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1. Introduction

Two-dimensional Liouville field theory (LFT) has been studied for its relevance with non-

critical string theories and two-dimensional quantum gravity [1, 2]. Recently, string theory

with 2D euclidean black hole geometry [3] has been claimed to be T-dual to the sine-
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Liouville theory [4, 5]. A similar duality has been discovered for the N = 2 supersymmetric

Liouville field theory (SLFT) and a fermionic 2D black hole which is identified with super

SL(2,R)/U(1) coset conformal field theory (CFT) [6, 7].

The LFT and SLFTs are irrational CFTs which have continuously infinite number

of primary fields. The irrationality requires new formalisms for exact computation of

correlation functions. One very efficient formalism is the conformal bootstrap method

which has been first applied to the LFT [8, 9], and later to the N = 1 SLFT [10, 11], and

the N = 2 SLFT [12].

Conformally invariant boundary conditions (BCs) for these models have been also

actively studied. The conformal bootstrap method has been extended to the LFT with

boundary in [16, 17], and the N = 1 SLFT [18, 19]. Recently, the boundary conformal

bootstrap of the N = 2 SLFT has been studied in [22]. While the LFT and N = 1 SLFT

are invariant under a dual transformation of the coupling constant b → 1/b, the N = 2

SLFT does not have this self-duality. To complement this, a N = 2 supersymmetric theory

dual to the N = 2 SLFT was proposed along with various consistency checks in [12] and

proved in [13]. This dual theory has provided additional functional equation which, along

with the equation based on the N = 2 SLFT, can produce exact correlation functions such

as the reflection amplitudes. However, this approach can not be extended to the boundary

conformal bootstrap method since the boundary action for the dual N = 2 theory is not

easy to write down. Due to this deficiency, the boundary conformal bootstrap equations

considered in [22] contained an undetermined coefficient and could be used only to check

the consistency of the one-point functions obtained by the ‘modular bootstrap’ method.

Moreover, these equations were applicable to the ‘neutral’ fields due to technical difficulties.

One of our motivations in this paper is to derive more functional equations based on the

conformal bootstrap method and determine the one-point functions exactly including those

of ‘non-neutral’ fields.

The modular bootstrap method is a generalization of the Cardy formulation for the

conformal BCs to the irrational CFTs. This method has been initiated in [17] and extended

to the N = 1 SLFT [18, 19]. In these works, one-point function of a certain primary

field under a specific BC is associated with the boundary amplitude which is the scalar

product of the corresponding Ishibashi state and the conformal BC state. The boundary

amplitudes satisfy the Cardy conditions which are expressed in terms of the modular S-

matrix elements. While this method is proven to be effective, it has been mainly used

to check the consistency of the one-point functions derived by the conformal bootstrap

method because there are some ambiguities in deriving the boundary amplitudes from the

Cardy conditions.

For the N = 2 SLFT, the situation becomes different. Since the conformal bootstrap

could not be completed, the modular bootstrap method remains the only available formal-

ism to derive the boundary amplitudes for the N = 2 SLFT and its T-dual, SL(2,R)/U(1)

super-coset CFT in [15] and [22]–[26]. Complete one-point functions of the ‘continuous’

BC, sometimes called ‘FZZT-brane’, and for the vacuum BC have been derived, indepen-

dently, in [23] and [22] using the modular bootstrap method. The results in [23] which are

based on rational values of b2, the coupling constant of the N = 2 SLFT, while those in [22]
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are applicable to generic irrational values of b2. It can be shown that the former results

in an ‘irrational’ limit match with the latter. Meanwhile, the FZZT solutions contain a

continuous boundary parameter which describes the geometry of D1-branes. In principle,

this parameter must be related to the boundary N = 2 SLFT. However, the modular boot-

strap alone can not give this relation. In [22] conformal bootstrap equations, although they

are not complete enough to determine the one-point functions uniquely, has been used to

obtain this relation.

To find all the consistent conformal BCs of the N = 2 SLFT and its dual super-coset

model is important since they describe the D-branes moving in the black hole background.

In addition to the FZZT and the vacuum BCs, there are infinite number of discrete BCs,

which are called ‘ZZ-branes’ in general . For the LFT [17] and N = 1 SLFT [18, 19], the

ZZ-branes have been constructed in the background geometry of the classical Lobachevskiy

plane or the pseudosphere [21]. Our main result in this paper is to construct the general

ZZ-brane BCs of the N = 2 SLFT.

In section 2 we introduce the N = 2 SLFT and its operator contents, in particular,

degenerate fields and their properties. Based on this, we derive the functional equations

for the one-point functions of primary fields for the continuous BC (FZZT) in section 3.

In section 4, we find the ZZ-brane solutions from the functional equations defined on the

pseudosphere and discuss their implications for the N = 2 SLFT. Modular bootstrap

computations for the degenerate fields of the N = 2 SLFT are performed in section 5

which provides some consistency checks for the solutions. We conclude this paper with

some remarks in section 6.

2. N = 2 super-Liouville theory

In this section, we introduce the action and the N = 2 superconformal algebra and the

primary fields. In particular we discuss the degenerate fields in detail.

2.1 N = 2 superconformal algebra

The action of the N = 2 SLFT is given by

S =

∫
d2z

[
1

2π

(
∂φ−∂̄φ+ + ∂φ+∂̄φ− + ψ−∂̄ψ+ + ψ+∂̄ψ− + ψ̄−∂ψ̄+ + ψ̄+∂ψ̄−

)
+

+ iµb2ψ−ψ̄−ebφ
+

+ iµb2ψ+ψ̄+ebφ
−

+ πµ2b2eb(φ
++φ−)

]
. (2.1)

This theory needs a background charge 1/b for conformal invariance so that the interaction

terms in eq. (2.1) become the screening operators of the CFT.

The stress tensor T , the supercurrents G± and the U(1) current J of this CFT are

given by

T = −∂φ−∂φ+ − 1

2
(ψ−∂ψ+ + ψ+∂ψ−) +

1

2b
(∂2φ+ + ∂2φ−) , (2.2)

G± =
√
2i(ψ±∂φ± − 1

b
∂ψ±), J = −ψ−ψ+ +

1

b
(∂φ+ − ∂φ−) . (2.3)
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The N = 2 super-Virasoro algebra is expressed by the modes of these currents as follows:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n ,

[
Lm, G

±
r

]
=
(m
2
− r
)
G±m+r ,

[
Jn, G

±
r

]
= ±G±n+r ,

{
G+
r , G

−
s

}
= 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s ,

{
G±r , G

±
s

}
= 0 ,

[Lm, Jn] = −nJm+n , [Jm, Jn] =
c

3
mδm+n ,

with the central charge

c = 3 +
6

b2
. (2.4)

Super-CFTs have both the Neveu-Schwarz (NS) sector with half-integer fermionic

modes and the Ramond (R) sector with integer modes. The primary fields of the N = 2

SLFT are also classified into the (NS) and the (R) sectors and can be written as follows [28]:

Nαα = eαφ
++αφ− , R

(±)
αα = σ±eαφ

++αφ− , (2.5)

where σ± are the spin operators.

