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Abstract

We derive one-point functions of thé = 2 super-Liouville theory on a half line using the modular
transformations of the characters in terms of the bulk and boundary cosmological constants. We also
show that these results are consistent with conformal bootstrap equations which are based on the bulk
and boundary actions. We provide various independent checks for our results.
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1. Introduction

Two-dimensional Liouville field theory (LFT) has been studied for its relevance with
non-critical string theories and two-dimensional quantum gravity [1,2]. This theory has
been extended to the supersymmetric Liouville field theories (SLFTS) which can describe
the non-critical superstring theories. The LFT and SLFTs are irrational conformal field
theories (CFTs) which have continuously infinite number of primary fields. It is very im-
portant to develope a CFT formalism which can apply to these irrational CFTs. There have
been a lot of developments in this direction. Various methods have been proposed [3] to de-
rive structure constants and reflection amplitudes, which are basic building blocks to com-
plete the conformal bootstrap [4,5]. These have been extendedadihg SLFT in [6,7].
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More challenging problem is to extend these formalism to the CFTs with a boundary
with a conformal boundary condition (BC). Cardy showed that the conformal BCs can be
associated with the primary fields in terms of modulanatrix elements for rational CFTs
[8]. It has been an active issue to extend Cardy formalism to the irrational CFTs. For exam-
ple, the conformally invariant boundary states can be related to D-branes in the context of
string theories [9-11]. An important progress in this direction has been made in [12]. With
a boundary action which preserves the conformal symmetry, one-point function of a bulk
operator and two-point correlation functions of boundary operators have been computed by
conformal bootstrap method which extends the functional relation method developed for
the bulk theory [4]. A similar treatment of the LFT defined in the classical Lobachevskiy
plane, namely the pseudosphere has been made in [13]. This approach is generalized to the
N =1 SLFT for the one-point functions [14] and the boundary two-point functions [15].

In this paper, we extend this approach to tfie= 2 SLFT. This theory is of a particular
interest in the string community for rich properties [16]. In spite of the extended symmetry,
it turns out that exact correlation functions of tie= 2 SLFT are much more difficult
to derive than previous cases. The main reason is thaNthe2 SLFT has no strong-
weak coupling duality. The invariance of the LFT and= 1 SLFT underb — 1/b is
realized when the background charge changegto+lb from its classical value of B
after quantum corrections [2,17]. All the physical quantities like the correlations functions
depend on the coupling constant through this combination. This invariance maintains an
equivalence between a weak« 1 and strongb >> 1 coupling limits. This duality as
well as the functional relations based on the conformal bootstrap methods are essential
ingredients to obtain exact correlation functions uniquely for the LFT [5]Mhe 1 SLFT
[6], and their boundary extensions [12—15].

Differently from its simpler relatives, thé&v = 2 SLFT is not renormalized and no
duality appears. This non-renormalization is a general aspedt ef2 supersymmetric
guantum field theories in two-dimensional space—time. Without the duality, the functional
relations satisfied by the correlation functions cannot be solved uniquely. In [18], an
N = 2 super-CFT has been proposed as a dual theory tavthe 2 SLFT under a
transformationb — 1/b. Based on this conjecture, the bulk two-point functions, or
“reflection amplitudes”, of both Neveu—-Schwarz (NS) and Ramond (R) sectors have been
computed and various independent checks have been made.

Computing the one-point functions of thé = 2 SLFT is more complicated. The
standard approach for one-point functions initiated by [12,13] and followed by [12,14,15]
is the conformal bootstrap method which can generate functional relations using the
conformally invariant boundary actions as boundary screening operators. The boundary
action of theN = 2 SLFT has been recently derived in [19]. However, the lack of the
duality prohibits this approach here too. Namely, tfie= 2 SLFT with this boundary
action is not self-dual either and one needs to know the boundary action of th¥ dual
theory. Without this, one cannot solve the functional relations uniquely. Due to the non-
locality of the bulk action of the duaV = 2 theory [18], the method used in thé= 2
SLFT [19] seems not be applicable. We need a different approach. In the previous works
[13-15], one-point functions have been obtained from the conformal bootstrap methods
and confirmed by modular transformation properties using a known relationship to the
conformal boundary states [20]. In this paper we reverse the steps; we first derive the one-
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point functions from the modular transformation properties. Then, we relate them to the
bulk and boundary actions of thé = 2 SLFT and its dual theory by conformal bootstrap
methods. Although the functional relations obtained in this way is not complete due to the
limitation we already mentioned, they can give essential informations which the modular
transformations cannot provide.

