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Abstract

We derive one-point functions of theN = 2 super-Liouville theory on a half line using the modu
transformations of the characters in terms of the bulk and boundary cosmological constants.
show that these results are consistent with conformal bootstrap equations which are based on
and boundary actions. We provide various independent checks for our results.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Two-dimensional Liouville field theory (LFT) has been studied for its relevance
non-critical string theories and two-dimensional quantum gravity [1,2]. This theory
been extended to the supersymmetric Liouville field theories (SLFTs) which can de
the non-critical superstring theories. The LFT and SLFTs are irrational conformal
theories (CFTs) which have continuously infinite number of primary fields. It is very
portant to develope a CFT formalism which can apply to these irrational CFTs. There
been a lot of developments in this direction. Various methods have been proposed [3
rive structure constants and reflection amplitudes, which are basic building blocks to
plete the conformal bootstrap [4,5]. These have been extended to theN = 1 SLFT in [6,7].
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More challenging problem is to extend these formalism to the CFTs with a bou
with a conformal boundary condition (BC). Cardy showed that the conformal BCs c
associated with the primary fields in terms of modularS-matrix elements for rational CFT
[8]. It has been an active issue to extend Cardy formalism to the irrational CFTs. For
ple, the conformally invariant boundary states can be related to D-branes in the con
string theories [9–11]. An important progress in this direction has been made in [12]
a boundary action which preserves the conformal symmetry, one-point function of a
operator and two-point correlation functions of boundary operators have been compu
conformal bootstrap method which extends the functional relation method develop
the bulk theory [4]. A similar treatment of the LFT defined in the classical Lobachev
plane, namely the pseudosphere has been made in [13]. This approach is generaliz
N = 1 SLFT for the one-point functions [14] and the boundary two-point functions [1

In this paper, we extend this approach to theN = 2 SLFT. This theory is of a particula
interest in the string community for rich properties [16]. In spite of the extended symm
it turns out that exact correlation functions of theN = 2 SLFT are much more difficul
to derive than previous cases. The main reason is that theN = 2 SLFT has no strong
weak coupling duality. The invariance of the LFT andN = 1 SLFT underb → 1/b is
realized when the background charge changes to 1/b + b from its classical value of 1/b
after quantum corrections [2,17]. All the physical quantities like the correlations func
depend on the coupling constant through this combination. This invariance mainta
equivalence between a weakb � 1 and strongb � 1 coupling limits. This duality as
well as the functional relations based on the conformal bootstrap methods are es
ingredients to obtain exact correlation functions uniquely for the LFT [5], theN = 1 SLFT
[6], and their boundary extensions [12–15].

Differently from its simpler relatives, theN = 2 SLFT is not renormalized and no
duality appears. This non-renormalization is a general aspect ofN = 2 supersymmetric
quantum field theories in two-dimensional space–time. Without the duality, the func
relations satisfied by the correlation functions cannot be solved uniquely. In [18
N = 2 super-CFT has been proposed as a dual theory to theN = 2 SLFT under a
transformationb → 1/b. Based on this conjecture, the bulk two-point functions,
“reflection amplitudes”, of both Neveu–Schwarz (NS) and Ramond (R) sectors have
computed and various independent checks have been made.

Computing the one-point functions of theN = 2 SLFT is more complicated. Th
standard approach for one-point functions initiated by [12,13] and followed by [12,1
is the conformal bootstrap method which can generate functional relations usin
conformally invariant boundary actions as boundary screening operators. The bo
action of theN = 2 SLFT has been recently derived in [19]. However, the lack of
duality prohibits this approach here too. Namely, theN = 2 SLFT with this boundary
action is not self-dual either and one needs to know the boundary action of the dualN = 2
theory. Without this, one cannot solve the functional relations uniquely. Due to the
locality of the bulk action of the dualN = 2 theory [18], the method used in theN = 2
SLFT [19] seems not be applicable. We need a different approach. In the previous
[13–15], one-point functions have been obtained from the conformal bootstrap me

and confirmed by modular transformation properties using a known relationship to the
conformal boundary states [20]. In this paper we reverse the steps; we first derive the one-
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point functions from the modular transformation properties. Then, we relate them
bulk and boundary actions of theN = 2 SLFT and its dual theory by conformal bootstr
methods. Although the functional relations obtained in this way is not complete due
limitation we already mentioned, they can give essential informations which the mo
transformations cannot provide.

There appeared already a paper which used the modular transformation method
the one-point functions and associated boundary states [11]. However, this paper co
only a special value of coupling constant and only a vacuum BC. Moreover, a direct re
to theN = 2 SLFT is missing. Our results include general one-point functions for ge
BCs parametrized by a continuous parameter. We also provide various consistency
Using the one-point functions, we rederive the bulk reflection amplitudes and com
them with those derived independently [18,21]. Also we provide semiclassical ch
Furthermore, as previously described, we provide conformal bootstrap analysis
on theN = 2 SLFT and its dual theories and confirm the one-point functions obta
from the modular transformations are consistent with the bulk and boundary action
byproducts, we obtain a relation between the continuous BC parameter and the bo
cosmological constants of the two dual theories.

This paper is organized as follows. In Section 2 we introduce the bulk and bou
actions of theN = 2 SLFT along with notations. Then, we derive the characters and
modular transformations in Section 3. In Section 4, we present our main results, th
point functions and functional relations from the conformal bootstrap along with se
consistency checks. We discuss a relation to boundary two-point functions and som
cluding remarks in Section 5.