The conformal dimensions and the U(1) charges of the primary fields Nαα and R
(±)
αα

can be obtained:

∆NS
αα = −αα+

1

2b
(α+ α) , ∆R

αα = ∆NS
αα +

1

8
, (2.6)

and

ω =
1

b
(α− α) , ω± = ω ± 1

2
. (2.7)

It is more convenient sometimes to use a ‘momentum’ defined by

α+ α =
1

b
+ 2iP , (2.8)

and the U(1) charge ω instead of α, α. In terms of these, the conformal dimension is given

by

∆NS =
1

4b2
+ P 2 +

b2ω2

4
. (2.9)

We will denote the primary fields by N[P,ω] and R
(±)
[P,ω] in section 5.

2.2 Degenerate fields

Among the primary fields there is a series of degenerate fields of the N = 2 SLFT. These

degenerate fields can be constructed in the same way as the N = 2 minimal CFTs in [28].

In this paper we divide these fields into three classes. Class-I degenerate fields are given by

Nω
m,n = Nαωm,n,α

ω
m,n

, R(ε)ω
m,n = R

(ε)
αωm,n,α

ω
m,n

, (2.10)

αωm,n =
1−m+ ωb2

2b
− nb

2
, αωm,n =

1−m− ωb2
2b

− nb

2
, m, n ∈ Z+ . (2.11)
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Nω
m,n and R

(ε)ω
m,n are degenerate at the level mn where the corresponding null states are

turned out to be

Nω
m,−n , and R

(ε)ω
m,−n . (2.12)

As an example, consider the most simple case N ω
1,1 with the conformal dimension b2(ω2 −

1)/4 − 1/2 and U(1) charge ω. After simple calculation, one can check that

[
b2

2
(1− ω2)J−1 +G+

−1/2G
−
−1/2 − (1− ω)L−1

]
|Nω

1,1〉 (2.13)

is annihilated by all the positive modes of the N = 2 super CFT. Since this state has

the U(1) charge ω and dimension +1 more than that of N ω
1,1, it corresponds to |Nω

1,−1〉 up
to a normalization constant. One can continue this analysis to higher values of m,n >

1 to confirm the statement of eq. (2.12). Notice that the null state structure changes

dramatically for ω = ±n case. The field N±nm,n has a null state N±nm,−n at level mn. This

N±nm,−n field is in fact a class-II degenerate field which we will explain next and has infinite

number of null states. Therefore, we exclude the case of ω = ±n from class-I fields.

The second class of degenerate fields is denoted by N ω
m and R

(ε)ω
m and comes in two

subclasses, namely, class-IIA and class-IIB. These are given by

Class− IIA : Nω
m = Nαωm ,α0m

R(+)ω
m = R

(+)

αωm,α
0
m
, ω > 0 (2.14)

Class− IIB : Ñω
m = Nα0m,α

ω
m

R(−)ω
m = R

(−)
α0m,α

ω
m
, ω < 0 . (2.15)

Here we have defined

αωm ≡
1−m+ 2ωb2

2b
, αωm ≡

1−m− 2ωb2

2b
(2.16)

with m a positive odd integer for the (NS) sector and even for the (R) sector.

These fields have null states at level m/2 which can be expressed again by eq. (2.14)

with ω shifted by +1 for class-IIA and by eq. (2.15) with ω shifted by −1 for class-IIB. For

m = 1, these fields become either chiral or anti-chiral field which are annihilated by G±−1/2,

respectively. For m = 3, one can construct a linear combination of descendants

[(
ω − 2

b2
+ 1

)
G+
−3/2 −G

+
−1/2L−1 +G+

−1/2J−1

]
|Nω

3 〉 (2.17)

which satisfies the null state condition. Since this state has U(1) charge ω + 1 and di-

mension 3/2 higher than that of Nω
3 , it is straightforward to identify it as Nω+1

3 up to a

normalization constant. However, it is not the end of the story in this case. The N ω+1
3 field

is again degenerate at level 3/2 because a linear combination of its descendants, exactly

eq. (2.17) with ω shifted by +1, satisfies the null state condition. This generates N ω+2
3 and

it continues infinitely. This infinite null state structure holds for any odd integer m.

This can be illustrated by semi-infinite sequences,

Class− IIA : Nω
m → Nω+1

m → Nω+2
m → · · · (2.18)

Class− IIB : Ñω
m → Ñω−1

m → Ñω−2
m → · · · . (2.19)
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This works similarly for the (R) sector. For example, the null state of the m = 2 (R) field

is given by

G±−1|R
(±)ω
2 〉 . (2.20)

We need to deal with class-II neutral (ω = 0) (NS) fields separately. For example,

consider the N 0
3 which has two null states

[(
1− 2

b2

)
G±−3/2 −G

±
−1/2L−1 +G±−1/2J−1

]
|N0

3 〉 , (2.21)

which should be identified with N 1
3 and Ñ−13 , respectively. We will call these neutral (NS)

degenerate fields as class-III and denote by

Class− III : Nm = Nα0mα
0
m
. (2.22)

The null state structure of the class-III fields has an infinite sequence in both directions,

Class− III : · · · ← Ñ−2m ← Ñ−1m ← Nm → N1
m → N2

m → · · · . (2.23)

The identity operator is the most simple class-III field with m = 1.

The degenerate fields are playing an essential role in both conformal and modular

bootstraps. As we will see shortly, some simple degenerate fields satisfy relatively simple

operator product expansion (OPE) and make the conformal bootstrap viable. In this paper

we will associate the conformal BCs corresponding to the degenerate fields with solutions

of the functional equations obtained by the conformal bootstrap.

3. FZZT-Branes

The FZZT-branes can be described as the N = 2 SLFT on a half-plane whose BCs are

characterized by a continuous parameter. Extending our previous work [22], we complete

the conformal bootstrap in this section.

3.1 One-point functions

In this section, we compute exact one-point functions of the (NS) and (R) bulk opera-

tors Nαα and R
(+)
αα of the SLFT with boundary.1 The boundary preserves the N = 2

superconformal symmetry if the following boundary action is added [27]:

SB =

∫ ∞

−∞
dx

[
− i

4π
(ψ̄+ψ− + ψ̄−ψ+) +

1

2
a−∂xa

+ − 1

2
ebφ

+/2

(
µBa

+ +
µb2

4µB
a−
)
×

× (ψ− + ψ̄−)− 1

2
ebφ

−/2

(
µBa

− +
µb2

4µB
a+
)
(ψ+ + ψ̄+)−

− 2

b2

(
µ2B +

µ2b4

16µ2B

)
eb(φ

++φ−)/2

]
. (3.1)

1From now on we consider ε = + only since the other case is almost the same.
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The one-point functions are defined by

〈Nαα(ξ, ξ̄)〉 =
UNS(α, α)

|ξ − ξ̄|2∆NS
αα

, and 〈R(+)
αα (ξ, ξ̄)〉 = UR(α, α)

|ξ − ξ̄|2∆R
αα

, (3.2)

with the conformal dimensions given in eq. (2.6). We will simply refer to the coefficients

UNS(α, α) and UR(α, α) as the one-point functions.

3.2 Conformal bootstrap of the N = 2 SLFT

The conformal bootstrap method starts with a two-point correlation function on the half-

plane. By choosing one of the two operators as a simple degenerate field, the OPE relation

becomes relatively simple. The bootstrap equations arise from considering two different

channels; one is taking the OPE before the fields approach on the boundary and the

other channel is taking the degenerate field on the boundary where the boundary screening

integral based on the boundary action is considered [16].

