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1 Introduction and overview

The phenomenon of integrability of certain one-dimensional quantum spin chains was dis-
covered in 1931 by Hans Bethe [2]. He solved what is now known as the periodic XXX
Heisenberg spin chain of length L, whose Hamiltonian reads

H = 1
2

L∑
`=1

(1 + ~σ` · ~σ`+1) with ~σ`+1 = ~σ1 , (1.1)

where ~σ` is essentially the spin operator at site `, expressed in terms of the three Pauli
matrices. H is a 2L × 2L hermitian matrix acting on the tensor product space

C2 ⊗ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
L−times

. (1.2)
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If we denote the canonical basis vectors of C2 by |1 〉 =
(1
0
)
and |2 〉 =

(0
1
)
, the canonical

basis vectors of (1.2) are |n1n2 . . . nL〉 with nj = 1, 2. The Hamiltonian H in (1.1) acts
in a very transparent way on the canonical basis once one expresses it in terms of the
nearest-neighbor permutation operator P`,`+1 (where PL,L+1 := PL,1):

H =
L∑
`=1

P`,`+1 with P`,`+1| . . . n`−1 n` n`+1 n`+2 . . .〉 = | . . . n`−1 n`+1 n` n`+2 . . .〉. (1.3)

Written in exactly the same form, this Hamiltonian immediately generalizes to the one of
an integrable 3-state spin chain with nj = 1, 2, 3 acting on

C3 ⊗ C3 ⊗ · · · ⊗ C3︸ ︷︷ ︸
L−times

. (1.4)

Actually, the general case of an n-state model, where the Hamiltonian acts on L copies of
Cn, is also integrable: it takes again the same form (1.3), except that now nj = 1, . . . , n.
However, in the following we will concentrate on the special case n = 3, even though many
of our findings would generalize to arbitrary n ≥ 3.

It is well-known that the Hamiltonian (1.3) admits, for arbitrary n, an integrable
deformation termed twisting. It depends on up to n(n−1)

2 twist parameters. Hence, for
n = 3 one introduces three such parameters q1, q2, q3 and replaces (1.3) with the help of a
“twisted permutation operator” P̃`,`+1

(q1,q2,q3) (where still P̃L,L+1
(q1,q2,q3) := P̃L,1(q1,q2,q3)):

H̃(q1,q2,q3) =
L∑
`=1

P̃`,`+1
(q1,q2,q3) , (1.5)

with
P̃`,`+1

(q1,q2,q3)| . . . n`−1 n` n`+1 n`+2 . . .〉 = qn`n`+1 | . . . n`−1 n`+1 n` n`+2 . . .〉, (1.6)
and

qnm := δnm +
3∑

k=1
|εnmk| q−εnmkk . (1.7)

Explicitly, the twisted permutation operator acts as follows on1 |nm〉 := | . . . n`n`+1 . . .〉,
where n := n`, m := n`+1:

P̃ |11〉 = |11〉 P̃ |22〉 = |22〉 P̃ |33〉 = |33〉 (1.8)

P̃ |12〉 = 1
q3
|21〉 P̃ |23〉 = 1

q1
|32〉 P̃ |31〉 = 1

q2
|13〉

P̃ |21〉 = q3 |12〉 P̃ |32〉 = q1 |23〉 P̃ |13〉 = q2 |31〉

Clearly this Hamiltonian is hermitian if and only if the parameters are complex phases, i.e.
qj ∈ U(1). For general complex parameters qj ∈ C the Hamiltonian is no longer hermitian,
and therefore a priori no longer diagonalizable,2 but still integrable.

1Here we write for conciseness of notation simply P̃ instead of P̃`,`+1
(q1,q2,q3). We also supress the labelling

of the remaining L− 2 sites, on which P̃`,`+1
(q1,q2,q3) acts trivially as the identity.