2. N = 2 super-Liouville theory

The action of theN = 2 SLFT with the boundary is given by

(2.1)

S =
∫
d2z

[
1

2π

(
∂φ−∂̄φ+ + ∂φ+∂̄φ− +ψ− ∂̄ψ+ +ψ+∂̄ψ− + ψ̄−∂ψ̄+ + ψ̄+∂ψ̄−)

+ iµb2ψ−ψ̄−ebφ+ + iµb2ψ+ψ̄+ebφ− + πµ2b2eb(φ
++φ−)

]
+ SB,

where the boundary action is derived to be [19]

SB =
∞∫

−∞
dx

[
− i

4π

(
ψ̄+ψ− + ψ̄−ψ+) + 1

2
a−∂xa+

− 1

2
ebφ

+/2
(
µBa

+ + µb2

4µB

a−
)(
ψ− + ψ̄−)

− 1

2
ebφ

−/2(µBa
− + µb2

4µB

a+)(
ψ+ + ψ̄+)

( ) ]

(2.2)− 2

b2
µ2
B + µ2b4

16µ2
B

eb(φ
++φ−)/2 .
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As in the LFT and theN = 1 SLFT, one should introduce a background charge 1/b so that
the interaction terms in Eq. (2.1) become the screening operators of the conforma
theory (CFT). As mentioned earlier, this background charge is unrenormalized due
N = 2 supersymmetry and theN = 2 SLFT is not self-dual.

The stress tensorT , the supercurrentG± and theU(1) currentJ are given by

(2.3)T = −∂φ−∂φ+ − 1

2

(
ψ−∂ψ+ +ψ+∂ψ−) + 1

2b

(
∂2φ+ + ∂2φ−)

,

(2.4)G± = √
2i

(
ψ±∂φ± − 1

b
∂ψ±

)
, J = −ψ−ψ+ + 1

b

(
∂φ+ − ∂φ−)

.

Using the mode expansions for the currents and their operator product expansion, o
find theN = 2 super-Virasoro algebra[

Lm,G
±
r

] =
(
m

2
− r

)
G±
m+r ,

[
Jn,G

±
r

] = ±G±
n+r ,{

G+
r ,G

−
s

} = 2Lr+s + (r − s)Jr+s + c

3

(
r2 − 1

4

)
δr+s,

{
G±
r ,G

±
s

} = 0,

[Lm,Jn] = −nJm+n, [Jm,Jn] = c

3
mδm+n,

with the central charge

(2.5)c = 3+ 6/b2.

Due to anti-periodicity for the (NS) sector, the fermionic modes are given by half-inte
while for the (R) sector they are integer modes due to the periodicity.

The primary fields of theN = 2 SLFT are classified into the (NS) and the (R) sec
and can be written in terms of the component fields as follows [22]:

(2.6)Nαᾱ = eαφ
++ᾱφ−

, R±
αᾱ = σ±eαφ++ᾱφ−

,

whereσ± is the spin operators.
The conformal dimensions and theU(1) charges of the primary fieldsNαᾱ andR±

αᾱ can
be obtained:

(2.7)∆NS
αᾱ = −αᾱ + 1

2b
(α + ᾱ), ∆R

αᾱ =∆NS
αᾱ + 1

8
,

and

(2.8)ω = 1

b
(α− ᾱ), ω± = ω± 1

2
.

It is more convenient to use a ‘momentum’ defined by

(2.9)α + ᾱ = 1

b
+ 2iP,

and theU(1) chargeω instead ofα, ᾱ. In terms of these, the conformal dimensions
given by
(2.10)∆NS = 1

4b2 +P 2 + b2ω2

4
.



eans
be

ion
ll
full
ing the

on a

cting
t states
C. Ahn et al. / Nuclear Physics B 683 (2004) 177–195 181

From now on, we will denote a (NS) primary state by|[P,ω]〉 and a (R) state by|[P,ω, ε]〉
with ε = ±1.

One can notice that the conformal dimensions andU(1) charges are invariant under

(2.11)α → 1/b− ᾱ, ᾱ → 1/b− α.

This meansNαᾱ should be identified withN1/b−α,1/b−ᾱ and similarly, for the (R) primary
fields, up to normalization factors. In terms of the momentum parameter, this m
an invariance underP → −P . In semiclassical picture where the primary fields can
described by plane waves with momentumP in the bosonic zero-mode space, this relat
would imply that the wave with a momentumP is reflected off from the potential wa
and changes the momentum to−P . This qualitative description can be extended to the
quantum region where the exact reflection amplitudes are defined and computed us
functional relation methods. We will be back to this issue in Section 4.

3. Characters and modular transformations

A character is defined by the following trace over all the conformal states built
specific primary state:

(3.1)χh(q, y, t)= e2πikt Tr
[
qL0−c/24yJ0

]
.

Herek is a fixed constant for a given CFT and we setk = 1 + 2/b2 for theN = 2 SLFT.
In terms of the modular parameters given by

(3.2)q = e2πiτ , y = e2πiν, q ′ = e−2πi/τ , y ′ = e2πiν/τ

the modular groupSL(2,Z) is generated by the two elementsT ,S

(3.3)T : (τ, ν, t)→ (τ + 1, ν, t), S : (τ, ν, t)→ (−1/τ, ν/τ, t − ν2/2τ
)
.

While the character transforms simply underT

(3.4)χh(τ, ν, t)= e2πi(h−c/24)χh(τ, ν, t),

the characters transform underS non-trivially and are expressed by the modularS-matrix:

(3.5)χh
(−1/τ, ν/τ, t − ν2/2τ

) =
∑
h′

Shh′χh′(τ, ν, t).