There appeared already a paper which used the modular transformation method to find
the one-point functions and associated boundary states [11]. However, this paper considers
only a special value of coupling constant and only a vacuum BC. Moreover, a direct relation
to the N =2 SLFT is missing. Our results include general one-point functions for general
BCs parametrized by a continuous parameter. We also provide various consistency checks.
Using the one-point functions, we rederive the bulk reflection amplitudes and compare
them with those derived independently [18,21]. Also we provide semiclassical checks.
Furthermore, as previously described, we provide conformal bootstrap analysis based
on theN =2 SLFT and its dual theories and confirm the one-point functions obtained
from the modular transformations are consistent with the bulk and boundary actions. As
byproducts, we obtain a relation between the continuous BC parameter and the boundary
cosmological constants of the two dual theories.

This paper is organized as follows. In Section 2 we introduce the bulk and boundary
actions of theV = 2 SLFT along with notations. Then, we derive the characters and their
modular transformations in Section 3. In Section 4, we present our main results, the one-
point functions and functional relations from the conformal bootstrap along with several
consistency checks. We discuss a relation to boundary two-point functions and some con-
cluding remarks in Section 5.

2. N =2 super-Liouvilletheory

The action of theV = 2 SLFT with the boundary is given by
1 _ _ _ _ - -
S = /dzz[g(adfadﬁ +3¢T” +y YT +y Ay Y ayt + YY)

FipbPy TP L ipb?y et + nM2b26b<¢++¢)] + S,
(2.1)
where the boundary action is derived to be [19]

o0
. . 1
Sp = f dx [—J—n(ww +y Y+ Ecraxcﬁ
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As inthe LFT and thev = 1 SLFT, one should introduce a background chargesb that
the interaction terms in Eq. (2.1) become the screening operators of the conformal field
theory (CFT). As mentioned earlier, this background charge is unrenormalized due to the
N =2 supersymmetry and thé = 2 SLFT is not self-dual.

The stress tensdf, the supercurrerG* and thel (1) currentJ are given by

T=-30¢ ¢ — %(w*aw* +y oY)+ 2—1b(az¢+ +9%7), (2.3)
G* = f2i<¢ia¢i — %wi), J=—y ¥t + %(aqﬁ —3¢7). (2.4)

Using the mode expansions for the currents and their operator product expansion, one can
find the N = 2 super-Virasoro algebra

[Lm, Gri] - (% B r) G$+r7 [Jn’ Gri] = :l:GlzitJrr’

c 1
{GF Gy =20 + =) s + 3 <r2 - Z)mx, {6767} =0,

C
[Lin, Jul= —nJmin, [Jm, Jnl = §m8m+n,

with the central charge
c=3+6/b° (2.5)

Due to anti-periodicity for the (NS) sector, the fermionic modes are given by half-integers
while for the (R) sector they are integer modes due to the periodicity.

The primary fields of thev = 2 SLFT are classified into the (NS) and the (R) sectors
and can be written in terms of the component fields as follows [22]:

Nyg = ea¢++&¢7, Rozi& = aie“qﬁ"'&d’i, (2.6)

whereo* is the spin operators.
The conformal dimensions and th& 1) charges of the primary fields, ande& can
be obtained:

_ 1 _ 1
A =—0d+ @ +d), A=At 2.7)
and
1 1
a):z(a—&), wF=w+ > (2.8)
It is more convenient to use a ‘momentum’ defined by

1
o= +2P, (2.9)

and theU (1) chargew instead ofw, &. In terms of these, the conformal dimensions are
given by

4 p2y 2.10
Wt Ty (2.10)
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From now on, we will denote a (NS) primary state|b®, »]) and a (R) state bjf P, w, €])
with e = £1.
One can notice that the conformal dimensions &ritl) charges are invariant under

a—>1/b—a,  a—1/b—a. (2.11)

This meansV,g should be identified witiV1,—q,1/,—& and similarly, for the (R) primary

fields, up to normalization factors. In terms of the momentum parameter, this means
an invariance undeP — —P. In semiclassical picture where the primary fields can be
described by plane waves with momentémin the bosonic zero-mode space, this relation
would imply that the wave with a momentu is reflected off from the potential wall

and changes the momentum+a@. This qualitative description can be extended to the full
guantum region where the exact reflection amplitudes are defined and computed using the
functional relation methods. We will be back to this issue in Section 4.

3. Charactersand modular transfor mations

A character is defined by the following trace over all the conformal states built on a
specific primary state:

xn(q, v, 1) = eZm'kt Tr[qLo—c/24yJo]_ (3_1)
Herek is a fixed constant for a given CFT and we ket 1+ 2/b2 for the N = 2 SLFT.