In practice, due to technical difficulties, we could consider only a few most simple

degenerate fields and their OPEs. Usually, these are enough to fix the one-point functions

exactly up to overall constants. Let us first consider a two-point function of a neutral

degenerate field N−b/2 and a general neutral field Nα:
2

Gα(ξ, ξ
′) = 〈N−b/2(ξ)Nα(ξ

′)〉 . (3.3)

The product of these two fields are expanded into four fields

N−b/2Nα =
[
Nα− b

2

]
+ C+−

[
ψ+ψ̄+Nα− b

2
,α+ b

2

]
+ C−+

[
ψ−ψ̄−Nα+ b

2
,α− b

2

]
+ C−−

[
Nα+ b

2

]
.

(3.4)

Here the bracket [. . . ] means the conformal tower of a given primary field. One can see

that the second and third terms in the r.h.s. are the super-partners of the corresponding

fields. The structure constants can be computed by screening integrals as follows:

C+−(α) = C−+(α) = −πµ
γ(αb− b2

2 − 1)

γ(− b2

2 )γ(αb)

C−−(α) = 2−2b
2−2π2µ2b4γ(1− αb)γ

(
1

2
− b2

2
− αb

)
γ

(
αb− 1

2

)
γ

(
αb+

b2

2

)
,

with γ(x) ≡ Γ(x)/Γ(1− x).
Using these, we can express the two-point function as

Gα(ξ, ξ
′) = UNS

(
α− b

2

)
GNS
1 (ξ, ξ′) + C−−(α)U

NS

(
α+

b

2

)
GNS
3 (ξ, ξ′) , (3.5)

where the one-point functions of the super-partners vanish due to the supersymmetric

boundary. The GNS
i (ξ, ξ′)’s are expressed in terms of the special conformal blocks

GNS
i (ξ, ξ′) =

|ξ′ − ξ̄′|2∆
NS
α −2∆

NS
−b/2

|ξ − ξ̄′|4∆NS
α

FNS
i (η) , i = 1, 2, 3

2We will suppress one of the indices of the fields since α = α.
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with

η =
(ξ − ξ′)(ξ̄ − ξ̄′)
(ξ − ξ̄′)(ξ̄ − ξ′) .

These conformal blocks can be determined by Dotsenko-Fateev integrals [20]:

Ii(η) = NiFNS
i (η),

=

∫ ∫

Ci

dx1dx2〈N−b/2(η)Nα(0)N−b/2(1)ψ
−ebφ

+(x1)ψ+ebφ
−(x2)N1/b−α(∞)〉

= ηαb(1− η)−b2/2
∫ ∫

dx1dx2(x1x2)
−αb × (3.6)

× [(x1 − 1)(x2 − 1)(x1 − η)(x2 − η)]b
2/2(x1 − x2)−b

2−1 .

The index i denotes the three independent integration contours between the branching

points 0, η, 1,∞. The conformal blocks FNS
i (η) are regular at η = 0. Since we are interested

in the limit η → 1, we need to introduce another blocks which are well defined in that limit.

This can be provided by Ĩi which is given by the same integral (3.6) with a different contour

as explained in [20]. Using this, we can define another set of conformal blocks as

Ĩi(η) = ÑiF̃NS
i (η) (3.7)

so that F̃NS
j (η) are regular at η = 1. The monodromy relations between the conformal

blocks are given by [20]:

FNS
i (η) =

3∑

j=1

αijF̃NS
j (η) , (3.8)

with

α13 =
Γ(−1)Γ(− 1

2 − b2

2 )

Γ(− b2

2 )Γ(
1
2 )

Γ(αb− b2

2 )Γ(αb+
1
2)

Γ(αb)Γ(αb − b2

2 − 1
2)

α23 =
2Γ(−1)Γ(−1− b2)
Γ(− b2

2 )Γ(1 +
b2

2 )

Γ(αb+ b2

2 + 1)Γ(2− αb+ b2

2 )

Γ(αb)Γ(−αb+ 1)

α33 =
Γ(−1)Γ(− 1

2 − b2

2 )

Γ(− b2

2 )Γ(
1
2 )

Γ(32 − αb)Γ(1 − b2

2 − αb)
Γ(1− αb)Γ( 12 − b2

2 − αb)
.

Here we have written only those for F̃NS
3 because we are interested in the identity operator

in the intermediate channel. Notice that this calculation involves a divergent constant

Γ(−1). We will show that this factor is canceled in the functional equation.

The two-point function Gα(ξ, ξ
′) in the other channel can be computed as the two fields

approach the boundary. When the degenerate fieldN−b/2 approaches, it can be expanded in

boundary operators including the boundary identity operator. For the boundary identity

operator, a special bulk-boundary structure constant R(−b/2) can be computed by the

boundary action (3.1):

R(−b/2) = −µ2B
∫ ∫

dx1dx2

〈
N− b

2
(i/2)ψ−ebφ

+(x1)/2ψ+ebφ
−(x2)/2e

1
2b
(φ++φ−)(∞)

〉

= −2−b2+1√πµ2B
Γ(0)Γ(− 1

2 − b2

2 )

Γ(− b2

2 )
(3.9)
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with

µB
2 = µ2B +

µ2b4

16µ2B
. (3.10)

This constant also contains a singular factor Γ(0). After dividing out these factors on the

both sides of the equation, we obtain the following bootstrap equation

2−b
2+1πµ2B UNS(α) =

Γ(αb− b2

2 )Γ(αb+
1
2)

Γ(αb)Γ(αb − b2

2 − 1
2)

UNS

(
α− b

2

)
+

+2−2−2b
2

π2b4µ2
Γ(αb− 1

2)Γ(αb+
b2

2 )

Γ(αb)Γ(αb + b2

2 + 1
2)

UNS

(
α+

b

2

)
. (3.11)

It turns out that a similar functional equation for the (R) field can not be obtained in this

way. Instead we will show shortly that the other functional equations can be used to find

(R) one-point functions.

3.3 Conformal bootstrap based on the dual action

In [12] it was proposed that the N = 2 SLFT is dual to the theory with the action

S =

∫
d2z

[
1

2π
(∂φ−∂̄φ+ + ∂φ+∂̄φ− + ψ−∂̄ψ+ + ψ+∂̄ψ− + ψ̄−∂ψ̄+ + ψ̄+∂ψ̄−) +

+
µ̃

b2
(∂φ− − 1

b
ψ−ψ+)(∂̄φ+ − 1

b
ψ̄+ψ̄−)e

1
b
(φ++φ−)

]
, (3.12)

where µ̃ is the dual cosmological constant. One can derive functional equations for the

one-point functions of neutral fields by using the screening operator in the dual action.

