the components of a chiral N = 2 supermultiplet, b is the coupling constant and μ is the cosmological constant. It is
invariant under the N = 2 superconformal algebra:

[Lm, Ln] = (m − n)Lm+n + c

12

(
m3 − m

)
δm+n,

[
Lm, G±

r

] =
(

m

2
− r

)
G±

m+r,
[

Jn, G±
r

] = ±G±
n+r,

{
G+

r , G−
s

} = 2Lr+s + (r − s) Jr+s + c

3

(
r2 − 1

4

)
δr+s,

[Lm, Jn] = −n Jm+n, [ Jm, Jn] = c

3
δm+n, (2)

where Lm, G±
r and Jn are the modes of the corresponding conserved currents, the stress–energy tensor T (z), the super-current G(z) and

the U (1) current J (z), and the central charge is:

c = 3 + 6

b2
.

These are the left handed generators, there are in addition the right handed ones L̄n , J̄n , Ḡ±
r closing the same algebra.

The basic objects are the primary fields (normal ordered exponents):

Nα,ᾱ = eαφ++ᾱφ−
,

the corresponding states being annihilated by the positive modes. These are the primary fields in the Neveu–Schwartz (NS) sector with r,
s in (2) half-integer. There are in addition also Ramond (r, s — integer) primary fields Rα,ᾱ but we will not be concerned with them in
this Letter. The conformal dimension and the U (1) charge of the primary fields are:

	α,ᾱ = −αᾱ + 1

2b
(α + ᾱ), ω = 1

b
(α − ᾱ). (3)

Among the primary fields there is a series of degenerate fields of the N = 2 SLFT. They are characterized by the fact that at certain
level of the corresponding conformal family a new primary field (i.e. annihilated by all positive modes) appears. Such fields can be divided
in three classes (see e.g. [18]).

Class I degenerate fields are given by

Nω
m,n = Nαω

m,n,ᾱω
m,n

,

αω
m,n = 1 − m

2b
+ (ω − n)

b

2
,

ᾱω
m,n = 1 − m

2b
− (ω + n)

b

2
(4)

m, n are positive integers. Nω
m,n is degenerate at level mn and relative U (1) charge zero. The irreducibility of the corresponding represen-

tations is assured by imposing the null-vector condition Dω
m,n Nω

m,n = 0, D̄ω
m,n Nω

m,n = 0, where Dω
m,n is a polynomial of the generators in (2)

of degree mn and has U (1) charge zero. It is normalized by choosing the coefficient in front of (L−1)
mn to be 1. Let us give some examples

of the corresponding null-operators:

Dω
1,1 = L−1 − 1

2
b2(1 + ω) J−1 + 1

ω − 1
G+

− 1
2

G−
− 1

2
,

Dω
1,2 = L2−1 + b2L−2 − b2(1 + ω)L−1 J−1 + b2

2

(
1 + ω − b2(2 + ω)

)
J−2

+ b4

4
ω(ω + 2) J 2−1 + 2

ω − 2
L−1G+

− 1
2

G−
− 1

2
− b2ω

ω − 2
J−1G+

− 1
2

G−
− 1

2

− b2

2
G+

− 1
2

G−
− 3

2
+ b2

2

ω + 2

ω − 2
G+

− 3
2

G−
− 1

2
,

Dω
2,1 = L2−1 + 1

b2
L−2 − b2(1 + ω)L−1 J−1 + 1

2

(
b2(1 + ω) − ω − 2

)
J−2

+ 1

4

(
b4(ω + 1)2 − 1

)
J 2−1 + 2b4ω

b4(ω − 1)2 − 1
L−1G+

− 1
2

G−
− 1

2

− b2 + b6(ω2 − 1)

b4(ω − 1)2 − 1
J−1G+

− 1
2

G−
− 1

2
− b4(ω + 1) + b2 − 2

2 + 2b2(ω − 1)
G+

− 1
2

G−
− 3

2

+ 2 − b2 + b4(ω − 1)(1 + b2(ω + 1))