In terms of the modular parameters given by

g= eZm’r’ y :eZJTl'U’ q/ =e—2m’/r’ y/ ZeZJTiU/T (32)

the modular grouL(2, Z) is generated by the two elemeritsS

T:(t,v,t) = (t+1,v,0), Si(z,v, 1) = (-1, v/r,t—v2/2t). (3.3)
While the character transforms simply under

xn(T, v, 1) = 21 hI2 y, (2 v, 1), (3.4)
the characters transform undenon-trivially and are expressed by the modwfamatrix:

Xh (—1/r, v/T,t — v2/2t) = Zshh’Xh’(T, v, 1). (3.5)

h/
3.1. N =2 SLFT characters

To compute thev = 2 SLFT characters, one should classify all the decendents by acting
the super-Virasoro generators on a highest weight state, excluding not independent states
[23]. If we denote a (NS) primary field by the momentutmand U (1) chargew, the
decendents are given by

+ + - "
LI ST G926 N G 6T, P wl). (36)
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where the exponents;,m; are arbitrary non-negative integers aa8l = 0,1 since
+2
Gr°=0.
For generic values oP, w, the N = 2 SLFT has no null states and the characters can
be obtained by simply summing the states. Using the definition given above, the character
is computed to be

2riki [ ~1/8+P24b20? /4w f—o[ 1+ yq" V2 1+ y~1g"1/?)
(1—gm)?
ikt P24b?0? /4. 000(q, ¥)
=eZJnkth +bwe /4w 2 (37)
n(q)
where we have introduced standard elliptic functions in the second line

NS
X[p,w](qy y,t)=e
n=1

o
n(g)=q"** ] (1-q"). (3.8)
n=1
o
boo(q.y) = [[(1—4") 1+ yq" Y2 (1+y q" 7). (3.9)
n=1
The denominator of Eq. (3.7) originates from the mofleg andJ_,, and the numerators
from G*,.

For the conformal BCs of super-CFTs, one needs to consider characters and associated

Ishibashi states of th@NS) sectors [24]. Th€NS) characters are defined by
xS, y, 1) = eZTiK Tr[(—1)F gLo—er24y o], (3.10)
For a N =2 SLFT primary field with[P, w], (—1)F term contributes—1 for those
decendents with odd number fo,. This effect can be efficiently incorporated into the
character formula by shifting — —y in the product. Therefore, théNS) character is
given by
2rikt [ P40 4 »?00(q, EY)_ (3.11)
n(q)

The characters of the (R) sector are rather different. Decendents of a (R) primary field

with [P, w, €] whose conformal dimension and charge are given in Egs. (2.10) and (2.8)

are constructed by acting_,’s, J_,'s and Gj_Er’s. While n is any positive integer, one
should be careful for. As noticed in [23], the (R) primary states satisfy

GE|(P,w, £])=0. (3.12)

NS
X[p,w](q,y,t) =e

Therefore, the (R) decendent module can include an extra Gﬁ‘it{aP,w, F]) and its
decendents, respectively. Including these at each valagasfe can find the (R) character

o0 -1 _n
) 2,72 2 _ A+yg"A+y q")
Xfpo1(@: ) = g Ly ) [ =15

_ eZm’kth2+b2w2/4yw 910(%3” (3.13)
n(q)

n=1
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where we introduce another elliptic function

b10(g.y) = (y2+ y )BT T [(1 - ¢") (A + yg") (1+ y ")) (3.14)
n=1

3.2. Modular transformations

Here we consider only transformationq, vy, r) — (¢’, y’, ') defined in Eq. (3.3) with
' =t — v2/2t. For irrational CFTs such as the SLFTs with infinite number of primary
fields, the modulas-matrix will be indexed by continuous parameters and the summation
will be replaced by integrations.

First, the modular transformation properties of the elliptic functions are well-known:

000(q", ') _ aivzye i B00(q. ) 010(4", ) _ xiveye i b00(@, —y)
n(g")?3 L TCOL n(g")?* T (g3
Using these and Gaussian integrals, we have found the following modular transformations:

(3.15)

X[Pwl(q v, t'Y=b /dP’/da) cog4n PP )e_’”b wo XIPS,’w,I(q,y,t), (3.16)

—0o0 —00

Pw](q y.i)=b /dP /dcu cogdn P P)e Tib e Xbr o c1@ ¥, 1),
—co oo (3.17)

Xywea@ .y t)=b /dp’fdw cog(4n P Py TibPew X[P,wl(q v, 1).
-0 (3.18)