3.1. N = 2 SLFT characters

To compute theN = 2 SLFT characters, one should classify all the decendents by a
the super-Virasoro generators on a highest weight state, excluding not independen
[23]. If we denote a (NS) primary field by the momentumP andU(1) chargeω, the
decendents are given by
(3.6)· · ·Ln2−2L
n1−1 · · ·Jm2−2J

m1−1 · · ·G+
−3/2

ε+
3/2G+

−1/2
ε+

1/2 · · ·G−
−3/2

ε−
3/2G−

−1/2
ε−

1/2
∣∣[P,ω]〉,
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where the exponentsni,mi are arbitrary non-negative integers andε±
r = 0,1 since

G±
r

2 = 0.
For generic values ofP,ω, theN = 2 SLFT has no null states and the characters

be obtained by simply summing the states. Using the definition given above, the ch
is computed to be

χNS[P,ω](q, y, t)= e2πiktq−1/8+P 2+b2ω2/4yω
∞∏
n=1

(1+ yqn−1/2)(1+ y−1qn−1/2)

(1− qn)2

(3.7)= e2πiktqP
2+b2ω2/4yω

θ00(q, y)

η(q)3
,

where we have introduced standard elliptic functions in the second line

(3.8)η(q)= q1/24
∞∏
n=1

(
1− qn

)
,

(3.9)θ00(q, y)=
∞∏
n=1

[(
1− qn

)(
1+ yqn−1/2)(1+ y−1qn−1/2)].

The denominator of Eq. (3.7) originates from the modesL−n andJ−n and the numerator
fromG±−r .

For the conformal BCs of super-CFTs, one needs to consider characters and ass
Ishibashi states of thẽ(NS) sectors [24]. Thẽ(NS) characters are defined by

(3.10)χ ÑS
h (q, y, t)= e2πikt Tr

[
(−1)F qL0−c/24yJ0

]
.

For a N = 2 SLFT primary field with[P,ω], (−1)F term contributes−1 for those
decendents with odd number ofG±−r . This effect can be efficiently incorporated into t

character formula by shiftingy → −y in the product. Therefore, thẽ(NS) character is
given by

(3.11)χ ÑS
[P,ω](q, y, t)= e2πiktqP

2+b2ω2/4yω
θ00(q,−y)
η(q)3

.

The characters of the (R) sector are rather different. Decendents of a (R) primar
with [P,ω, ε] whose conformal dimension and charge are given in Eqs. (2.10) and
are constructed by actingL−n ’s, J−n ’s andG±−r ’s. While n is any positive integer, on
should be careful forr. As noticed in [23], the (R) primary states satisfy

(3.12)G±
0

∣∣[P,ω,±]〉 = 0.

Therefore, the (R) decendent module can include an extra stateG±
0 |[P,ω,∓]〉 and its

decendents, respectively. Including these at each value ofε, one can find the (R) charact

χR[P,ω,ε](q, y, t)= e2πiktqP
2+b2ω2/4yω+ε/2(1+ y−ε) ∞∏

n=1

(1+ yqn)(1+ y−1qn)

(1− qn)2
(3.13)= e2πiktqP
2+b2ω2/4yω

θ10(q, y)

η(q)3
,
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where we introduce another elliptic function

(3.14)θ10(q, y)= (
y1/2 + y−1/2)q1/8

∞∏
n=1

[(
1− qn

)(
1+ yqn

)(
1+ y−1qn

)]
.

3.2. Modular transformations

Here we consider onlyS transformation(q, y, t)→ (q ′, y ′, t ′) defined in Eq. (3.3) with
t ′ = t − ν2/2τ . For irrational CFTs such as the SLFTs with infinite number of prim
fields, the modularS-matrix will be indexed by continuous parameters and the summ
will be replaced by integrations.

First, the modular transformation properties of the elliptic functions are well-know

(3.15)
θ00(q

′, y ′)
η(q ′)3

= eπiν
2/τ i

τ

θ00(q, y)

η(q)3
,

θ10(q
′, y ′)

η(q ′)3
= eπiν

2/τ i

τ

θ00(q,−y)
η(q)3

.

Using these and Gaussian integrals, we have found the following modular transform

(3.16)χNS
[P,ω](q

′, y ′, t ′)= b

∞∫
−∞

dP ′
∞∫

−∞
dω′ cos(4πPP ′)e−πib2ωω′

χNS
[P ′,ω′](q, y, t),

(3.17)

χ ÑS
[P,ω](q

′, y ′, t ′)= b

∞∫
−∞

dP ′
∞∫

−∞
dω′ cos(4πPP ′)e−πib2ωω′

χR
[P ′,ω′,ε](q, y, t),

(3.18)

χR[P,ω,ε](q ′, y ′, t ′)= b

∞∫
−∞

dP ′
∞∫

−∞
dω′ cos(4πPP ′)e−πib2ωω′

χ ÑS
[P ′,ω′](q, y, t).

3.3. Chiral primary fields

An interesting class ofN = 2 SLFT primary fields is a chiral (and anti-chiral) prima
field defined by

(3.19)G+
−1/2

∣∣[P,ω]〉 = 0.

Anti-chiral fields are defined byG−
−1/2. Since they are almost the same, we consider o

the chiral fields. If a primary field is chiral, then it should satisfy

(3.20)G−
1/2G

+
−1/2

∣∣[P,ω]〉 = (2L0 − J0)
∣∣[P,ω]〉 = 0 → 2∆= ω.

This means

(3.21)
1

4b2
+ P 2 + b2ω2

4
= ω

2
→ P = i

(
bω

2
− 1

2b

)
.