2(b4(ω − 1)2 − 1)
G+

− 3
2

G−
− 1

2
. (5)

The second class of degenerate fields is denoted by Nω
m and comes in two subclasses IIA and IIB:
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class IIA: Nω
m = Nαω

m ,ᾱ0
m

ω > 0

class IIB: Nω
m = Nα0

m,ᾱω
m

ω < 0, (6)

where

αω
m = 1 − m

2b
+ ωb, ᾱω

m = 1 − m

2b
− ωb. (7)

Here m is an odd positive integer number and the level of degeneracy of Nω
m is m

2 , relative charge ±1. In this case the operator Dω
m

is a polynomial of “degree” m/2, the coefficient in front of L
m−1

2−1 G±
− 1

2
is chosen to be 1. Analogously to the class I we have to impose

Dω
m Nω

m = D̄ω
m Nω

m = 0. Here are the first examples for class IIA fields:

Dω
1 = G+

− 1
2
,

Dω
3 = L−1G+

− 1
2

− J−1G+
− 1

2
+

(
2

b2
− ω

)
G+

− 3
2
,

Dω
5 = L2−1G+

− 1
2

+
(

4

b2
− ω − 1

)
L−2G+

− 1
2

− 3L−1 J−1G+
− 1

2
+ 2 J 2−1G+

− 1
2

+
(

5

2
− 6

b2
+ 3

2
ω

)
J−2G+

− 1
2

+
(

1 + 6

b2
− 2ω

)
L−1G+

− 3
2

+ 4

(
ω − 3

b2

)
J−1G+

− 3
2

− 1

2
G+

− 3
2

G+
− 1

2
G−

− 1
2

+
(

24

b4
− 14ω

b2
+ 2ω2 − 1

)
G+

− 5
2
. (8)

The null-operators for class IIB fields are obtained from (8) by changing G± → G∓ and ω → −ω.
A special case of class IIA (B) fields are the chiral (antichiral) fields with m = 1. The class II fields having U (1) charge zero are classified

in a separate class III fields. The simplest m = 1 field here represents the identity operator.

2. Norms of the null-states

Let us now consider, for a further use, the norms of the states created by applying the null-operators on primary states |α〉. As
explained above, such sates should vanish at α = αω

M . Taking the first terms in the corresponding Taylor expansion, we define:

rω
M = ∂α〈α, ᾱ|Dω†

M Dω
M |α, ᾱ〉|α=αω

M ,ᾱ=ᾱω
M
,

r̄ω
M = ∂ᾱ〈α, ᾱ|Dω†

M Dω
M |α, ᾱ〉|α=αω

M ,ᾱ=ᾱω
M

(9)

for both classes of representations, M = m or (m,n), where Dω
M is the corresponding null-operator and Dω†

M is defined as usual through

L†
n = L−n , J †

n = J−n , (G±
r )† = G∓−r .

One can compute “by hand” the first few r’s. With the use of the explicit form of the null-operators (5) we find for the class I fields:

rω
1,1 = 1

b

(1 + b2)(1 + ω)

(−1 + ω)
,

rω
1,2 = −2

b

(1 − b2)(1 + b2)(1 + 2b2)(2 + ω)

(−2 + ω)
,

rω
1,3 = 12

b

(1 − 2b2)(1 − b2)(1 + b2)(1 + 2b2)(1 + 3b2)(3 + ω)

(−3 + ω)
,

rω
2,1 = 2

b5

(1 − b2)(1 + b2)(2 + b2)(−1 + b2 + b2ω)(1 + b2 + b2ω)

(−1 − b2 + b2ω)(1 − b2 + b2ω)
,

rω
3,1 = 12

b9

(2 − b2)(1 − b2)(1 + b2)(2 + b2)(3 + b2)(1 + ω)(−2 + b2 + b2ω)(2 + b2 + b2ω)