2Numerical studies for small spin chain lengths L indicate that for generic parameters qj ∈ C the
Hamiltonian (1.5) is nevertheless diagonalizable, albeit with complex energy eigenvalues. However, for a
given L, one may finetune the complex parameters qj such that the Hamiltonian becomes partially non-
diagonalizable (C. Ahn, M. Staudacher, unpublished).
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It is now possible to take a total of 23 = eight strong twisting limits of (1.5) by setting

qj := ε∓1 ξ±j , j = 1, 2, 3 , (1.9)

multiplying Hamiltonian and twisted permutation operators by ε, and taking ε to zero:

Ĥ(ξ±1 ,ξ
±
2 ,ξ
±
3 ) =

L∑
`=1

P̂`,`+1
(ξ±1 ,ξ

±
2 ,ξ
±
3 ) = lim

ε→0
ε H̃(ε∓1 ξ±1 ,ε

∓1 ξ±2 ,ε
∓1 ξ±3 ) =

L∑
`=1

lim
ε→0

ε P̃`,`+1
(ε∓1 ξ±1 ,ε

∓1 ξ±2 ,ε
∓1 ξ±3 ).

(1.10)
For (+,+,+), this leads to (with the same abbreviations as in (1.8))

P̂ |11〉 = 0 P̂ |22〉 = 0 P̂ |33〉 = 0 (1.11)
P̂ |12〉 = 0 P̂ |23〉 = 0 P̂ |31〉 = 0
P̂ |21〉 = ξ+

3 |12〉 P̂ |32〉 = ξ+
1 |23〉 P̂ |13〉 = ξ+

2 |31〉 ,

while for (−,−,−) we get

P̂ |11〉 = 0 P̂ |22〉 = 0 P̂ |33〉 = 0 (1.12)

P̂ |12〉 = 1
ξ−3
|21〉 P̂ |23〉 = 1

ξ−1
|32〉 P̂ |31〉 = 1

ξ−2
|13〉

P̂ |21〉 = 0 P̂ |32〉 = 0 P̂ |13〉 = 0 .

In fact, the second case (−,−,−) is equivalent to the first case (+,+,+): after setting
ξ−j = (ξ+

j )−1 and parity-reversing3 the spin chain (i.e. replacing |n1 . . . nL〉 by |nL . . . n1〉)
we map the second Hamiltonian to the first. These two cases are a refinement of the notion
of eclectic spin chain introduced in [1], cf. section 2.3 of that paper.

The other six cases (+,+,−), (+,−,+), (−,+,+), (+,−,−), (−,+,−), (−,−,+) are
different from the eclectic case. However, they are once again equivalent to each other: one
checks that they are related by the six possible permutations of the three states 1, 2, 3 (a
mere relabelling) followed by a suitable redefinition of the twist parameters ξ±j . They all
correspond to a refinement of the integrable spin chain model introduced as “broken su(3)
sector” in section 5.1 of [1]. This model is quite different from the eclectic model and will
be investigated separately.4

The eclectic three-state spin chain Hamiltonian studied in this paper will then be, after
simplifying the above notation by defining ξj := ξ+

j ,

Ĥ(ξ1,ξ2,ξ3) =
L∑
`=1

P̂`,`+1
(ξ1,ξ2,ξ3) , (1.13)

where

P̂ |11〉 = 0 P̂ |22〉 = 0 P̂ |33〉 = 0 (1.14)
P̂ |12〉 = 0 P̂ |23〉 = 0 P̂ |31〉 = 0
P̂ |21〉 = ξ3 |12〉 P̂ |32〉 = ξ1 |23〉 P̂ |13〉 = ξ2 |31〉 .