3.3. Chiral primary fields

An interesting class oV = 2 SLFT primary fields is a chiral (and anti-chiral) primary
field defined by

Gty llP, w])=0. (3.19)

Anti-chiral fields are defined bg_, ,. Since they are almost the same, we consider only
the chiral fields. If a primary field is chiral, then it should satisfy

GI/ZGjl/ZHP,w]):(ZLO_ JO|[P,0])=0 — 24A=o. (3.20)
This means
1 , ba? o bo 1
e py P=il——-=—). 3.21
RIN L ,(2 2b> (3.21)

We denotelw) = |[P, w]). All the decendent states of a chiral primary field including
Gfl/z mode must be truncated from the Hilbert space. This meﬁ@s: 0in Eg. (3.6).
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The character of a (NS) chiral primary field, then, can be written as Eq. (3.7) except one
difference that the terrfl + yg"~/?) starts fromn = 2 because the moctﬁ‘,fl/2 does not
contribute. This changes the character into

_ 2
ikt 4 Y (vgY® 600(q, )
1+yqY2  n(g)®

Using the method introduced in [25], one can derive the modular transformation of the
character as follows:

o0 o0 2 /
b e costi2rb P'(w — 1 — )]
X (a1 = > / dP’ / da)’[ L
—00 —00

(3.22)

Xhy@.y.0)=e

2 COSHn’bP’ =+ %Zw/) COSH]TbP/ _ 7Til722a)’)
e*ﬂibz(wfl)w’ cosh27b P (w — biz)]
2 COSK]TI)P/ + %2‘”/) COSI’(TL’bP’ _ ﬂibzzw’)
1+bi2

—7i /L
+iz / do e i (no+wto hz)qgnZyknxllzl)/S)(q’yan).
nez

NS
]X[p/,w/](q, v, 1)

|H

(3.23)

N

b

Similar formulae for the anti-chiral (NS) primary fields and (anti-) chiral fields of the (R)
and other sectors can be obtained.

3.4. Identity (vacuum) operator

As we will see shortly, the identity operator plays a very important role in our derivation
of the one-point functions. Therefore, we need to derive the character of this. The vacuum
state|0) = |[—i/2b, O]) satisfies

ijl/2|0) =0, L_1|0)=0. (3.24)

This means that allowed decendents are given by Eq. (3.6) with restrictionsthat
ef/z = 0. After excluding these states, one can find the (NS) character is given by

_ 2
ik g V" (1—-9q) oo(q, )
A+ yqY2) A+ y~1gY2) n(g)3
It is obvious that the two factors in the denominators arise in the same way as the chiral

fields and the factor + ¢ in numerator comes from deducting the null state at level 1. If
expanding the “specialized” character in a power series afe obtain

(3.25)

X0y, y.t)=e

X00@ 1,0 =1+q+29%°+3¢°+---. (3.26)

We can identify first few levels with explicit decendent states. As expected, the |&el 1
states are all truncated out and there is only one state left at the level 1, ndmgQy,
Two states at the level/2 should beG*, /2|0) and three states at the level 2 are created by

2
L_3,J 2,J%;.
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The modular transformation of Eq. (3.25) can be derived as before following [25]

X|os(q vt = /dP/deNS(P CU)X[Pw(q v, 1)

—00

—}—ZZ / dw’sin[n(w —b—lz)]qzn yk;letl)%(q yq". 1),

2 (3.27)
sinh(2b P) sinh(Z L)

2b—1lcosh(mbP + @) cosh(mbP — @)'

Sns(P, w) = (3.28)

The first terms in Egs. (3.23), (3.27), which are of our main concern, can be also

derived by expanding the denominators of Egs. (3.22), (3.25), applying Eq. (3.16), and

resuming formally the infinite terms. However, this geometric sum can diverge and misses
the contributions from the chiral primary charactérds explained in [26], these parts

are necessary and have physical meanings with respect to the spectral flows of the
superconformal field theories [27]. _

We will need to know the modular transformation of the identity operator in &) (
sector in the next section. For this, the Hilbert space of the conformal tower of the identity
operator is the same as the (NS) sector. As explained previously, the basic difference in this
character arises from tiie-1)F which changes — —y in effect. Therefore, the character
is given by

_ 2
2mikt g Y¥ (1—-q) Boo(g, —y)

NS
X0 (g, y. 1) =e 3.29
074> A= yg"D A=y 47 n(q)? (3:29)
Using the previous method [25], one can find the modular transformation
X0’y 1)
/dP/deR(P w)X[Pwe](q Y, t)
—00
+1
b2
H 1 n~-—z n— n
+2 Z dw’sm[ (a) —b—>]q2( 4)yk( 2) Xlo' >(61,yq ,t),
nel+; % (3.30)
sinh(27 b P) sinh(ZL
Sr(P. ) = NErbP) S ) (33D)