We denote|ω〉 = |[P,ω]〉. All the decendent states of a chiral primary field including
G+

−1/2 mode must be truncated from the Hilbert space. This meansε+
1/2 = 0 in Eq. (3.6).
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The character of a (NS) chiral primary field, then, can be written as Eq. (3.7) exce
difference that the term(1+ yqn−1/2) starts fromn= 2 because the modeG+

−1/2 does not
contribute. This changes the character into

(3.22)χNS|ω〉 (q, y, t)= e2πikt q
−1/4b2

(yq1/2)ω

1+ yq1/2

θ00(q, y)

η(q)3
.

Using the method introduced in [25], one can derive the modular transformation
character as follows:

χNS
|ω〉 (q

′, y ′, t ′)= b

2

∞∫
−∞

dP ′
∞∫

−∞
dω′

[
e−πib2ωω′

cosh[2πbP ′(ω− 1− 1
b2 )]

2 cosh(πbP ′ + πib2ω′
2 )cosh(πbP ′ − πib2ω′

2 )

+ e−πib2(ω−1)ω′
cosh[2πbP ′(ω− 1

b2 )]
2 cosh(πbP ′ + πib2ω′

2 )cosh(πbP ′ − πib2ω′
2 )

]
χNS

[P ′,ω′ ](q, y, t)

(3.23)

+ i
∑
n∈Z

1+ 1
b2∫

1
b2

dω′ e−πi(2nω+ω+ω′− 1
b2 )q

k
2n

2
yknχNS

|ω′〉
(
q, yqn, t

)
.

Similar formulae for the anti-chiral (NS) primary fields and (anti-) chiral fields of the
and other sectors can be obtained.

3.4. Identity (vacuum) operator

As we will see shortly, the identity operator plays a very important role in our deriva
of the one-point functions. Therefore, we need to derive the character of this. The va
state|0〉 = |[−i/2b,0]〉 satisfies

(3.24)G±
−1/2|0〉 = 0, L−1|0〉 = 0.

This means that allowed decendents are given by Eq. (3.6) with restrictions thatn1 =
ε±

1/2 = 0. After excluding these states, one can find the (NS) character is given by

(3.25)χNS
|0〉 (q, y, t)= e2πikt q−1/4b2

(1− q)

(1+ yq1/2)(1+ y−1q1/2)

θ00(q, y)

η(q)3
.

It is obvious that the two factors in the denominators arise in the same way as the
fields and the factor 1− q in numerator comes from deducting the null state at level
expanding the “specialized” character in a power series ofq , we obtain

(3.26)χNS
|0〉 (q,1,0)= 1+ q + 2q3/2 + 3q2 + · · · .

We can identify first few levels with explicit decendent states. As expected, the leve/2
states are all truncated out and there is only one state left at the level 1, namely,J−1|0〉.

±
Two states at the level 3/2 should beG−3/2|0〉 and three states at the level 2 are created by

L−2, J−2, J
2−1.
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The modular transformation of Eq. (3.25) can be derived as before following [25]

(3.27)

χNS
|0〉 (q

′, y ′, t ′)=
∞∫

−∞
dP

∞∫
−∞

dωSNS(P,ω)χ
NS[P,ω](q, y, t)

+ 2
∑
n∈Z

1+ 1
b2∫

1
b2

dω′ sin

[
π

(
ω′ − 1

b2

)]
q

k
2n

2
yknχNS

|ω′ 〉
(
q, yqn, t

)
,

(3.28)SNS(P,ω)= sinh(2πbP)sinh(2πP
b
)

2b−1 cosh(πbP + iπb2ω
2 )cosh(πbP − iπb2ω

2 )
.

The first terms in Eqs. (3.23), (3.27), which are of our main concern, can be
derived by expanding the denominators of Eqs. (3.22), (3.25), applying Eq. (3.16
resuming formally the infinite terms. However, this geometric sum can diverge and m
the contributions from the chiral primary characters.2 As explained in [26], these par
are necessary and have physical meanings with respect to the spectral flows
superconformal field theories [27].

We will need to know the modular transformation of the identity operator in the (ÑS)
sector in the next section. For this, the Hilbert space of the conformal tower of the id
operator is the same as the (NS) sector. As explained previously, the basic difference
character arises from the(−1)F which changesy → −y in effect. Therefore, the charact
is given by

(3.29)χ ÑS
|0〉 (q, y, t)= e2πikt q−1/4b2

(1− q)

(1− yq1/2)(1− y−1q1/2)

θ00(q,−y)
η(q)3

.

Using the previous method [25], one can find the modular transformation

χ ÑS
|0〉 (q

′, y ′, t ′)

=
∞∫

−∞
dP

∞∫
−∞

dωSR(P,ω)χ
R[P,ω,ε](q, y, t)

(3.30)

+ 2
∑

n∈Z+ 1
2

1+ 1
b2∫

1
b2

dω′ sin

[
π

(
ω′ − 1

b2

)]
q

k
2 (n

2− 1
4 )yk(n−

1
2 )χNS

|ω′〉
(
q, yqn, t

)
,

(3.31)SR(P,ω)= sinh(2πbP)sinh(2πP
b
)

2b−1 sinh(πbP + iπb2ω
2 )sinh(πbP − iπb2ω

2 )
.

2 We thank the authors of [26] for pointing this out.
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4. One-point functions in the presence of boundary

In this section, we compute exact one-point functions of the (NS) and (R) bulk ope
Nαᾱ andRε

αᾱ of theN = 2 SLFT with boundary. The one-point functions are defined b

(4.1)
〈
Nαᾱ(ξ, ξ̄ )

〉 = UNS(α, ᾱ)

|ξ − ξ̄ |2∆NS
αᾱ

, and
〈
Rε
αᾱ(ξ, ξ̄ )

〉 = UR(α, ᾱ)

|ξ − ξ̄ |2∆R
αᾱ

,

with the conformal dimensions given in Eq. (2.7). We will simply refer to the coeffici
UNS(α, ᾱ) andUR(α, ᾱ) as the one-point functions.