3This clearly exchanges the notion of “right” and “left”: a pure convention.
4C. Ahn, M. Staudacher, work in progress.
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This leads to a novel family of, on first sight, exceedingly simple looking spin chain models
with non-hermitian Hamiltonians. We will discuss their relevance and inspiration from
a certain double-scaling limit of strongly twisted planar N=4 Super-Yang-Mills theory
(SYM) [3–11] in section 2.2. We will also verify the integrability of these models for arbi-
trary complex parameters ξj in 2.1. However, except for trivial sectors, where the states
are made up from only two of the three excitations, these Hamiltonians are nilpotent on
any state containing all three excitations [1]. They are therefore totally non-diagonalizable.
The most one can do is to bring them into Jordan normal form (JNF). However, as we will
outline in section 2.3 and then demonstrate in more detail in section 3, the quantum inverse
scattering method mostly fails,5 at least in its traditional form, to be helpful for this enter-
prise. This is vexing, in particular since we shall find, through some case-by-case numerical
studies in section 4 up to moderately large lengths L, that the sizes and multiplicities of the
appearing Jordan block show intriguingly regular patterns. We shall also find evidence for a
certain universality of the “spectrum” of Jordan blocks: its dependence on complex param-
eters ξj is relatively weak, in a sense to be explained, as long as these are suitably “generic”.

A non-generic situation arises e.g. when some of the parameters ξj are zero (which is
allowed!). The most extreme case is that two of them are zero, say ξ1 = ξ2 = 0. We may
then set without loss of generality ξ3 = 1 to obtain (again with PL,L+1 = PL,1)

H =
L∑
`=1

P`,`+1 , (1.15)

where

P |11〉 = 0 P |22〉 = 0 P |33〉 = 0 (1.16)
P |12〉 = 0 P |23〉 = 0 P |31〉 = 0
P |21〉 = |12〉 P |32〉 = 0 P |13〉 = 0 .

This novel system must surely be the simplest one among all integrable three-state spin
chains. We call it the hypereclectic model. While looking trivial on first sight, we will
demonstrate in section 4 that its intricate “spectrum” of Jordan blocks is actually even
richer than the one of the more general and more complicated looking model (1.13), (1.14)
for generic parameters ξj .

2 Integrability, origin, non-diagonalizability of the models

2.1 Quantum integrability of the eclectic spin chain models

Let us begin by establishing the quantum integrability of the spin chain Hamiltonians
defined in section 1. We will assume some basic familiarity with the quantum inverse
scattering method, and in particular with the Algebraic Bethe Ansatz (ABA) technique,
see e.g. [12, 13] for excellent introductions. Since we are discussing three-state models, an
additional complication is the necessity to consider a nested ABA. For a recent pedagogical

5It does account for the fact that the generalized energy eigenvalues of the Jordan blocks are all zero.
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introduction see e.g. [14]. The starting point is an R-matrix of size, in the three-state case,
9× 9 that acts on the tensor product C3 ⊗ C3. In the twisted case it reads

R̃12
(q1,q2,q3)(u) =



u+ 1
u
q3

1
q2 u 1

1 q3 u

u+ 1
u
q1

1
1 u

q2

1 q1 u

u+ 1



, (2.1)

where u is termed spectral parameter, and the upper indices 1, 2 label the two copies of the
space C3 in the tensor product. One now uses this R-matrix as a so-called Lax-operator6

and builds up a quantum monodromy matrix

M̃a,L
(q1,q2,q3)(u) = R̃a,L

(q1,q2,q3)(u) · R̃a,L−1
(q1,q2,q3)(u) · . . . R̃a,2

(q1,q2,q3)(u) · R̃a,1
(q1,q2,q3)(u). (2.2)

Here · denotes 3× 3 matrix multiplication in an auxiliary space, which is another copy of
C3. The entries of this 3 × 3 matrix act on (1.4). Therefore, M̃a,L

(q1,q2,q3)(u) acts on the
tensor product of (1.4) and the auxiliary space a. It is customary to drop the index L.
One then takes the trace over the space a, and obtains the transfer matrix acting on (1.4):

T̃(q1,q2,q3)(u) = Tra M̃a
(q1,q2,q3)(u). (2.3)

It is well-known (e.g. [12, 13]) that it yields for u = 0 the shift operator of the spin chain,
i.e.