2b-1sinh(h P + Z52) sinh(rh P — ey’

2 We thank the authors of [26] for pointing this out.
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4. One-point functionsin the presence of boundary

In this section, we compute exact one-point functions of the (NS) and (R) bulk operators
Noa andR¢; of the N = 2 SLFT with boundary. The one-point functions are defined by

UNS(@, @) UR(e, @)
T oA T S AR’
€ — &4 € —§|*%a
with the conformal dimensions given in Eq. (2.7). We will simply refer to the coefficients
UNS(a, @) andUR(«, @) as the one-point functions.

(Noa(&.8)) = and (RS (€,6))= (4.1)

4.1. Vacuum boundary condition

According to Cardy’s formalism, one can associate a conformal BC with each primary
state [8]. For theV = 2 SLFT, there will be infinite number of conformal BCs. These BCs
can be constructed by the fusion process and related to the one-point functions. Let us
begin with the ‘vacuum’ BC which corresponds to the identity operator. First we introduce
an amplitude as an inner product between the Isibashi state of a primary state and the
conformal boundary state

Ue'S(P, ) = ((O)[[P, w])). (4.2)
From the modular transformation Eq. (3.27), the amplitude satisfies the following relation:
wS(P, )9y (P, ) = Sus(P, ). (4.3)

Sincellfé\'ST(P, W) = tI/ONS(—P, ), one can solve this up to some unknown constant as
follows:

[b3 TG —ibP+ 22T G —ibP - 52)
UNS(P. ) = | 2 (Xng) B —2 2 2 2 ) 4.4
o (Pre) =5 (s r(—Z2)r(1—2ibP) @

The unknown constankys does not depend o, w and cannot be determined by
the modular transformation alone. We will derive this constant later in this section by
comparing with the bulk reflection amplitudes.

Similarly, for the (R) sector, we define the (R) amplitude by

YR(P, 0) = ((0)|[P, o, €])) (4.5)
which satisfies from Eg. (3.30)

+
PRP, ) (P, w) = SR(P, ). (4.6)
The solution is up to a unknown constant:

2 2
s i» T(—ibP + 221 —ibp — 22
WRP.w)=—i\| = (Xp) ¥ — , 2.
2 (=551 —2ibP)

Again, the unknown constatdg will be fixed later.

4.7)

3 We denote a conformal BC in ‘bold face’ lik®and a conformal boundary state lik®)).
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4.2. Continuous boundary condition

Now we consider a continuous BC associated with a primary field. This field should
be (NS) and itd/ (1) charge should be zero because only the boundary neutral operators
should appear. So, we consider the character of a (NS) primary|sfate|[s, 0]) and
its modular transformation. The parametetlepends on the boundary parametegr in
Eqg. (2.2). In this case Eq. (3.16) becomes

o0 o
NSy, ,/)zb/dpfdwcos(4nsp)xl’}?w](q,y,t). (4.8)
—0o0 —0oQ

Now following previous analysis of the modular transformation, this character should be
written as

o o0
XNy, t’):/dP / dwWNS(P, )3T (P, ) (¥, (. y. ). (4.9)
—0oQ —00

Here we have defined an inner product between the conformal boundary state and an
Ishibashi state

WIS(P, w) =((9)I[P, w]). (4.10)
From Egs. (4.8) and (4.9), one can find
WNS(P, )W NST(P, w) = bcogarns P). (4.11)
Now actingll/oNS(P, ) on this and using Eq. (4.3), we obtain

coS4nrsP)
Sns(P, w)
— i» T+ Z2Yr(2ibP)cogdnsP
_ 2b3(XNs)TP ( b)z(l ) cog4ns )2 .
rG+ibP+52raG +ivp - 22)
One can follow the same step for the (R) sector. From Eq. (3.17) ®iths, w = 0,
one can find

wNS(P, w) = bWNS(P, w)

(4.12)

YR(P, )¢l (P, w) = bcosansP), (4.13)
where
YR(P, 0) = (0[P, o, €])). (4.14)

Using Eq. (4.6) on this, we can obtain
coq4nsP)
SR(P, w)
i» T(L+ ZBY[(2ibP)cod4rsP
= iVaR oy § o LERD ORI
FA+ibP —ErbP + 22

WR(P, w) = bW (P, w)

(4.15)
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The amplitudes (4.12) and (4.15) we have obtained are the one-point functions of the
two sectors up to some normalization constants. To fix these constants, we recall the
relation proved in [20]