4.1. Vacuum boundary condition

According to Cardy’s formalism, one can associate a conformal BC with each pr
state [8]. For theN = 2 SLFT, there will be infinite number of conformal BCs. These B
can be constructed by the fusion process and related to the one-point functions.
begin with the ‘vacuum’ BC which corresponds to the identity operator. First we intro
an amplitude as an inner product between the Isibashi state of a primary state a
conformal boundary state3

(4.2)Ψ NS
0 (P,ω)= 〈

(0)|[P,ω]〉〉.
From the modular transformation Eq. (3.27), the amplitude satisfies the following rel

(4.3)Ψ NS
0 (P,ω)Ψ

NS†
0 (P,ω)= SNS(P,ω).

SinceΨ NS†
0 (P,ω) = Ψ NS

0 (−P,ω), one can solve this up to some unknown constan
follows:

(4.4)Ψ NS
0 (P,ω)=

√
b3

2
(XNS)

iP
b
5(1

2 − ibP + b2ω
2 )5(1

2 − ibP − b2ω
2 )

5(−2iP
b
)5(1− 2ibP )

.

The unknown constantXNS does not depend onP,ω and cannot be determined b
the modular transformation alone. We will derive this constant later in this sectio
comparing with the bulk reflection amplitudes.

Similarly, for the (R) sector, we define the (R) amplitude by

(4.5)Ψ R
0 (P,ω)= 〈

(0)|[P,ω, ε]〉〉
which satisfies from Eq. (3.30)

(4.6)Ψ R
0 (P,ω)Ψ

R
0

†
(P,ω)= SR(P,ω).

The solution is up to a unknown constant:

(4.7)Ψ R
0 (P,ω)= −i

√
b3

2
(XR)

iP
b
5(−ibP + b2ω

2 )5(1− ibP − b2ω
2 )

5(−2iP
b
)5(1− 2ibP )

.

Again, the unknown constantXR will be fixed later.
3 We denote a conformal BC in ‘bold face’ like0 and a conformal boundary state like|(0)〉.
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4.2. Continuous boundary condition

Now we consider a continuous BC associated with a primary field. This field sh
be (NS) and itsU(1) charge should be zero because only the boundary neutral ope
should appear. So, we consider the character of a (NS) primary state|s〉 ≡ |[s,0]〉 and
its modular transformation. The parameters depends on the boundary parameterµB in
Eq. (2.2). In this case Eq. (3.16) becomes

(4.8)χNS|s〉 (q ′, y ′, t ′)= b

∞∫
−∞

dP

∞∫
−∞

dω cos(4πsP)χNS
[P,ω](q, y, t).

Now following previous analysis of the modular transformation, this character shou
written as

(4.9)χNS
|s〉 (q

′, y ′, t ′)=
∞∫

−∞
dP

∞∫
−∞

dωΨ NS
s (P,ω)Ψ

NS†
0 (P,ω)χNS

[P,ω](q, y, t).

Here we have defined an inner product between the conformal boundary state
Ishibashi state

(4.10)Ψ NS
s (P,ω)= 〈

(s)|[P,ω]〉〉.
From Eqs. (4.8) and (4.9), one can find

(4.11)Ψ NS
s (P,ω)Ψ

NS†
0 (P,ω)= b cos(4πsP).

Now actingΨ NS
0 (P,ω) on this and using Eq. (4.3), we obtain

Ψ NS
s (P,ω)= bΨNS

0 (P,ω)
cos(4πsP)

SNS(P,ω)

(4.12)=
√

2b3 (XNS)
iP
b

5(1+ 2iP
b
)5(2ibP )cos(4πsP)

5(1
2 + ibP + b2ω

2 )5(1
2 + ibP − b2ω

2 )
.

One can follow the same step for the (R) sector. From Eq. (3.17) withP = s,ω = 0,
one can find

(4.13)Ψ R
s (P,ω)Ψ

R †
0 (P,ω)= b cos(4πsP),

where

(4.14)Ψ R
s (P,ω)= 〈

(0)|[P,ω, ε]〉〉.
Using Eq. (4.6) on this, we can obtain

Ψ R
s (P,ω)= bΨ R

0 (P,ω)
cos(4πsP)

SR(P,ω)√
iP 5(1+ 2iP

b
)5(2ibP )cos(4πsP)
(4.15)= −i 2b3 (XR) b

5(1+ ibP − b2ω
2 )5(ibP + b2ω

2 )
.
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The amplitudes (4.12) and (4.15) we have obtained are the one-point functions
two sectors up to some normalization constants. To fix these constants, we rec
relation proved in [20]

(4.16)Uk(φ)= 〈(k)|φ〉〉
〈(k)|0〉〉

wherek is a conformal BC,φ a primary field, and|φ〉〉, its Isibashi state. For theN = 2
SLFT, this relation means

(4.17)UNS
s (P,ω)= Ψ NS

s (P,ω)

Ψ NS
s (−i/2b,0), UR

s (P,ω)= Ψ R
s (P,ω)

Ψ NS
s (−i/2b,0).

From Eqs. (4.12) and (4.15) we can obtain the one-point functions as follows:

(4.18)UNS
s (P,ω)=N (XNS)

iP
b

5(1+ 2iP
b
)5(2ibP )cos(4πsP)

5(1
2 + ibP + b2ω

2 )5(1
2 + ibP − b2ω

2 )
,

(4.19)UR
s (P,ω)=N (XR)

iP
b
5(1 + 2iP

b
)5(2ibP )cos(4πsP)

5(1 + ibP − b2ω
2 )5(ibP + b2ω

2 )
,

where the normalization coefficientN can be fixed by

(4.20)UNS
s (−i/2b,0)= 1 →N =

[
(XNS)

1/2b2
5

(
1+ b−2)cosh

(
2πs

b

)]−1

.