U = T̃(q1,q2,q3)(0) , where U |n1n2 . . . nL−1nL〉 = |nLn1 . . . nL−2nL−1〉. (2.4)

It is also known that a nearest-neighbor Hamiltonian may be extracted as the logarithmic
derivative of the transfer matrix at u = 0, and for (2.1) one finds precisely (1.5):

H̃(q1,q2,q3) = U−1 d

du
T̃(q1,q2,q3)(u)

∣∣∣∣
u=0

. (2.5)

The R-matrix (2.1) of the twisted model satisfies the Yang-Baxter equation

R̃12
(q1,q2,q3)(u− u

′)R̃13
(q1,q2,q3)(u)R̃23

(q1,q2,q3)(u
′) = R̃23

(q1,q2,q3)(u
′)R̃13

(q1,q2,q3)(u)R̃12
(q1,q2,q3)(u− u

′)
(2.6)

for arbitrary complex values of q1, q2, q3. This implies [12] the following relation intertwining
the monodromy matrices M̃a

(q1,q2,q3) with the R-matrix R̃12
(q1,q2,q3):

R̃12
(q1,q2,q3)(u−u

′)M̃1
(q1,q2,q3)(u)M̃2

(q1,q2,q3)(u
′) = M̃2

(q1,q2,q3)(u
′)M̃1

(q1,q2,q3)(u)R̃12
(q1,q2,q3)(u−u

′)
(2.7)

6For the expert reader we remark that the usual shift of the spectral parameter, that, by convention,
marks the difference between the R-matrix and the Lax-operator, is not suitable for our purposes.

– 5 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
9

Taking the traces over the spaces labelled by 1 and 2, one derives the following commutation
relations for arbitrary complex values u, u′:

[T̃(q1,q2,q3)(u), T̃(q1,q2,q3)(u′)] = 0 and hence [H̃(q1,q2,q3), T̃(q1,q2,q3)(u′)] = 0 . (2.8)

Since the transfer matrix may be interpreted as a generating function of a sufficiently large
number of independent charges in involution, and since the Hamiltonian is commuting with
these, one calls, by definition, the model quantum integrable.

Let us now consider the strong twisting limits of the above R-matrices. The upshot
is, that quantum integrability as defined above survives the limiting procedure. Here we
will only consider the limit to the eclectic spin chain model, as discussed in section 1: we
multiply the R-matrix (2.1) by ε, put qi := ε−1 ξj , and replace u by ε u. We then take ε to
zero. This results in

R̂(ξ1,ξ2,ξ3)(u) =



1
1

ξ2 u 1
1 ξ3 u

1
1

1
1 ξ1 u

1


. (2.9)

Taking the logarithmic derivative at u = 0 as in (2.5) results precisely in the Hamiltonian
Ĥ(ξ1,ξ2,ξ3) in (1.13), (1.14). It is still integrable, as one easily checks that the Yang-Baxter
equation (2.6) also holds with R̃(q1,q2,q3) replaced by the eclectic R-matrix R̂(ξ1,ξ2,ξ3). For
completeness we also state the R-matrix for the hypereclectic model defined in section 1:

R(u) =



1
1

1
1 u

1
1

1
1

1


. (2.10)

It also satisfies the Yang-Baxter equation and generates the integrable hypereclectic Hamil-
tonian H in (1.15), (1.16).

2.2 Interlude: origin and relevance of the models

Let us briefly pause to discuss the origin of the models introduced in section 1 and sec-
tion 2.1. Applying twisted boundary conditions to quantum spin chains has a long history
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in condensed matter theory. They are of physical interest, preserve integrability as we just
recalled, and yield a better understanding of the inner workings of the quantum inverse
scattering method, to be discussed below. However, twisted integrable spin chains are also
of relevance in certain conformal quantum field theories in four (as well as in three and
two) dimensions, see [15], and in particular [16], where their relation to the so-called three-
parameter γj-deformed versions of N = 4 SYM is explained. This was the starting point
for a series of papers [3–11] that introduced and started to analyze a novel class of inte-
grable conformal four-dimensional quantum field theories. Let us recall the double-scaling
limit used in [3–11]: defining the square of the planar gauge theory coupling constant as
g2 = λ