(−1 + ω)(−2 − b2 + b2ω)(2 − b2 + b2ω)

and r̄ω
m,n = rω

m,n for all the examples above. Based on these expression we propose for the general form of rω
m,n:

rω
m,n = r̄ω

m,n =
m∏

l=1−m

n∏
k=1−n

(
l

b
+ kb

) m−1∏
l=1−m, mod 2

(
l − (n + ω)b2

l + (n − ω)b2

)
. (10)

Similarly, from (8) we have for the class IIA:



Author's personal copy

504 C. Ahn et al. / Physics Letters B 695 (2011) 501–506

r̄ω
1 = 2

(
1

b
− ωb

)
,

r̄ω
3 = 2

b5

(
2 − b2ω

)(
3 − b2ω

)(
2 − b2 − b2ω

)
,

r̄ω
5 = 8

b9

(
3 − b2ω

)(
4 − b2ω

)(
5 − b2ω

)(
3 − b2 − b2ω

)(
4 − b2 − b2ω

)
,

r̄ω
7 = 72

b13

(
4 − b2ω

)(
5 − b2ω

)(
6 − b2ω

)(
7 − b2ω

)(
4 − b2 − b2ω

)(
5 − b2 − b2ω

)(
6 − b2 − b2ω

)
,

rω
m = 0, m = 1,3,5,7.

These expressions can be fitted in a general form of rω
m and r̄ω

m:

rω
m = 0,

r̄ω
m = 2Γ 2

(
m + 1

2

)
b1−m

m∏
l= m+1

2

(
l

b
− bω

) m−1∏
l= m+1

2

(
l

b
− b(ω + 1)

)
. (11)

For the class IIB fields one obtains r̄ω
m = 0 and rω

m is as r̄ω
m in (11) with the change ω → −ω.

3. Logarithmic fields and HEM

Let us now introduce the so-called logarithmic fields. They are defined as:

N ′
α,ᾱ = ∂αNα,ᾱ, N̄ ′

α,ᾱ = ∂ᾱNα,ᾱ .

One can introduce also the logarithmic primary fields corresponding to degenerate fields by:

N ′ω
M = N ′

α,ᾱ |α=αω
M ,ᾱ=ᾱω

M
, N̄ ′ω

M = N̄ ′
α,ᾱ |α=αω

M ,ᾱ=ᾱω
M

(12)

where M is (m,n) for class I and M is m for class II fields respectively. The basic statement about the fields (12) is that

Ñω
M = D̄ω

M Dω
M N ′ω

M , ˜̄Nω
M = D̄ω

M Dω
M N̄ ′ω

M (13)

with Dω
M , D̄ω

M as in (5), (8) are again primary. The proof of this statement goes along the same lines as for N = 0,1 SLFT [1,6] so we will
not repeat it here.

Comparing the dimension and U (1) charge for class I fields: 	̃m,n = 	m,n +mn, ω̃ = ω we conclude that the fields (13) are proportional
to Nω

m,−n . Thus, we arrive at the higher equations of motion (HEM) for the class I fields:

D̄ω
m,n Dω

m,n N ′ω
m,n = Bω

m,n Nω
m,−n, D̄ω

m,n Dω
m,n N̄ ′ω

m,n = B̄ω
m,n Nω

m,−n. (14)

For class IIA (B) the dimension of the resulting primaries in (13) is 	̃ω
m = 	ω

m + m
2 , the U (1) charges are ω̃ = ω + 1 (ω̃ = ω − 1)

respectively, and the HEMs in this case are:

D̄ω
m Dω

m N ′ω
m = Bω

m Nω±1
m , D̄ω

m Dω
m N̄ ′ω

m = B̄ω
m Nω±1

m . (15)

Computation of Bω
m,n (B̄ω

m,n) and Bω
m (B̄ω

m) is the final goal of this Letter. HEMs (14) and (15) are to be understood in an operator sense,
i.e. they should hold for any correlation function. Here we will insert them into the simplest one-point function on the so-called Poincaré
disk [20]. In this case we have:

〈
B1

∣∣D̄ω
M Dω

M N ′ω
M

〉 = 〈
B1

∣∣Ñω
M

〉
,

〈
B1

∣∣D̄ω
M Dω

M N̄ ′ω
M

〉 = 〈
B1

∣∣ ˜̄Nω
M

〉
.