Then, fromUR
s (−i/2b,0)= 〈σ±〉, one can find

(4.21)
〈
σ±〉 = 2

π

(
XR

XNS

)1/2b2

.

The constantsXNS andXR will be fixed shortly.

4.3. Bulk reflection amplitudes

The invariance of both conformal dimensions andU(1) charges under Eq. (2.11) mea
thatN1/b−ᾱ,1/b−α should be identified withNαᾱ and similarly for the (R) operators up
normalization factors. The reflection amplitudes are defined by two-point functions
same operators

(4.22)
〈
Nαᾱ(z, z̄)Nαᾱ(0,0)

〉 = DNS(α, ᾱ)

|z|4∆NS
αᾱ

,
〈
R+
αᾱ(z, z̄)R

−
αᾱ(0,0)

〉 = DR(α, ᾱ)

|z|4∆R
αᾱ

with∆NS
αᾱ ,∆

R
αᾱ given in Eq. (2.7). In general, identification of the two fields gives a rela

(4.23)
〈
Nαᾱ(z, z̄) . . .

〉 =DNS(α, ᾱ)
〈
N 1

b−ᾱ, 1
b−α(z, z̄) . . .

〉
and similarly for the (R) sector. Here the part. . . can be any products of the primary field
It turns out that the computation of these quantities is much more complicated than that
of the LFT or theN = 1 SLFT case. As we mentioned earlier, the reason is the lack of the
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self-duality. In [18], the reflection amplitudes of the primary fields with zeroU(1) charges
have been derived based on a conjecturedN = 2 super-CFT which is dual to theN = 2
SLFT. While these results are based on the conjecture, the resulting reflection amp
have passed several consistency checks. Moreover, these results are in exact ag
with the reflection amplitudes which have been derived from certain integrable field t
with two parameters proposed in [28] which generatesN = 2 supersymmetry at speci
values of couplings [21]. This agreement between two independent approaches s
supports the validity of the reflection amplitudes and the dual action.

Here, we provide another independent derivation of the reflection amplitudes ba
the one-point functions we have derived. This computation will provide not only an
confirmation of the results, but also can be used to fix the undetermined constan
reflection relations among the correlation functions can be used for a simplest case, n
the one-point functions. In this case, the relation becomes

(4.24)
〈
Nαᾱ(z, z̄)

〉 =DNS(α, ᾱ)
〈
N 1

b−ᾱ, 1
b−α(z, z̄)

〉
,

(4.25)
〈
Rαᾱ(z, z̄)

〉 =DR(α, ᾱ)
〈
R 1

b
−ᾱ, 1

b
−α(z, z̄)

〉
.

These lead to the following equations:

(4.26)
UNS

s (P,ω)

UNS
s (−P,ω) =DNS(P,ω),

UR
s (P,ω)

UR
s (−P,ω)

=DR(P,ω).

For the neutral sectorω= 0, the reflection amplitudes has been derived in [18]

(4.27)DNS(P,0)= −κ−2iP /b 5(1 + 2iP
b
)

5(1 − 2iP
b
)

5(1 + iPb)

5(1 − iPb)

5(1
2 − iPb)

5(1
2 + iPb)

,

(4.28)DR(P,0)= κ−2iP /b 5(1+ 2iP
b
)

5(1− 2iP
b
)

5(1− iPb)

5(1+ iPb)

5(1
2 + iPb)

5(1
2 − iPb)

,

where

(4.29)κ = µ2π2

2
γ
(−b2 − 1

)
γ

(
1+ b2

2

)
γ

(
b2

2
+ 3

2

)
,

with γ (x)= 5(x)/5(1 − x) and the bulk cosmological constantµ in Eq. (2.1).
Insertingω = 0 and using (4.18) and (4.19), the reflection amplitudes in Eq. (4

are indeed in exact agreement with Eqs. (4.27) and (4.28) if and only if we identif
constants

(4.30)XNS =XR = [
22b2

κ
]−1

.

This provides a non-trivial check and completes our derivation for the one-point func
Furthermore, we can use Eq. (4.26) to compute the reflection amplitudes forω �= 0 case

DNS(P,ω)= (
22b2

κ
)−2iP /b 5(1+ 2iP

b
)

5(1− 2iP
b
)

5(2ibP )

5(−2ibP )

1 b2ω 1 b2ω
(4.31)× 5(2 − ibP + 2 )

5(1
2 + ibP + b2ω

2 )

5(2 − ibP − 2 )

5(1
2 + ibP − b2ω

2 )
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and

DR(P,ω)= (
22b2

κ
)−2iP /b 5(1+ 2iP

b
)

5(1− 2iP
b
)

5(2ibP )

5(−2ibP )

(4.32)× 5(1 − ibP − b2ω
2 )

5(1 + ibP − b2ω
2 )

5(−ibP + b2ω
2 )

5(ibP + b2ω
2 )

.

These results can be compared with those from the two-parameter family models [2
we checked that two independent results match exactly.

To complete our derivation of the one-point functions, we should relate the bou
parameters with the boundary cosmological constantµB in Eq. (2.2). In principle, one
should do this by deriving the functional relations following [12,14,15]. Solving th
coupled equations, one can find the relation between the boundary parameters. H
without the boundary dual theory, this method does not work well for theN = 2 SLFT.
Instead, we analyze the pole structure of the one-point functions and compare the
direct calculations using the bulk and boundary action.