16π2 , where λ is the ‘t Hooft coupling, it was suggested to take g → 0, while some or all
of the twisting parameters either turn to qj = e−iγj/2 →∞ or else to qj = e−iγj/2 → 0, such
that, respectively, either the products g qj or quotients g q−1

j are held fixed. As in [1], we
shall call these double-scaled, twisted models simply “strongly twisted models”. A neat way
to systematically treat this total of 23 = 8 different strong twisting limits of γj-deformed
versions of N = 4 SYM is to use the parameter ε introduced in (1.9): write qj := ε∓1 ξ±j ,
replace g → ε g, and take ε to zero. This results in, respectively, the limits g qj → g ξ+

j and
g q−1

j → g (ξ−j )−1. In all eight cases, the gauge fields decouples from the interacting part of
the Lagrangian. As in [3–11], we will simply ignore them altogether.7 The limit where all
three couplings are scaled as g qj → g ξ+

j (i.e. all q1,2,3 → ∞) reduces the interacting part
of the γj-deformed Lagrangian of N = 4 SYM to

Lint(g, ξ+
1 , ξ

+
2 , ξ

+
3 ) = −g2N Tr

(
(ξ+

3 )2 φ†1φ
†
2φ

1φ2 + (ξ+
2 )2 φ†3φ

†
1φ

3φ1 + (ξ+
1 )2 φ†2φ

†
3φ

2φ3
)

−g N Tr
(
i
√
ξ+

2 ξ
+
3 (ψ3φ1ψ2 + ψ̄3φ

†
1ψ̄2) + cyclic

)
. (2.11)

where by “cyclic” we mean cyclic permutations of the three indices. We do not show the
standard kinetic terms of the complex bosonic and fermionic fields. Note that the fourth
fermion ψ4 decouples from the interactive part. Conversely, in the limit g q−1

j → g (ξ−j )−1

(i.e. all q1,2,3 → 0) we obtain

Lint(ξ−1 , ξ
−
2 , ξ

−
3 ) = −g2N Tr

(
(ξ−3 )−2 φ†2φ

†
1φ

2φ1 + (ξ−2 )−2 φ†1φ
†
3φ

1φ3 + (ξ−1 )−2 φ†3φ
†
2φ

3φ2
)

−g N Tr

 i√
ξ−2 ξ

−
3

(ψ2φ1ψ3 + ψ̄2φ
†
1ψ̄3) + cyclic

 . (2.12)

The other six limits are more subtle. If e.g. we take the limits g, q3 → 0, q1,2 →∞, i.e.

g q1 → g ξ+
1 , g q2 → g ξ+

2 , g q−1
3 → g (ξ−3 )−1 , (2.13)

7Taking the double-scaling limits on the level of the twisted Lagrangian of γj-deformed N = 4 SYM,
the gauge fields are still present in the kinetic terms, of course. However, if we choose to only consider local
composite operators not containing gauge fields, they indeed completely decouple: notice that the gauge
fields also decouple from all covariant derivatives, turning them into ordinary ones.
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we end up (setting for simplicity the redundant overall coupling g = 1) with

Lint(ξ+
1 , ξ

+
2 , ξ

−
3 ) =−N Tr

(
(ξ−3 )−2φ†2φ

†
1φ

2φ1 +(ξ+
2 )2φ†3φ

†
1φ

3φ1 +(ξ+
1 )2φ†2φ

†
3φ

2φ3 (2.14)

+
√
ξ+

2
ξ−3

(
ψ̄1φ

1ψ̄4−ψ1φ†1ψ
4
)
−
√
ξ+

1
ξ−3

(
ψ̄4φ

2ψ̄2−ψ4φ†2ψ
2
)
− i
√
ξ+

1 ξ
+
2

(
ψ̄2φ

†
3ψ̄1 +ψ2φ3ψ1

))
.