The boundary state 〈B1| corresponds to the identity boundary conditions on the Poincaré disc. It enjoys N = 2 superconformal invariance:

〈B1|Ḡ±
r = −i〈B1|G∓−r = −i〈B1|

(
G±

r

)†
, 〈B1|L̄n = 〈B1|(Ln)

†, 〈B1| J̄n = 〈B1|( Jn)
†

(so-called A-type boundary conditions, see e.g. [21]).
With the definition of r’s in (9) the HEMs (14) and (15) take the form:

rω
m,nU1(m,n;ω) = Bω

m,nU1(m,−n;ω),

r̄ω
m,nU1(m,n;ω) = B̄ω

m,nU1(m,−n;ω) (16)

for class I, and

rω
mU1(m,ω) = iBω

mU1(m,ω ± 1),

r̄ω
mU1(m,ω) = i B̄ω

mU1(m,ω ± 1) (17)

for class II. Here U1 is the one-point function for “identity boundary conditions” of the corresponding field. In (17) the factor i’s appear
because the class II null-operators are fermionic, and + (−) refers to class IIA (IIB).
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The one-point function on the Poincaré disk for identity boundary conditions in N = 2 SLFT was obtained in [18] and has a general
form:

U1(α, ᾱ) = Γ
(
b−2)(πμ)−

1
b (α+ᾱ) Γ (1 − αb)Γ (1 − ᾱb)

Γ (−α+ᾱ
b + 1

b2 )Γ (2 − b(α + ᾱ))
.

With the specific values (4) the ratio of one-point functions of class I fields then is:

U1(m,n;ω)

U1(m,−n;ω)
= (πμ)2n γ (1 + m − nb2)∏n−1

k=−n(
m
b2 + k)

∏m
l=−m(l + nb2)

γ ( 1−m
2 + (n − ω) b2

2 )

γ ( 1−m
2 − (n + ω) b2

2 )

m−1∏
l=1−m, mod 2

(
l + (n − ω)b2

l − (n + ω)b2

)

and for the HEM coefficient we obtain:

Bω
m,n = B̄ω

m,n = rω
m,n

U1(m,n;ω)

U1(m,−n;ω)

= (πμ)2nb1+2n−2mγ
(
m − nb2)γ ( 1−m

2 + (n − ω) b2

2 )

γ ( 1−m
2 − (n + ω) b2

2 )

m−1∏
l=1−m

n−1∏
k=1−n

(
l

b
+ kb

)
, (18)

where we impose that (k, l) = (0,0) is excluded in the product.
Analogously for class IIA fields:

U1(m,ω)

U1(m,ω + 1)
= πμb

∏m−1
l= m+1

2
( l

b − b(ω + 1))

∏m
l= m+1

2
( l

b − bω)

and

Bω
m = 0,

B̄ω
m = −ir̄ω

m
U1(m,ω)

U1(m,ω + 1)
= −2π iμb2−mΓ 2

(
m + 1

2

) m−1∏
l= m+1

2

(
l

b
− b(ω + 1)

)2

. (19)

For class IIB B and B̄ are exchanged and ω is replaced by −ω. Equalities (18) and (19) are the main results of this Letter.