(()1)
((k)10)

wherek is a conformal BC¢ a primary field, and¢)), its Isibashi state. For thy = 2
SLFT, this relation means

Ye'S(P, w) WR(P, w)
WNS(—i/2b,0) WwNS(—i/2b,0)
From Egs. (4.12) and (4.15) we can obtain the one-point functions as follows:

Uk(¢) =

(4.16)

UNS(P,w) = UR(P,w) = (4.17)

I'(1+ ZPY[(2ibP) cod4ns P)

UNS(P, w) = N'(Xns) T , (4.18)
s rG+ibP+2Zr@& +ibp - 22)
i T(1+ 22T (2ibP) cog4ns P
UR(P, w) = N (xp) # -+ 5 )TCIDR) CORAms ) (4.19)
FA+ibP — 52 (ibP + 22)
where the normalization coefficienf can be fixed by
NS, 17262 2 275\
Ug>(—i/2b,0)=1— N = | (Xns) /" T (14 b%) cos - ) (4.20)
Then, fromUR(—i/2b, 0) = (¢*), one can find
2/ x 1/2b2
(o) = —(—R> : (4.21)
7 \ XNs

The constantXys and Xr will be fixed shortly.
4.3. Bulk reflection amplitudes

The invariance of both conformal dimensions @&hd.) charges under Eg. (2.11) means
that N1/5_a,1/5—o Should be identified wittiV,; and similarly for the (R) operators up to
normalization factors. The reflection amplitudes are defined by two-point functions of the
same operators

DNS 7— o DR 7—
(Na&(z,z)Na&(o,O))zﬁ, (R;a(z,z)Rw(o,O))zﬁ (4.22)

with ANS, AR givenin Eq. (2.7). In general, identification of the two fields gives a relation

(Noa(z,7)...) = DNS(a, &)(N%i&,%fa(z, 2...) (4.23)
and similarly for the (R) sector. Here the partcan be any products of the primary fields.

It turns out that the computation of these quantities is much more complicated than that
of the LFT or theN =1 SLFT case. As we mentioned earlier, the reason is the lack of the
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self-duality. In [18], the reflection amplitudes of the primary fields with Zéd) charges

have been derived based on a conjectuved 2 super-CFT which is dual to th =2

SLFT. While these results are based on the conjecture, the resulting reflection amplitudes
have passed several consistency checks. Moreover, these results are in exact agreement
with the reflection amplitudes which have been derived from certain integrable field theory
with two parameters proposed in [28] which generates 2 supersymmetry at special
values of couplings [21]. This agreement between two independent approaches strongly
supports the validity of the reflection amplitudes and the dual action.

Here, we provide another independent derivation of the reflection amplitudes based on
the one-point functions we have derived. This computation will provide not only another
confirmation of the results, but also can be used to fix the undetermined constants. The
reflection relations among the correlation functions can be used for a simplest case, namely,
the one-point functions. In this case, the relation becomes

(Naa(z.2)) = D@, @)Ny_g 1, (2. 2). (4.24)

(Roa(2,2)) = DR (@ ®)(R1_g 1o (2. D))- (4.25)
These lead to the following equations:

USSP o) s UR(P,0) g

W—D (P, w), m—D (P, w). (4.26)

For the neutral sectas = 0, the reflection amplitudes has been derived in [18]

2Lt ZPYT(1+iPb) T(: —iPb)

7.0 r(l—z’—P)F(l le)I‘(§~|—sz) (4.27)
o T+ 2L - r Pb
DR(P.0) = 2P/ ¢ +2P)F(1 iPb) LG +iPb) (4.28)
rQ-2Z8T(A+iPb)T(3—iPb)
where
2.2 2 2
_mmS o b7\ (b° ., 3
k=— y(=b l)y(l+ 2))/(2 +2>, (4.29)

with y (x) =T(x)/T'(1 — x) and the bulk cosmological constanin Eq. (2.1).

Insertingw = 0 and using (4.18) and (4.19), the reflection amplitudes in Eq. (4.26)
are indeed in exact agreement with Eqgs. (4.27) and (4.28) if and only if we identify the
constants
Xst XR = [22b2K]_1. (430)

This provides a non-trivial check and completes our derivation for the one-point functions.
Furthermore, we can use Eq. (4.26) to compute the reflection amplitudesA@r case

21P/br(1+ 2y r@ibP)
F(1_21_P) I'(—2ibP)

DNS(P, w) = (2%%«)”

r(i—szJr Poyrd —ipp - e
r(2+sz+bZW)F(2+sz bzw

(4.31)
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and

—2ipp A+ ZIP) [(2ibP)
ra- 2171’) ['(—2ibP)

DR(P, w) = (22°)

F(1—ibP — Z2) D(—ibP + 22)
X .
FA+ibP —22) T(ibP + 22

These results can be compared with those from the two-parameter family models [21] and
we checked that two independent results match exactly.