For this, we consider one-point function of a neutral (NS) fieldNαα

(4.33)residue
UNS(α)

N

∣∣∣∣
α=(b−1−nb)/2

= 〈
eα(φ

++φ−)〉 = ∑
p,q

1

p!q!
〈
eα(φ

++φ−)V pBq
〉
0,

whereV,B are the interaction terms in the bulk and boundary actions. If we choosen= 1
(α = 1/2b− b/2), all terms vanish exceptp = 0, q = 2 which can be easily computed:〈

eα(φ
++φ−)(i/2)B2〉

0

= −2µ̄2
B

∞∫
−∞

dx1dx2

∣∣∣∣x1 − i

2

∣∣∣∣−2αb∣∣∣∣x2 − i

2

∣∣∣∣−2αb

|x1 − x2|−(1+b2)

(4.34)= 8πµ̄2
B5

(−b2)γ(
1+ b2

2

)
sin

(
π

1+ b2

2

)
,

with

(4.35)µ̄2
B = µ2

B + µ2b4

16µ2
B

.

The residue of Eq. (4.18) atα = ᾱ = 1/2b− b/2 becomes

(4.36)
b

2

(
22b2

κ
)1/2 5(−b2)

5(1−b2

2 )2
cosh(2πsb).

Comparing these two, we find

(4.37)µ̄2
B = µb

32π
cosh(2πsb).
This result is based on the first order perturbative computations and should be confirmed
for the higher orders.
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4.4. Conformal bootstrap approach

The procedure to derive the functional equations satisfied by the one-point functio
identical to [12,14,15]. Consider two-point functions of neutral operators,

(4.38)GNS
α (ξ, ξ ′)= 〈

R+
− 1

2b
(ξ)Nα(ξ

′)
〉
, GR

α(ξ, ξ
′)= 〈

R+
− 1

2b
(ξ)R−

α (ξ
′)
〉
,

whereR+
−1/2b is a degenerate (R) operator, whose OPEs are given by

(4.39)R+
− 1

2b
Nα = [

R+
α− 1

2b

] +CNS(α)
[
R+
α+ 1

2b

]
,

(4.40)R+
− 1

2b
R−
α = [

Nα− 1
2b

] +CR(α)
[
Nα+ 1

2b

]
.

Here the bracket[. . .] means the conformal tower of a given primary field and the struc
constants have been computed in [18] based on the dualN = 2 SLFT:

(4.41)CNS(α)= µ̃πγ
(
1+ b−2)5(2α

b
− 1

b2 )5(1− 2α
b
)

5(1− 2α
b

+ 1
b2 )5(

2α
b
)
,

(4.42)CR(α)= µ̃πγ
(
1+ b−2)5(1+ 2α

b
− 1

b2 )5(−2α
b
)

5(−2α
b

+ 1
b2 )5(1 + 2α

b
)
,

whereµ̃, the cosmological constant of the dual theory, has been related to that of theN = 2
SLFT in [18].

These two-point functions can be expressed as

(4.43)GNS
α (ξ, ξ ′)=UR

(
α − b

2

)
GNS+ (ξ, ξ ′)+CNS(α)UR

(
α + b

2

)
GNS− (ξ, ξ ′),

(4.44)GR
α(ξ, ξ

′)=UNS
(
α − b

2

)
GR+(ξ, ξ ′)+CR(α)UNS

(
α + b

2

)
GR−(ξ, ξ ′),

whereG±(ξ, ξ ′)’s are expressed in terms of the special conformal blocks

(4.45)GNS± (ξ, ξ ′)= |ξ ′ − ξ̄ ′|2∆NS
α −2∆R−b/2

|ξ − ξ̄ ′|4∆NS
α

FNS± (η),

(4.46)GR±(ξ, ξ ′)= |ξ ′ − ξ̄ ′|2∆R
α−2∆NS−b/2

|ξ − ξ̄ ′|4∆R
α

FR±(η),

with

η = (ξ − ξ ′)(ξ̄ − ξ̄ ′)
(ξ − ξ̄ ′)(ξ̄ − ξ ′)

.

Here, the conformal blocks are given by the hypergeometric functions

α − 1 − 1
(

2α 1 2α 1
)

FNS+ (η)= η b (1− η) b2 2F
b
,1+

b2 ;
b

−
b2 + 1;η ,
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FNS− (η)= η
α
b (1− η)

− 2
b2 +1

F

(
1

b2 ,1− 2α

b
+ 2

b2 ;−2α

b
+ 1

b2 + 1;η
)
,

FR+(η)= η
α
b − 1

2 (1− η)
− 1

b2 − 1
2F

(
2α

b
+ 1,

1

b2
; 2α

b
− 1

b2
+ 2;η

)
,

FR−(η)= η
α
b
− 1

2 (1− η)
− 2

b2 + 1
2F

(
1

b2 ,−1− 2α

b
+ 2

b2 ;−2α

b
+ 1

b2 ;η
)
.

On the other hand, one can compute the two-point functions as bothR+
−1/2b andNα or

R−
α approach on the boundary. The fusion of the degenerate operator with the bo

is described by a special bulk-boundary structure constant which could be compu
a boundary screening integral with one insertion of the boundary interaction of the
N = 2 theory if it were known. Since we cannot fix it, we denote the unknown con
just asR(−1/2b). Then, we can obtain the system of functional relations as follows:

R
(

− 1

2b

)
UNS(α)= 5(1− 1

b2 + 2α
b
)5(− 2

b2 )

5(1− 2
b2 + 2α

b
)5(1− 1

b2 )
UR

(
α − 1

2b

)

(4.47)+CNS(α)
5(1 + 1

b2 − 2α
b
)5(− 2

b2 )

5(1 − 2α
b
)5(1− 1

b2 )
UR

(
α + 1

2b

)
,

R
(

− 1

2b

)
UR(α)= 5(2α

b
− 1

b2 )5(− 2
b2 )

5(2α
b

− 2
b2 )5(1− 1

b2 )
UNS

(
α − 1

2b

)

(4.48)+CR(α)
5( 1

b2 − 2α
b
)5(− 2

b2 )

5(−2α
b
)5(1− 1

b2 )
UNS

(
α + 1

2b

)
.