We consider the two-point function of the class-II degenerate field R+
−1/2b and a (NS)

primary field Nα

GNS
α (ξ, ξ′) =

〈
R+
− 1

2b

(ξ)Nα(ξ
′)

〉
. (3.13)

The OPE of these fields is given by

R+
− 1

2b

Nα =

[
R+
α− 1

2b

]
+ CNS(α)

[
R+
α+ 1

2b

]
, (3.14)

where the structure constant CNS(α) was computed in [12] based on the dual action (3.12)

CNS(α) = πµ̃γ
(
1 + b−2

) Γ(2αb − 1
b2
)Γ(1− 2α

b )

Γ(1− 2α
b + 1

b2 )Γ(
2α
b )

. (3.15)

The two-point function (3.13) can be written as

GNS
α (ξ, ξ′)=

|ξ′ − ξ̄′|2∆
NS
α −2∆

R
−1/2b

|ξ−ξ̄′|4∆NS
α

[
UR

(
α− 1

2b

)
FNS
+ (η)+CNS(α)UR

(
α+

1

2b

)
FNS
− (η)

]
,

(3.16)
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where FNS
± (η) are special conformal blocks. These conformal blocks can be obtained by

the following integral

∫
dx

〈
R+
− 1

2b

(η)Nα(0)R
−
− 1

2b

(1)ψ−(x)ψ+(x)N 1
b
(x)N 1

b
−α(∞)

〉
=

= η
α
b (1− η)−

1

2b2
+ 3

4

∫
dxx−

2α
b (x− 1)

1

b2
−1(x− η)

1

b2
−1 . (3.17)

Due to two independent contours, this is expressed in terms of the hypergeometric functions

FNS
+ (η) = η

α
b (1− η)−

1

2b2
+ 3

4F

(
− 1

b2
+ 1,

2α

b
− 2

b2
+ 1;

2α

b
− 1

b2
+ 1; η

)
, (3.18)

FNS
− (η) = η−

α
b
+ 1

b2 (1− η)−
1

2b2
+ 3

4F

(
− 1

b2
+ 1,−2α

b
+ 1;−2α

b
+

1

b2
+ 1; η

)
. (3.19)

In the cross channel, the two-point function can be written as

GNS
α (ξ, ξ′) =

|ξ′ − ξ̄′|2∆
NS
α −2∆

R
−1/2b

|ξ − ξ̄′|4∆NS
α

[BNS
+ (α)F̃NS

+ (η) +BNS
− (α)F̃NS

− (η)] , (3.20)

where BNS
± (α) are the bulk-boundary structure constants and F̃NS

± (η) are given by

F̃NS
+ (η) = η

α
b (1− η)−

1

2b2
+ 3

4F

(
− 1

b2
+ 1,

2α

b
− 2

b2
+ 1;− 2

b2
+ 2; 1 − η

)
, (3.21)

F̃NS
− (η) = η

α
b (1− η)

3

2b2
− 1

4F

(
2α

b
,
1

b2
;
2

b2
; 1− η

)
. (3.22)

The conformal block F̃NS
− (η) corresponds to the boundary identity operator which appears

in the boundary as the bulk operator R+
−1/2b approaches the boundary. The fusion of Nα

to the boundary identity operator is described by the one-point function UNS(α). On the

other hand, the fusion of R+
−1/2b is described by a special bulk-boundary structure constant

R(−1/2b) which could be computed as a boundary screening integral with one insertion

of the dual boundary interaction if it were known. Therefore, the bulk-boundary structure

constant BNS
− (α) can be written as BNS

− (α) = R(−1/2b)UNS(α).

Comparing (3.16) with (3.20) and using the monodromy relations between F±(η) and
F̃±(η), we obtain the following functional equation for the one-point function

R (−1/2b) UNS(α) =
Γ(2αb − 1

b2 + 1)Γ(− 2
b2 + 1)

Γ(− 1
b2

+ 1)Γ( 2αb − 2
b2

+ 1)
UR

(
α− 1

2b

)
+

+πµ̃γ
(
1 + b−2

) Γ(2αb − 1
b2
)Γ(− 2

b2
+ 1)

Γ(− 1
b2

+ 1)Γ( 2αb )
UR

(
α+

1

2b

)
. (3.23)

In a similar way, one can derive a functional equation which relates UR(α) with UNS(α±
1/2b) as is given in [22].
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3.4 Conformal bootstrap based on the N = 2 minimal CFTs

So far, we have considered only the neutral one-point functions. To consider the charge

sector, we need to consider a non-neutral degenerate field. The most simple degenerate

field is N−1/b,0 which is a special case of class-II field (2.15) with m = 3 which has a null

state at level 3/2. To use the usual conformal bootstrap screening procedure, we need to

consider the dual action proposed in [12] as in previous subsection. However, calculations

will be quite complicated. So, we adopt here another strategy which is based on analytic

continuation of the N = 2 super-minimal CFTs investigated in [28]. These CFTs have

central charges c = 3 − 6
p+2 and their (NS) primary fields are denoted by two integers

l = 0, 1, . . . and m = −l,−l + 2, . . . , l. Comparing the central charge of the N = 2 SLFT,

we can identify b2 = −(p + 2). Furthermore, we can relate the primary fields of the two

theories by comparing the conformal dimensions and U(1) charges as follows:

N l
m = e−

l+m
2b

φ+− l−m
2b

φ− (3.24)

with

l = −b(α+ ᾱ) , m = b(ᾱ− α) . (3.25)

The degenerate chiral field N−1/b,0 is identified with N 1
1 . Its OPE with an arbitrary

(NS) field is given by

N1
1N

l
m = N l+1

m+1 + C
(NS)
− N l−1

m+1 (3.26)

and can be translated into that of the N = 2 SLFT

N−1/b,0Nα,ᾱ = Nα−1/b,ᾱ + C
(NS)
− Nα,ᾱ+1/b. (3.27)

Indeed, one can check that the structure constants in both cases coincide if eq. (3.25)

is imposed. To write a functional equation for U(α, ᾱ), we follow the same procedure as

before. The conformal blocks corresponding to the two terms in eq. (3.27) can be read

directly from the N = 2 minimal CFT results in [28] using the definition (3.25). The

only difference is the normalization constant of the conformal blocks due to the Clebsch-

Gordan coefficients in the OPEs of the (NS) fields which was not accounted there. With

this normalization the conformal blocks are given by:

1

1− αbF
(
α+ ᾱ

b
− 2

b2
, 1− 1

b2
;
α+ ᾱ

b
− 1

b2
+ 1; η

)
(3.28)

for the first term in the r.h.s. of eq. (3.27) and

1

ᾱb
F

(
−α+ ᾱ

b
, 1− 1

b2
; 1 +

1

b2
− α+ ᾱ

b
; η

)
(3.29)

for the second one. The structure constant C
(NS)
− can also be extracted from [28]:

C
(NS)
− = −µ̃′ (ᾱb)

2Γ(−α+ᾱ
b )Γ(α+ᾱb − 1

b2
)

Γ(1 + 1
b2
− α+ᾱ

b )Γ(1 + α+ᾱ
b )

, (3.30)
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where µ̃′ is given by µ̃, the cosmological constant of the dual N = 2 theory,

µ̃′ = 4πµ̃γ(1 + b−2)b−4 . (3.31)

With all these ingredients we are able to write down new functional equations for the

one-point functions of non-neutral primary fields:

R(−1/b, 0)UNS(α, ᾱ) =
Γ(− 2

b2
)Γ(α+ᾱb − 1

b2
+ 1)

(1− αb)Γ(1− 1
b2
)Γ(α+ᾱb − 2

b2
)
UNS

(
α− 1

b
, ᾱ

)
−

− µ̃′ (ᾱb)Γ(−
2
b2 )Γ(

α+ᾱ
b − 1

b2 )

Γ(1− 1
b2
)Γ(1 + α+ᾱ

b )
UNS

(
α, ᾱ +

1

b

)
. (3.32)

Again, we do not know the bulk-boundary structure constant R(−1/b, 0).
The (R) sector can be treated in exactly the same way. Similarly to (3.24), we can

identify

Rl
m,1 = σ+e−

l+m+1
2b

φ+− l−m−1
2b

φ− . (3.33)