To complete our derivation of the one-point functions, we should relate the boundary
parametes with the boundary cosmological constang in Eq. (2.2). In principle, one
should do this by deriving the functional relations following [12,14,15]. Solving these
coupled equations, one can find the relation between the boundary parameters. However,
without the boundary dual theory, this method does not work well forthe 2 SLFT.
Instead, we analyze the pole structure of the one-point functions and compare them with
direct calculations using the bulk and boundary action.

For this, we consider one-point function of a neutral (NS) fi€ld

(4.32)

NS B 1
residue”— ) = (2 @747 = Z —_(e*@ 9Ty P ) | (4.33)
N o122 r'q!

whereV, B are the interaction terms in the bulk and boundary actions. If we choesk
(¢ =1/2b — b/2), all terms vanish except= 0, ¢ = 2 which can be easily computed:

(ea(¢++¢7) (i/2)B2>O

ee —2ab —2ab )
=—2ﬁ%fdx1dxz -l pe-g| T
—0oQ
1402 14 b2
zsn,zzBr(—bZ)y< +2 )sin(n +2 ) (4.34)
with
214
2 _ o Kb
=us + . 4.35
Hp=Hp 1611% ( )
The residue of Eq. (4.18) at=a = 1/2b — b/2 becomes
b I(—b?
222 k)Y 2(72) cosh2rsb). (4.36)
2 1-b%y2
I'(=5—)
Comparing these two, we find
o ub
iy = —cosr(Znsb) (4.37)

32n

This result is based on the first order perturbative computations and should be confirmed
for the higher orders.
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4.4. Conformal bootstrap approach

The procedure to derive the functional equations satisfied by the one-point functions are
identical to [12,14,15]. Consider two-point functions of neutral operators,

Go* 8N =R, ©ONa(®).  Gg6.6)=(R"; ©OF, ) (4.38)
WhereRfl/Zb is a degenerate (R) operator, whose OPEs are given by
RY  Ny=[RY ]+ NS@)[RT ] (4.39)
% =35 atgp
Ry Ry =[N, g ]+ CR@N, 3] (4.40)

~2
Here the brackdt ..] means the conformal tower of a given primary field and the structure
constants have been computed in [18] based on theduaPl SLFT:

& - pra-3%
-2+ 5
ML+ 2% - 5Hr-3

N(—2% 4+ LHra+ 2y’

CNS(a) =amy (1 + bfz)

(4.41)

CR(a) = fimy (1+b72)

(4.42)

wherefi, the cosmological constant of the dual theory, has been related to that™d&the
SLFT in [18].
These two-point functions can be expressed as

GNS(e,¢) = UR(a — g)ﬂs@, £+ cNSm)UR(a + g)gﬂs(s, £,  (4.43)

GR,&h) = UNS<a - g)gi‘(s, £+ cR<a>UNS<a + g)gi‘@, £, (4.44)

whereGy (¢, &£')'s are expressed in terms of the special conformal blocks

& — E2A° 245

G5, &) = P FYSm), (4.45)
r_ gr2AR-2a%3,
06,60 = E e PR, (4.46)
with
y— EZEE -8
E—ENE—§&)

Here, the conformal blocks are given by the hypergeometric functions

p _1_1 20 1 2« 1
NS =nb 1— 2 2F e 1 —, T — =& 1
Fm=ntd—mn) » (b,+b2,b p2 T L),
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. _2 1 200 2 20 1
NSoy=pfa—p 2R S 1o S
FEm=nrA—=mn) » b2 s T Tzt

a1 11 2 1 2« 1
FRY=nP"2Q—n) 2 2F( = +1, 55— - S +21),
Lm=nr"2(1-n) (b tlogip et n)
o 1 241 1 20 2 2 1
fR —=nb 2 1— »2 2F —’—1__ — —— —; .
—(m=nt"2(1—-mn) <b2 s T T T 77)

On the other hand, one can compute the two-point functions aslbfqt}ib andnN, or

R, approach on the boundary. The fusion of the degenerate operator with the boundary
is described by a special bulk-boundary structure constant which could be computed as
a boundary screening integral with one insertion of the boundary interaction of the dual
N = 2 theory if it were known. Since we cannot fix it, we denote the unknown constant
just asR(—1/2b). Then, we can obtain the system of functional relations as follows:

rl-%+2)r-2
SEEA VPRI AN i Ry
2b rd-35+2ra-%) 2b
P+ 5 - 5T 5 R<
r1-2)ra- )