If we put ξ+
1 = 0, ξ+

2 = ξ2 and ξ−3 = ξ−1
3 we recover as a special case the model mentioned

in equations (8), (9) of [5].
Now, as argued in [3–5] and explained in more detail in [1], the one-loop dilatation

operator of the above models is closely related to the integrable Hamiltonians discussed in
section 1 and section 2.1. The precise statement is as follows: if we analyze the strongly
twisted quantum field theories (QFTs) with the above Lagrangians, and choose to only
study local composite operators8 containing the three partonic chiral fields φ1, φ2, φ3, the
QFTs dilatation operator D is given by

D = D0 + g2 Ĥ(ξ±1 ,ξ
±
2 ,ξ
±
3 ) +O(g4), (2.15)

where D0 is the classical dilatation operator,9 and the one-loop dilatation operator is g2

times the spin chain Hamiltonian Ĥ(ξ±1 ,ξ
±
2 ,ξ
±
3 ) in (1.10). Once again, in this paper we

focus on the eclectic (+,+,+) case with ξj := ξ+
j , where the Hamiltonian is Ĥ(ξ1,ξ2,ξ3)

in (1.13), (1.14), with extra attention given to the special hypereclectic case, where ξ1 =
ξ2 = 0, ξ3 = 1 with Hamiltonian H in (1.15), (1.16). The gauge theory interpretation of
this model is as follows. The one-loop dilatation operator still acts on composite operators
containing the three chiral fields φ1, φ2, φ3, which are to be interpreted as the one-site states
1, 2, 3 in the spin chain interpretation, respectively. However, now the dilatation operator
merely chirally exchanges φ1, φ2, while φ3 becomes a non-moving “spectator field”:

D = D0 + g2 H +O(g4). (2.16)

As we shall see below, these spectator fields act as impenetrable domain walls within the
spin chain, leading to very intricate effects.

For the remainder of this paper we will ignore the gauge theory origin and interpreta-
tion of the integrable eclectic and hypereclectic spin chains, and simply study their intricate
“spectrum” on its own right. We shall begin by explaining in the next section 2.3 why and
how the spectral problem for diagonalizable spin chains is to be replaced, in the case of
the non-diagonalizable eclectic and hypereclectic chains, with the problem of finding the
appropriate JNF of the transfer matrix and the Hamiltonian. Correspondingly, we shall
furthermore demonstrate how and why the direct application of the ABA to the integrable
spin chains built from the R-matrix (2.9), (2.10) is bound to fail.

8That is, we do not consider operators containing any derivatives, fermions, anti-chiral fields φ†1, φ
†
2, φ
†
3,

nor the (in any case decoupled) gauge fields.
9Here D0 only counts the total number of φ’s of the composite operator = length L of the spin chain.
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2.3 Non-diagonalizability, Jordan blocks, and failure of the ABA

For generic, finite, complex twist parameters qi the transfer matrix T̃(q1,q2,q3)(u) in (2.3) of
the three-state spin chain is diagonalizable with 3L eigenvalues T̃ j(q1,q2,q3)(u), j = 1, . . . , 3L:

T̃(q1,q2,q3)(u) |ψj〉 = T̃ j(q1,q2,q3)(u) |ψj〉. (2.17)

Because of (2.8) the linearly independent eigenstates |ψj〉 are also eigenstates10 of the shift
operator U = T̃(q1,q2,q3)(0) in (3.53). Defining

ωL := e
2πi
L . (2.18)

one has, from the condition UL = I,

U |ψj〉 = ω
kj
L |ψj〉 with kj ∈ {0, . . . , L− 1} . (2.19)

In light of (2.5), the |ψj〉 are of course also eigenstates of the Hamiltonian H̃(q1,q2,q3):

H̃(q1,q2,q3) |ψj〉 = Ẽj(q1,q2,q3) |ψj〉. (2.20)