The OPE is given by

N−1/b,0R
(+)
α,ᾱ = R

(+)
α−1/b,ᾱ + C

(R)
− R

(+)
α,ᾱ+1/b . (3.34)

The conformal blocks can be computed as before

1

3/2− αbF
(
α+ ᾱ

b
− 2

b2
, 1− 1

b2
;
α+ ᾱ

b
− 1

b2
+ 1; η

)
(3.35)

for the first term in the r.h.s. of eq. (3.34) and

1

ᾱb+ 1/2
F

(
−α+ ᾱ

b
, 1− 1

b2
; 1 +

1

b2
− α+ ᾱ

b
; η

)
(3.36)

for the second one. The structure constant C
(R)
− is given by

C
(R)
− = −µ̃′ (ᾱb+

1
2)

2Γ(−α+ᾱ
b )Γ(α+ᾱb − 1

b2
)

Γ(1 + 1
b2
− α+ᾱ

b )Γ(1 + α+ᾱ
b )

. (3.37)

With these, we find the functional equation for the (R) field:

R(−1/b, 0)UR(α, ᾱ) =
Γ(− 2

b2
)Γ(α+ᾱb − 1

b2
+ 1)

(32 − αb)Γ(1 − 1
b2
)Γ(α+ᾱb − 2

b2
)
UR

(
α− 1

b
, ᾱ

)
−

− µ̃′ (ᾱb+
1
2)Γ(− 2

b2 )Γ(
α+ᾱ
b − 1

b2 )

Γ(1− 1
b2
)Γ(1 + α+ᾱ

b )
UR

(
α, ᾱ+

1

b

)
. (3.38)

One can check that these equations are consistent with the functional equations (3.23)

derived in the section 3.3 for neutral fields with α = ᾱ. This justifies the method of analytic

continuation used in this subsection. From now on, we will use eqs. (3.32) and (3.38) instead

of eq. (3.23) since they are applicable even to non-neutral fields.
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3.5 Solutions

In our previous paper [22], we have derived the one-point functions on the FZZT BC based

on the modular bootstrap method and confirmed their validity using a single functional

equation. Now it is possible to solve the set of functional equations to determine the

one-point functions completely. They are given by

UNS
s (α, ᾱ) = (πµ)−

α+ᾱ
b

+ 1

b2
Γ
(
1 + α+ᾱ

b − 1
b2

)
Γ (b(α+ ᾱ)− 1)

Γ (αb) Γ (ᾱb)
×

× cosh

[
2πs

(
α+ ᾱ− 1

b

)]
, (3.39)

UR
s (α, ᾱ) = (πµ)−

α+ᾱ
b

+ 1

b2
Γ
(
1 + α+ᾱ

b − 1
b2

)
Γ (b(α+ ᾱ)− 1)

Γ
(
αb− 1

2

)
Γ
(
ᾱb+ 1

2

) ×

× cosh

[
2πs

(
α+ ᾱ− 1

b

)]
. (3.40)

The continuous parameter s is related nonperturbatively to the boundary cosmological

constant µB in eq. (3.1) by

µB
2 =

µb2

2
cosh(2πsb) (3.41)

along with the relation between the two cosmological constants

4πµ̃γ(1 + b−2) = (πµ)2/b
2

. (3.42)

These results match perfectly with those of the modular bootstrap [22].

4. ZZ-Branes

In this section we are interested in the N = 2 SLFT on Lobachevskiy plane or pseudosphere

which is the geometry of the infinite constant negative curvature surface. Using previous

conformal bootstraps, we derive and solve nonlinear functional equations which can provide

discrete BCs.

4.1 Pseudosphere geometry

The classical equations of motion for the N = 2 SLFT can be derived from the la-

grangian (2.1):

∂∂̄φ± = πµb3
[
πµeb(φ

++φ−) + iψ±ψ̄±ebφ
∓
]

(4.1)

∂ψ̄± = iπµb2ebφ
±

ψ∓ , ∂̄ψ± = −iπµb2ebφ± ψ̄∓ . (4.2)

Assuming that the fermionic fields vanish in the classical limit, we can solve the bosonic

fields classically

eϕ(z) =
4R2

(1− |z|2)2 , (4.3)
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where ϕ = b(φ+ + φ−) and R−2 = 4π2µ2b4. The parameter R is interpreted as the radius

of the pseudosphere in which the points at the circle |z| = 1 are infinitely far away from

any internal point. This circle can be interpreted as the “boundary” of the pseudosphere.

This boundary has a different class of BCs, which are classified by integers whose

interpretation is not clear yet. For the N = 2 SLFT, we will call the discrete BCs as

ZZ-branes following [17] and show that these correspond to the degenerate fields of the

N = 2 SLFT.

4.2 Conformal bootstrap equations on pseudosphere

In section 3, we have started with two-point correlation functions on a half plane. As the

two fields approach on the boundary, the degenerate field is expanded into the boundary

operators. On pseudosphere geometry, as they approach on the boundary η → 1, the

distance between the two points become infinite due to the singular metric. This means

that the two-point function is factorized into a product of two one-point functions. For

example, the two-point function in eq. (3.3) becomes

Gα(ξ, ξ
′) =

|ξ′ − ξ̄′|2∆
NS
α −2∆

NS
−b/2

|ξ − ξ̄′|4∆NS
α

UNS(−b/2)UNS(α)F̃NS
3 (η) . (4.4)

Meanwhile, the computation of the other channel where we take the OPE of the two fields

first is identically same as in section 3. Comparing these two results, we can obtain the

following nonlinear functional equations for U(α):

C1UNS(−b/2)UNS(α) =
Γ(αb− b2

2 )Γ(αb+
1
2)

Γ(αb)Γ(αb − b2

2 − 1
2)

UNS

(
α− b

2

)
+

+2−2−2b
2

π2b4µ2
Γ(αb− 1

2)Γ(αb+
b2

2 )

Γ(αb)Γ(αb + b2

2 + 1
2 )

UNS

(
α+

b

2

)
(4.5)

with

C1 =

√
πΓ(− b2

2 )

Γ(−1)Γ(− b2

2 − 1
2)
. (4.6)

Similarly we can derive functional equations corresponding to eqs. (3.32) and (3.38):

C2ŨNS(−1/b, 0)UNS(α, ᾱ) =
Γ(α+ᾱb − 1

b2 + 1)

(1− αb)Γ(α+ᾱb − 2
b2
)
UNS

(
α− 1

b
, ᾱ

)
−

− µ̃′ (ᾱb)Γ(
α+ᾱ
b − 1

b2
)

Γ(1 + α+ᾱ
b )

UNS

(
α, ᾱ +

1

b

)
, (4.7)

C2ŨNS(−1/b, 0)UR(α, ᾱ) =
Γ(α+ᾱb − 1

b2
+ 1)

(32 − αb)Γ(α+ᾱb − 2
b2
)
UR

(
α− 1

b
, ᾱ

)
−

− µ̃′ (ᾱb+
1
2)Γ(

α+ᾱ
b − 1

b2 )

Γ(1 + α+ᾱ
b )

UR

(
α, ᾱ +

1

b

)
(4.8)

with C2 = Γ(1 − 1
b2
)/Γ(− 2

b2
). Here we have denoted one-point functions of the class-II

degenerate field in terms of ŨNS since they are in principle different from the one-point

functions of general fields.
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Notice that C1 contains Γ(−1) in eq. (4.6) which arises from singular monodromy trans-

formation. We can remove this singular factor by redefining UNS(R) /Γ(−1) → UNS(R).