Although we do not know the bulk-boundary structure constant, we can eliminate
taking ratio of above equations and find one relation which is completely fixed. I
be shown that the one-point functions Eqs. (4.18) and (4.19) indeed satisfy this re
This means not only that the one-point functions obtained from the modular boo
procedures are consistent with theN = 2 SLFT actions, but also that theN = 2 theory
proposed in [18] is indeed dual to theN = 2 SLFT. Furthermore, we can find the bul
boundary structure constant as follows:

(4.49)
R(− 1

2b )5(1− 1
b2 )

5(− 2
b2 )

√
µ̃πγ (1+ 1

b2 )

= cosh

(
2πs

b

)
.

Along with Eq. (4.37), this equation relates the boundary cosmological constant
N = 2 SLFT with that of the dualN = 2 theory.

4.5. Semiclassical checks

These results can be checked, semiclassically. Asb → 0, theN = 2 SLFT (2.1) can be
described by the Schrödinger equation[ ]
(4.50)−1

2

∂2

∂Φ2
0

+ π2µ2b2

8
e2bΦ0 ΨP (Φ0)= 2P 2ΨP (Φ0)
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whereΦ0 = (φ+
0 + φ−

0 )/2 in terms of the zero-modes ofφ±. Solving this, one can deriv
the reflection amplitude

(4.51)DNS(P,ω)= −
(
π2µ2

16

)−2iP /b 5(1 + 2iP
b
)

r5(1− 2iP
b
)
,

and can show that this is consistent with Eq. (4.31).
Another interesting check is to compute the inner product semiclassically

(4.52)
〈
(s)

∣∣[P,ω]〉 = ∞∫
−∞

dΦ0ΨBs (Φ0)ΨP (Φ0),

where the boundary state can be expressed by the boundary Lagrangian following [

(4.53)ΨBs (Φ0)= exp
(−8π2b−1µ̄2

Be
bΦ0

)
,

with µ̄B a boundary cosmological constant defined in Eq. (4.35). From this, one can

(4.54)
〈
(s)

∣∣[P,ω]〉 = (
8π2µ̄2

B

b

)−2iP /b

5

(
2iP

b

)
,

which, along with Eq. (4.37), agrees with Eq. (4.12).

5. Discussions

Using the one-point function, one can find a density of states which can be related
boundary two-point functions. The partition functionZNS

s,s ′(q, y, t) with continuous BCs on
both boundaries parametrized bys ands′ can be obtained as

(5.1)ZNS
s,s ′(q, y, t)=

∞∫
−∞

dP

∞∫
−∞

dωχNS
[P,ω]

(
q ′, y ′, t ′

)
Ψ NS

s (P,ω)Ψ
NS†
s′ (P,ω)

with the amplitude (4.12). This can be rewritten as

ZNS
s,s ′(τ )= b

∞∫
−∞

dP ′ dω′ dP dωe−4iπPP ′
e−iπb2ωω′

× χNS[P,ω](q, y, t)Ψ NS
s (P ′,ω′)Ψ NS

s′
†
(P ′,ω′)

(5.2)=
∞∫

0

dP

∞∫
0

dωχNS
[P,ω](q, y, t)ρ

NS
ss ′ (P,ω),

whereρNS
ss ′ (P,ω) is the density of states,

ρNS
ss ′ (P,ω)= 4

π2

∞∫
du

∞∫
dv

[
cosh(bv)+ cos(u)

2 sinh(bv)sinh(v/b)

]

−∞ −∞

(5.3)× cos(2sv)cos(2s′v)e−2ivP−iuω.



ity
ction

e dual
ould

mplete
n

eories

arge
tions

nuous
ormal

Korea
ogram
194 C. Ahn et al. / Nuclear Physics B 683 (2004) 177–195

This quantity is not well-defined atP = 0 and is to be properly regularized. This dens
of states is, on the other hand, conjectured to be related with the two-point fun
dNS
B (P,ω|s, s′) of boundary operatornss

′
αᾱ by

(5.4)ρNS
s,s ′(P,ω)= − i

2π

d

dP
logdNS

B (P,ω|s, s′).
In this paper, we have derived one-point functions of theN = 2 SLFT and provided

various consistency checks. Our consistency checks also confirms the validity of th
N = 2 super-CFT conjecture in [18] and the boundary action proposed in [19]. It w
be interesting to provide the boundary action for the dual theory so that one can co
the boundary bootstrap procedure for theN = 2 SLFT with the boundary. Our result ca
be applied to 2d superstring theories and related topics generalizing the work on theN = 1
SLFT [10]. These results also can be used to study the integrable quantum field th
with N = 2 supersymmetry which can be constructed as perturbedN = 2 SLFT. We hope
to report a progress in this direction in future publications.

Note added

After finishing this article, we found a paper [26] which results overlap with ours in l
part. While this paper deals mainly with the vacuum BC and applications and implica
to the string theory, we are more interested in the one-point functions for a conti
BC in terms of the boundary cosmological constant and their relations to the conf
bootstrap equations.
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