Integrability allows to find this spectrum, for example by means of the nested ABA (see
e.g. [14]). The ansatz for an eigenstate with L−M states 1,M−K states 2, andK states 3 is

|ψj〉 =
∑

{ai}=1,2
Fa1···aMBa1(u1) · · · BaM (uM )| 11 · · · 1︸ ︷︷ ︸

L

〉, (2.21)

where the creation operators Ba (a = 1, 2) act on the so-called reference state |11 · · · 1〉,
which is exclusively made of fields of type 1 at all L sites. Each B1 or B2 creates a lin-
ear combination of new states, where one of the 1’s is replaced by a 2 or 3, respectively.
The B1(u), B2(u) are obtained as two of the components of the monodromy matrix (2.2),
written as a 3× 3 operator-valued matrix in auxiliary space a as

M̃a
(q1,q2,q3)(u) =

 A(u) B1(u) B2(u)
C1(u) D11(u) D12(u)
C2(u) D21(u) D22(u)

 . (2.22)

In the nested Bethe ansatz, Fa1···aM is an eigenstate of a secondary, inhomogeneous rank-
one spin-chain of length M . It may be constructed by acting K times with the rank-one
creation operators b(vi) on a pseudo-vacuum with inhomogeneities u1, . . . , uM :

|Fa1···aMBa1(u1) · · · BaM (uM )〉 = b(v1) · · ·b(vK)|B1(u1) · · · B1(uM )〉. (2.23)

The ansatz (2.21) works, i.e. |ψj〉 indeed becomes an eigenstate of the transfer matrix, if
and only if both the level-one Bethe roots u1, . . . , uM as well as the level-two Bethe roots
v1, . . . , uK are meticulously chosen as solutions of a nested Bethe ansatz, see section 3.1
below. The transfer matrix eigenvalues T̃ j(q1,q2,q3)(u) are then determined explicitly through

10In gauge theory applications we are only interested in the subset of cyclic states with kj = 0.
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the level-one Bethe roots. This procedure is known to yield, as long as the qi are generic,
the complete spectrum of 3L eigenstates, once all solutions are of the BAE are found.

In contrast, the eclectic model is very different. Let us already summarize the gist
of our findings (for more details, see the following two sections). For the Hamiltonian
Ĥ(ξ1,ξ2,ξ3) of (1.13), (1.14) one has to replace (2.20) by(

Ĥ(ξ1,ξ2,ξ3) − Ê
j
(ξ1,ξ2,ξ3)

)mj |ψmjj 〉 = 0 with mj = 1, . . . , lj . (2.24)

Here the |ψmjj 〉 are so-called generalized eigenstates, associated to generalized eigenvalues
Ej(ξ1,ξ2,ξ3). Let us define a Jordan block Jl(λ) (or Jordan matrix) as a matrix of size l × l
for λ ∈ C by

Jl(λ) :=



λ 1 0
λ 1

λ
. . .
. . . 1

0 λ


. (2.25)

The statement is then that, for a non-diagonalizable 3L×3L matrix such as the Hamiltonian
Ĥ(ξ1,ξ2,ξ3), the best one can do is to bring it, by a suitable 3L × 3L similarity transform S,
into JNF

S · Ĥ(ξ1,ξ2,ξ3) · S−1 =


Jl1

(
Ê1

(ξ1,ξ2,ξ3)

)
0

. . .
0 Jlb

(
Êb(ξ1,ξ2,ξ3)

)
 , (2.26)

where b is the total number of Jordan blocks, and their sizes add up to

l1 + . . .+ lb = 3L . (2.27)

In JNF, (2.24) is refined, with |ϕmjj 〉 = S |ψmjj 〉, into

S ·
(
Ĥ(ξ1,ξ2,ξ3) − Ê

j
(ξ1,ξ2,ξ3)