Notice that this redefinition does not change eqs. (4.7) and (4.8) since they are linear in

UNS(R) if assuming that ŨNS is regular.

4.3 Solutions

The solutions to these equations can be expressed in terms of two integers m,n ≥ 1 as

follows:

UNS
mn(α, ᾱ) = Nmn(πµ)−

α+ᾱ
b

Γ(α+ᾱb − 1
b2

+ 1)Γ(b(α + ᾱ)− 1)

Γ(αb)Γ(ᾱb)
×

× sin

[
πm

b

(
α+ ᾱ− 1

b

)]
sin

[
πnb

(
α+ ᾱ− 1

b

)]
(4.9)

UR
mn(α, ᾱ) = Nmn(πµ)−

α+ᾱ
b

Γ(α+ᾱb − 1
b2

+ 1)Γ(b(α + ᾱ)− 1)

Γ(αb− 1/2)Γ(ᾱb+ 1/2)
×

× sin

[
πm

b

(
α+ ᾱ− 1

b

)]
sin

[
πnb

(
α+ ᾱ− 1

b

)]
, (4.10)

with the normalization factors given by

Nmn = (−1)n 4b2

Γ(−1/b2)
cot(πnb2)

sin(πm/b2)
. (4.11)

This class of solutions will be associated with conformal BCs corresponding to the class-I

neutral degenerate fields. It turns out that the conformal bootstrap equations do not allow

discrete BCs corresponding to non-neutral degenerate fields. One possible explanation is

that non-neutral BCs will introduce a boundary field which will not produce the identity

operator when fused with bulk degenerate fields as they approach the boundary.

It is interesting to notice that the following one-point functions

UNS
m (α, ᾱ) = Nm(πµ)−

α+ᾱ
b

Γ(1− αb)Γ(1 − ᾱb)
Γ(−α+ᾱ

b + 1
b2
)Γ(2− b(α+ ᾱ))

×

× sin
[
πm
b (α+ ᾱ− 1

b )
]

sin
[
π
b (α+ ᾱ− 1

b )
] (4.12)

UR
m(α, ᾱ) = Nm(πµ)−

α+ᾱ
b

Γ(32 − αb)Γ( 12 − ᾱb)
Γ(−α+ᾱ

b + 1
b2
)Γ(2− b(α+ ᾱ))

×

× sin
[
πm
b (α+ ᾱ− 1

b )
]

sin
[
π
b (α+ ᾱ− 1

b )
] (4.13)

Nm =
π

Γ(− 1
b2

+ 1)

1

sin(πmb2 )
(4.14)

satisfy eqs. (4.7) and (4.8). Although these do not satisfy eq. (4.5), hence not complete

solutions, this class of solutions turns out to be consistent with modular bootstrap equations

and we will show that they correspond to the class-III BCs.
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5. Modular bootstrap

In this section we derive the modular bootstrap equations based on the modular properties

of degenerate characters. We derive the boundary amplitudes which are consistent with

the one-point functions derived before.

5.1 Characters of general primary fields

The character of a CFT is defined by the trace over all the conformal states built on a

specific primary state

χh(q, y, t) = e2πiktTr
[
qL0−c/24yJ0

]
, (5.1)

with k = c/3. Since the primary fields with general α, ᾱ of the N = 2 SLFT have no null

states, the characters can be obtained by simply summing up all the descendant states.

For these primary fields, it is more convenient to use the real parameters P, ω to denote

them using eqs. (2.7) and (2.8). The (NS) character can be computed as

χNS
[P,ω](q, y, t) = e2πiktqP

2+b2ω2/4yω
θ00(q, y)

η(q)3
, (5.2)

where we have introduced standard elliptic functions

η(q) = q1/24
∞∏

n=1

(1− qn) , θ00(q, y) =
∞∏

n=1

[(
1− qn)(1 + yqn−1/2

)(
1 + y−1qn−1/2

)]
.

For the conformal BCs of super-CFTs, one needs to consider characters and associated

Ishibashi states of the (ÑS) sectors [29]. The (ÑS) characters are defined by

χÑS
h (q, y, t) = e2πiktTr

[
(−1)F qL0−c/24yJ0

]
. (5.3)

For a primary field Nαα, (−1)F term contributes −1 for those descendants with odd number

of G±−r. This can be efficiently incorporated into the character formula by shifting y → −y
in the product. Therefore, the (ÑS) character is given by

χÑS
[P,ω](q, y, t) = e2πiktqP

2+b2ω2/4yω
θ00(q,−y)
η(q)3

. (5.4)

The character of a (R) primary field R
(ε)
[P,ω] is given by

χR[P,ω,ε](q, y, t) = e2πiktqP
2+b2ω2/4yω

θ10(q, y)

η(q)3
, (5.5)

where we introduce another elliptic function

θ10(q, y) = (y1/2 + y−1/2)q1/8
∞∏

n=1

[
(1− qn)

(
1 + yqn)(1 + y−1qn

)]
. (5.6)
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5.2 Characters of degenerate fields

In this subsection, we will consider only the (NS) fields which will be used later. The (R)

characters can be similarly computed. Let us start with a class-I (NS) degenerate field

Nω
m,n. As claimed in eq. (2.12), this field has a null state. Therefore, the character is

given by

χNS
mnω(q, y, t) = e2πikt

[
q−

1
4
(m
b
+nb)2 − q− 1

4
(m
b
−nb)2

]
qb

2ω2/4yω
θ00(q, y)

η(q)3
. (5.7)

The characters of the class-II (NS) degenerate fields, N ω
m and Ñω

m, are rather compli-

cated due to the infinite null states structure. One should add and subtract contributions

of these null states infinitely. The character of a class-IIA degenerate field is given by

χNS
mω(q, y, t) = e2πikt

θ00(q, y)

η(q)3

∞∑

j=0

(−1)jq−m2/4b2(yqm/2)ω+j (5.8)

= e2πikt
yωq−m

2/4b2+mω/2

1 + yqm/2
θ00(q, y)

η(q)3
(5.9)

and similarly for a class-IIB:

χNS
mω(q, y, t) = e2πikt

yωq−m
2/4b2−mω/2

1 + y−1qm/2
θ00(q, y)

η(q)3
. (5.10)

One should be more careful for the neutral class-III degenerate fields. There are two

infinite semi-chains of null states as expressed in eq. (2.23). Adding all these states, one

can find the character as follows:

χNS
m (q, y, t) = e2πikt

θ00(q, y)

η(q)3



∞∑

j=0

q−m
2/4b2

(
−yqm/2

)j
+
∞∑

j=1

q−m
2/4b2

(
−y−1qm/2

)j



= e2πikt
q−m

2/4b2(1− qm)
(1 + yqm/2)(1 + y−1qm/2)

θ00(q, y)

η(q)3
. (5.11)

When m = 1, this character is the same as that of the identity operator as expected.

5.3 Modular transformations

The modular transformation of the class-I character can be easily found as

χNS
mnω(q

′, y′, t′) = 2b

∫ ∞

−∞
dP

∫ ∞

−∞
dω′ sinh

(
2π
mP

b

)
sinh(2πnbP )e−πib

2ωω′χNS
[P,ω′](q, y, t) .