+ CNS(w)

1
— |, 4.47
o+ 2b> (4.47)

R4 )om - TEZETCE) pas(, L)
2b M&—-Z)ra-5 2b

1 _ 2 2
4Rt 1 fZ)UNS<"‘+i>' (4.48)
M(=2)rd-5) 2b
Although we do not know the bulk-boundary structure constant, we can eliminate it by
taking ratio of above equations and find one relation which is completely fixed. It can
be shown that the one-point functions Eqgs. (4.18) and (4.19) indeed satisfy this relation.
This means not only that the one-point functions obtained from the modular bootstrap
procedures are consistent with the= 2 SLFT actions, but also that th€ = 2 theory
proposed in [18] is indeed dual to thé = 2 SLFT. Furthermore, we can find the bulk-
boundary structure constant as follows:

R(—2Hr1- 3

a5 =cos)—(?>. (4.49)
M(—%)/imy(d+ )

Along with Eq. (4.37), this equation relates the boundary cosmological constant of the

N =2 SLFT with that of the duaN = 2 theory.

4.5. Semiclassical checks

These results can be checked, semiclassically» AsO, theN =2 SLFT (2.1) can be
described by the Schrddinger equation
1 32 7T2/,L2b2

s+ DT 2% |y (@) = 2P2Wp (P 4.50
[ 23¢§+ g ¢ } p(Po) p(Po) (4.50)
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wheredg = (qﬁar + ¢y )/2 in terms of the zero-modes oft. Solving this, one can derive
the reflection amplitude

2,2\ —2iP/b I+ Zi_P)
DNS(P, w) = —(M) Bl 4.51
(P, w) 16 T(-2E) (4.51)

and can show that this is consistent with Eq. (4.31).
Another interesting check is to compute the inner product semiclassically

o0
(9P, w]) = / dPo ¥, (P0)¥p (Do), (4.52)
—00
where the boundary state can be expressed by the boundary Lagrangian following [12]
Wp, (Po) = exp(—8r2h 1 ji5e"?0), (4.53)
with 1 p a boundary cosmological constant defined in Eq. (4.35). From this, one can find
8722\ ~2P/b /oip
R e I ] (4.54)

which, along with Eq. (4.37), agrees with Eq. (4.12).

5. Discussions

Using the one-point function, one can find a density of states which can be related to the
boundary two-point functions. The partition functizﬁ‘f,(q, v, t) with continuous BCs on
both boundaries parametrized bwynds’ can be obtained as

ZNS(q v, t)_/dP/da)X[Pw q.y, t)lI/NS(P a))IIINST(P ) (5.2)

with the amplitude (4.12). This can be rewritten as

o0
ZS'\fsS,(t) =b / dP'dw dP dwe 47PP gminbod
—00

:
X Kbt (@ ¥ VPSSP, IGS (P )

oo oo

:/dP/dwx[Pw (g, y,t),oYY (P, w), (5.2)
0 0
wherep”/ (P, w) is the density of states,
ror bv) + costw)
coshbv) + cogu
prsy(Prw) = 72 / du / dv|:23inr(bv)sinh(v/b):|
—0oQ —0oQ

x COY25v) COg2s v)e2vP—iue, (5.3)
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This quantity is not well-defined & = 0 and is to be properly regularized. This density
of states is, on the other hand, coqjectured to be related with the two-point function
dgs(P, wls, s") of boundary operator.’, by

d

i
prS (P, w) = ~5-7p logdyS(P, wls, s"). (5.4)

In this paper, we have derived one-point functions of #he- 2 SLFT and provided
various consistency checks. Our consistency checks also confirms the validity of the dual
N = 2 super-CFT conjecture in [18] and the boundary action proposed in [19]. It would
be interesting to provide the boundary action for the dual theory so that one can complete
the boundary bootstrap procedure for tfie= 2 SLFT with the boundary. Our result can
be applied to 2d superstring theories and related topics generalizing the work/@nrtte
SLFT [10]. These results also can be used to study the integrable quantum field theories
with N = 2 supersymmetry which can be constructed as pertusbed?2 SLFT. We hope
to report a progress in this direction in future publications.

Note added

After finishing this article, we found a paper [26] which results overlap with oursin large
part. While this paper deals mainly with the vacuum BC and applications and implications
to the string theory, we are more interested in the one-point functions for a continuous
BC in terms of the boundary cosmological constant and their relations to the conformal
bootstrap equations.
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