4. Classical limit

In the classical limit b → 0: bφ → ϕ , βψ → ψ , πμb2 → M the Lagrangian L→ 1
2πb2L. The corresponding equations of motion are

given by

∂̄ψ± = −iMψ̄∓eϕ±
, ∂ψ̄± = iMψ∓eϕ±

,

∂∂̄ϕ± = iMψ±ψ̄±eϕ∓ + M2eϕ++ϕ−
. (20)

The holomorphic currents

T = −∂ϕ−∂ϕ+ − 1

2

(
ψ−∂ψ+ + ψ+∂ψ−) + 1

2

(
∂2ϕ+ + ∂2ϕ−)

,

S± = −i
√

2
(
ψ±∂ϕ± − ∂ψ±)

, J = ∂ϕ+ − ∂ϕ− − ψ−ψ+, (21)

are conserved by ∂̄T = ∂̄ S± = ∂̄ J = 0 on the equations of motion and similarly for the antiholomorphic ones. One has to introduce also
the generators of N = 2 supersymmetry G± and Ḡ±:

G±ϕ∓ = i
√

2ψ±, G±ϕ± = 0

Ḡ±ϕ∓ = i
√

2ψ̄±, Ḡ±ϕ± = 0 (22)

obeying the algebra:

{
G+, G−} = 2∂,

{
G±, G±} = {

Ḡ±, Ḡ±} = 0,{
Ḡ+, Ḡ−} = 2∂̄, {G, Ḡ} = 0. (23)

For the class IIA fields only the chiral fields, Nω
1 = eωbφ+

, has a classical limit. Their HEMs take the form:

Ḡ+
− 1

2
G+

− 1
2
φ+Nω

1 = 0, Ḡ+
− 1

2
G+

− 1
2
φ−Nω

1 = Bω
1 Nω+1

1 ,

where Bω
1 = −2π iμb can be read from (19). In the classical limit along with the analogous HEMs for class IIB antichiral fields with ω = 0,

these become:
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Ḡ±G±ϕ∓ = −2iMeϕ±
.

Together with (22) and the algebra (23) these relations encode the equations of motion (20).
From the class I fields only the series Nω

1,n has a classical limit, the simplest “classical null-operators” being:

Dω(cl)
1,1 = ∂ − 1

2
(ω + 1) J + 1

ω − 1
G+G−,

Dω(cl)
1,2 = ∂2 − (ω + 1) J∂ − 1

2
(ω + 2)∂ J + 1

4
ω(ω + 2) J 2 + 2

ω − 2
G+G−∂ − ω

ω − 2
J G+G− − 1

2
S−G+ + 1

2

ω + 2

ω − 2
S+G−.

It is easy to check, using the algebra (23) and the explicit form of the currents (21), that the classical expressions of the corresponding
null-vector conditions is:

Dω(cl)
1,1 e( 1

2 (ω−1)ϕ+− 1
2 (ω+1)ϕ−) = 0,

Dω(cl)
1,2 e( 1

2 (ω−2)ϕ+− 1
2 (ω+2)ϕ−) = 0.

The same is of course true also for D̄ω(cl)
1,1 , D̄ω(cl)

1,2 . Then, with the help of (22) and the equations of motion (20), we find that the classical
HEMs then take the form:

D̄ω(cl)
1,1 Dω(cl)

1,1 ϕ±e( 1
2 (ω−1)ϕ+− 1

2 (ω+1)ϕ−) = ω + 1

ω − 1
M2e( 1

2 (ω+1)ϕ+− 1
2 (ω−1)ϕ−),

D̄ω(cl)
1,2 Dω(cl)

1,2 ϕ±e( 1
2 (ω−2)ϕ+− 1

2 (ω+2)ϕ−) = −2
ω + 2

ω − 2
M4e( 1

2 (ω+2)ϕ+− 1
2 (ω−2)ϕ−).

This is in a perfect agreement with (14) if we take into account that the classical limit, b → 0, of Bω
1,n = B̄ω

1,n from (18) is:

Bω
1,n → (−1)n+1 ω + n

ω − n
n!(n − 1)!b−1(πμb2)2n

.

To conclude, we presented relations among primary fields, the higher equations of motion, in N = 2 supersymmetric Liouville field
theory. We stress that, since in general the null-vectors of this theory are unknown, our results (18) and (19) should be understood as a
proposal. Also, we were concerned in this Letter with primary fields from the NS sector only. Since the Ramond sector in N = 2 SLFT is
not very different, in particular the degenerate fields fall into the same classes, we expect that very similar HEMs hold for them too.
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