(5.12)

Here we have used q′, y′, t′ for the S-modular transformed parameters and ω ′ as the U(1)

charge of a general primary field to distinguish it from that of the degenerate field ω.
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The modular transformation of the class-II characters can be derived by the method

of [30]:

χNS
mω(q

′, y′, t′) =
b

2

∫ ∞

−∞
dP

∫ ∞

−∞
dω′

[
e−πib

2ωω′ cosh[2πbP (ω ∓ 1∓ m
b2
)]

2 cosh(πbP + πib2ω′

2 ) cosh(πbP − πib2ω′

2 )
+

+
e−πib

2(ω∓1)ω′ cosh[2πbP (ω ∓ m
b2
)]

2 cosh(πbP + πib2ω′

2 ) cosh(πbP − πib2ω′

2 )

]
×

×χNS
[P,ω′](q, y, t)± i

∑

r∈Z+ 1
2

∫ 1

0
dλe−iπ(±mλ+2ωr)χ̃NS

rλ (q, y, t) , (5.13)

where the upper (lower) sign denotes the class-IIA (IIB), respectively.

For the class-III degenerate fields, the transformation is given by

χNS
m (q′, y′, t′) =

b

2

∫ ∞

−∞
dP

∫ ∞

−∞
dω′

sinh(2πmP/b) sinh(2πbP )

cosh
(
πbP+ πib2ω′

2

)
cosh

(
πbP− πib2ω′

2

)χNS
[P,ω′](q, y, t)+

+2
∑

r∈Z+ 1
2

∫ 1

0
dλ sin(πmλ)χ̃NS

rλ (q, y, t). (5.14)

Here we have defined a spectral flow of the class-IIA character

χ̃NS
rλ (q, y, t) ≡ e2πikt

y2r/b
2+λqr

2/b2+rλ

1 + yqr
θ00(q, y)

η(q)3
. (5.15)

5.4 Conformal boundary conditions

5.4.1 Vacuum BC

According to Cardy’s formalism, one can associate a conformal BC with each primary

state [14]. Among the conformal BCs of the N = 2 SLFT, we concentrate on those

associated with the degenerate fields. Following the modular bootstrap formulation, we

can compute a boundary amplitude which is the inner product between the Ishibashi state

of a primary state and the conformal boundary state. As usual, we start with the ‘vacuum’

BC amplitude [23, 22]:

ΨNS
0 (P, ω)ΨNS

0
†
(P, ω) = SNS(P, ω) , (5.16)

where the boundary amplitude is defined by

ΨNS
0 (P, ω) = 〈0|N[P,ω]〉〉 (5.17)

and the modular S-matrix element SNS(P, ω) is given by eq. (5.14) with m = 1.

Since ΨNS
0
†
(P, ω) = ΨNS

0 (−P, ω), one can solve this up to some unknown constant as

follows:

ΨNS
0 (P, ω) =

√
b3

2
(πµ)−

2iP
b

Γ
(
1
2 − ibP + b2ω

2

)
Γ
(
1
2 − ibP − b2ω

2

)

Γ
(
−2iP

b

)
Γ (1− 2ibP )

. (5.18)

Similarly, the vacuum boundary amplitude for the (R) Ishibashi state is given by [22]:

ΨR
0 (P, ω) = −i

√
b3

2
(πµ)−

2iP
b

Γ
(
−ibP + b2ω

2

)
Γ
(
1− ibP − b2ω

2

)

Γ
(
−2iP

b

)
Γ (1− 2ibP )

. (5.19)
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5.4.2 Class-I BCs

Now we impose the vacuum BC on one boundary and discrete BCs associated with the

class-I degenerate fields on the other. Following the Cardy formalism, we can get the

relation

χNS
mnω(q

′, y′, t′) =

∫ ∞

−∞
dP

∫ ∞

−∞
dω′ΨNS

mnω(P, ω
′)ΨNS†

0 (P, ω′)χNS
[P,ω′](q, y, t) . (5.20)

Here, the boundary amplitudes are defined by an inner product between the the boundary

state |m,n, ω〉 and the Ishibashi state

ΨNS
mnω(P, ω) = 〈m,n, ω|N[P,ω]〉〉 . (5.21)

Comparing this with eq. (5.12), we obtain

ΨNS
mnω(P, ω

′)ΨNS†
0 (P, ω′) = 2b sinh(2πmP/b) sinh(2πnbP )e−πib

2ωω′ . (5.22)

We can find the boundary amplitude from eq. (5.18)

ΨNS
mnω(P, ω

′) =

√
8

b
(πµ)−

2iP
b

Γ
(
2iP
b

)
Γ (1 + 2ibP )

Γ
(
1
2 + ibP + b2ω

2

)
Γ
(
1
2 + ibP − b2ω

2

) ×

× sinh

(
2π
mP

b

)
sinh(2πnbP )e−πib

2ωω′ . (5.23)

It is remarkable that this solution coincides with eq. (4.9), the ZZ-brane solution with

BC (m,n, ω = 0). This provides a most important consistency check between the conformal

and modular bootstraps.

Now we impose the class-I discrete BCs on both boundaries. The partition function is

expressed by

ZNS
(mnω)(m′n′ω′)(q

′, y′, t′) =

∫ ∞

−∞
dP

∫ ∞

−∞
dω′′χNS

[P,ω′′](q, y, t)Ψ
NS
mnω(P, ω

′′)ΨNS†
m′n′ω′(P, ω

′′) .

(5.24)

Inserting eq. (5.23) into this, we find

ZNS
(mnω)(m′n′ω′)=

m+m′−1∑

k=|m−m′|+1

n+n′−1∑

l=|n−n′|+1

[
χNS
k,l−1,ω+ω′ + χNS

k,l+1,ω+ω′ + χNS
k,l,ω+ω′+1 + χNS

k,l,ω+ω′−1

]
,

(5.25)

where we have omitted the modular parameters for simplicity. From eq. (5.25) we can read

off the fusion rules of the class-I degenerate fields. In particular, the OPE between neutral

fields are given by

N0
mnN

0
m′n′ =

m+m′−1∑

k=|m−m′|+1

n+n′−1∑

l=|n−n′|+1

[
N0
k,l−1 +N0

k,l+1 +N1
k,l +N−1k,l−1

]
. (5.26)

Notice that this fusion rule can not be applicable to n = n′ case where l = 1, . . . , 2n− 1. If

l = 1, the field N 1
k,1 is not in class-I as mentioned before and the relation (5.25) is not valid.

This explains why the OPE of two identical class-I degenerate fields includes identity field

which is not in class-I but in class-III.
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So far we have considered the discrete BCs on both boundaries. It is interesting to

consider a mixed BC, namely a class-I BC on one boundary and the continuous (FZZT)

BC [22] on the other. In this case, the partition function can be written as

ZNS
(mnω)s(q

′, y′, t′) =

∫ ∞

−∞
dP

∫ ∞

−∞
dω′χNS

[P,ω′](q, y, t)Ψ
NS
mnω(P, ω

′)ΨNS†
s (P, ω′) , (5.27)

with

ΨNS
s (P, ω′) =

√
2b3 (πµ)−

2iP
b

Γ
(
1 + 2iP

b

)
Γ (2ibP ) cos(4πsP )

Γ
(
1
2 + ibP + b2ω′

2

)
Γ
(
1
2 + ibP − b2ω′

2

) , (5.28)

which is in fact eq. (3.39) up to a proportional constant. Inserting eq. (5.23) into this, we

obtain the following result:

ZNS
(mnω)s =

m−1∑

k=1−m,2

n−1∑

l=1−n,2

[
χNS
[P−k,−l−1,ω]

+ χNS
[Pk,l+1,ω]

+ χNS
[Pk,l,ω+1] + χNS

[Pk,l,ω−1]

]
, (5.29)

where we have omitted the modular parameters for simplicity and introduced a momentum

variable

Pk,l = s+
i

2

(
k

b
+ lb

)
. (5.30)

It is more illustrative to consider the most simple case, namely, m = n = 1, ω = 0.

This BC is associated with the class-I degenerate field N−b/2 which we have considered in

section 3.2. The above equation is simplified to

ZNS
(110)s = χNS

[s−ib/2,0] + χNS
[s+ib/2,0] + χNS

[s,1] + χNS
[s,−1] . (5.31)

In terms of α, ᾱ, one can easily check that these are characters of the operators appearing

in the OPE (3.4). This provides another consistency check for our results.

5.4.3 Class-II BCs

For the class-II and class-III (neutral) BCs, there are two types of Ishibashi states flowing

in the bulk. One is associated with the continuous state |N[P,ω′]〉〉 and the other with class-

II degenerate fields and their spectral flows. We denote this Ishibashi state by |r, λ〉〉. The
appearance of this state can be understood from the modular transformations, eq. (5.13).

If we denote the class-II boundary state |m,ω〉, we can define the following boundary

amplitudes as inner products between the boundary state and the Ishibashi states

ΨNS
mω(P, ω

′) = 〈m,ω|N[P,ω′]〉〉 , ΦNS
mω(r, λ) = 〈m,ω|r, λ〉〉 . (5.32)

Using these, one can express the partition function with the vacuum BC on one side and

a class-II BC on the other boundary

χNS
mω(q

′, y′, t′) =

∫ ∞

−∞
dP

∫ ∞

−∞
dω′ΨNS

mω(P, ω
′)ΨNS†

0 (P, ω′)χNS
[P,ω′](q, y, t) +

+
∑

r∈Z+ 1
2

∫ 1

0
dλΦNS

mω(r, λ)Φ
NS†
1 (r, λ)χ̃NS

rλ (q, y, t) . (5.33)
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Comparing this with eq. (5.13), we obtain

ΨNS
mω(P, ω

′)ΨNS†
0 (P, ω′) = Smω(P, ω

′) , (5.34)

where Smω(P, ω
′) is the modular S-matrix component in eq. (5.13). From this, one can

solve for ΨNS
mω(P, ω

′). Instead of presenting details for this case, we will analyze more

interesting case, namely the neutral (ω = 0) class-III BCs.

5.4.4 Class-III BCs

For a class-III (neutral) boundary state |m〉, we can define two boundary amplitudes

ΨNS
m (P, ω) = 〈m|N[P,ω]〉〉, ΦNS

m (r, λ) = 〈m|r, λ〉〉 (5.35)

due to the two Ishibashi states. Imposing this BC on one side and the vacuum BC on the

other, we can find

χNS
m (q′, y′, t′) =

∫ ∞

−∞
dP

∫ ∞

−∞
dω′ΨNS

m (P, ω′)ΨNS†
0 (P, ω′) +

+
∑

r∈Z+ 1
2

∫ 1

0
dλΦNS

m (r, λ)ΦNS†
1 (r, λ)χ̃NS

rλ (q, y, t) . (5.36)

Comparing with eq. (5.14), we obtain

ΨNS
m (P, ω) = ΨNS

0 (P, ω)
sinh(2πmP/b)

sinh(2πP/b)
, (5.37)

and

ΦNS
m (r, λ) =

2 sin(mπλ)√
2 sin(πλ)

. (5.38)

The solution (5.37) coincides with the one-point function (4.12). Imposing these BCs on

both boundaries, the partition function is given by

ZNS
mm′(q

′, y′, t′) =

∫ ∞

−∞
dP

∫ ∞

−∞
dωχNS

[P,ω](q, y, t)Ψ
NS
m (P, ω)ΨNS†

m′ (P, ω) +

+
∑

r∈Z+ 1
2

∫ 1

0
dλΦNS

m (r, λ)ΦNS†
m′ (r, λ)χ̃NS

rλ (q, y, t) . (5.39)

Inserting eqs. (5.37) and (5.38) into this, one can express it as

ZNS
mm′(q

′, y′, t′) =

m+m′−1∑

k=|m−m′|+1

χNS
k (q′, y′, t′) . (5.40)

This is a desired fusion rule of the neutral degenerate fields.
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5.4.5 Modular bootstrap for the (R) sector

One can perform similar analysis for the (R) sector. The (ÑS) characters are related to

the (R) characters by the following relation

χÑS
mnω(q

′, y′, t′) =

∫ ∞

−∞
dP

∫ ∞

−∞
dω′ΨR

mnω(P, ω
′)ΨR†

0 (P, ω′)χR[P,ω′](q, y, t) . (5.41)

Comparing with the modular S-matrix element, we can find

ΨR
mnω(P, ω

′)ΨR†
0 (P, ω′) = 2b sinh

(
2π
mP

b

)
sinh(2πnbP )e−πib

2ωω′ (5.42)

from which we can find

ΨR
mnω(P, ω

′) = −i
√

8

b
(πµ)−

2iP
b

Γ
(
2iP
b

)
Γ (1 + 2ibP )

Γ
(
ibP + b2ω

2

)
Γ
(
1 + ibP − b2ω

2

) ×

× sinh

(
2π
mP

b

)
sinh(2πnbP )e−πib

2ωω′ . (5.43)

It is straightforward to continue this analysis for the class-II and class-III BCs and

their mixed BCs for the (R) sector.

6. Discussions

In this paper we have derived conformal bootstrap equations for the N = 2 SLFT on

a half plane with appropriate boundary action and on a pseudosphere. We have found

the solutions of these functional equations which correspond to conformal BCs. We have

also checked the consistency of these solutions by the modular bootstrap analysis. In

particular, we have found a new class of ‘discrete’ conformal BCs of the N = 2 SLFT

which are parameterized by two positive integers and U(1) charge. These solutions are

associated with class-I degenerate fields. When U(1) charge vanishes, it is tempting to

interpret these solutions as D0-branes in 2D fermionic black hole. The solutions with

generic integer values may describe non-BPS, hence, unstable D0-brane. An interesting

case arises when n = m = 1. As we mentioned, this is different from the vacuum BC. Our

solution seems to suggest new boundary state for the 2D string theories.

Another intriguing point is the resemblance of the class-III solutions with D0-brane

solutions of the SL(2,R)/U(1) coset CFT [24] which is dual to the sine-Liouville theory [4,

5]. Since the N = 2 SLFT is dual to the fermionic SL(2,R)/U(1) coset CFT [6, 7], it is

natural that the two coset theories are closely related.

This relation between the coset theories means that the N = 2 SLFT is closely related

to the sine-Liouville theory. This can be checked by comparing the bulk reflection ampli-

tudes. We expect that this relationship still exists in the presence of boundary. It is an

interesting open problem to derive one-point functions based on the conformal bootstrap

of the sine-Liouville theory and compare with the results obtained in this paper.
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