)
· S−1 |ϕmjj 〉 = |ϕmj−1

j 〉 for mj = 2, . . . , lj (2.28)

while for mj = 1 one has

S ·
(
Ĥ(ξ1,ξ2,ξ3) − Ê

j
(ξ1,ξ2,ξ3)

)
· S−1 |ϕ1

j 〉 = 0 . (2.29)

The last equation shows that for each Jordan block, labeled by j, there is exactly one true
(i.e. non-generalized) eigenstate |ϕ1

j 〉 with eigenvalue Êj(ξ1,ξ2,ξ3).
The two-state sectors, where the matrix acts on spin chains that only contain two out

of the three fields, are diagonalizable, i.e. the corresponding “Jordan blocks” are all of size
lj = 1, and their exact spectrum is easily found [1]. However, in the three-state sectors
there are many Jordan blocks of size lj > 1, even though some lj = 1 blocks remain. In
fact, as already argued in [1], the generalized eigenvalues are all zero:

Ej(ξ1,ξ2,ξ3) = 0 . (2.30)
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The Hamiltonian becomes nilpotent of degree lj , see (2.24). Note however that the gen-
eralized eigenstates are still ordinary eigenstates of the shift operator U = T̃(q1,q2,q3)(0)
(compare to (2.19)):

U |ϕmjj 〉 = ω
kj
L |ϕ

mj
j 〉 with kj ∈ {0, . . . , L− 1} (2.31)

for all mj = 1, . . . , lj . Nevertheless, the transfer matrix T̃(q1,q2,q3)(u) is only diagonalizable
at u = 0. As we shall see below, for u 6= 0 the situation is analogous to the one for the
Hamiltonian: (2.17) only holds in the two-particle sectors, while in general one has the
same situation as in (2.24):(

T̂(ξ1,ξ2,ξ3)(u)− T̂ j(ξ1,ξ2,ξ3)(u)
)mj |ψmjj 〉 = 0 with mj = 1, . . . , lj (2.32)

for generalized eigenstates |ψmj 〉. Surprisingly, in the three-particle11 sectors of the eclectic
model the generalized eigenvalues turn out to be u-independent (incidentally explaining
via (2.5) the result (2.30)), and are in fact equal to the eigenvalues of the shift operator:

T̂ j(ξ1,ξ2,ξ3)(u) = ω
kj
L with kj ∈ {0, . . . , L− 1} . (2.33)

Just like (2.26), the transfer matrix may be brought by a suitable 3L × 3L similarity
transform S′(u) into the JNF12

S′(u) · T̂(ξ1,ξ2,ξ3)(u) · S′(u)−1 =


Jl1

(
T̂ 1

(ξ1,ξ2,ξ3)(u)
)

0
. . .

0 Jlb

(
T̂ b(ξ1,ξ2,ξ3)(u)

)
 , (2.34)

with l1+. . .+lb = 3L. Note that S′(u) is u-dependent and as such different from S in (2.26).
This is in stark contrast to ordinary integrable spin chains, where the similarity transform
that diagonalizes the transfer matrix is u-independent and simultaneously diagonalizes all
commuting charges including the Hamiltonian, cf. (2.8).

Given this structure, one would hope that a generalization of the ABA exists that
would allow the construction of the generalized eigenstates |ψmj 〉, in order to extract the
number and sizes of Jordan blocks of the eclectic model. Unfortunately, we have not
yet been able to find such a generalization. The first and foremost problem seems to
be that the ansatz (2.21) simply fails from the very start: for all values of the Fa1···aM

and u1, . . . , uM the ansatz does not span the full state space needed to build the wanted
generalized eigenstates. Disappointingly, for the majority of Jordan blocks j, it does not
even account for the mj = 1 states of the block, which are ordinary eigenstates.13 This
vexing fact will be seen to be a consequence of our results in the next section. See especially
section 3.2, where we will argue that the eigenvectors of the finitely twisted chain in a given
cyclicity sector at fixed L, M , K all become collinear with a certain “locked” state.

11In the diagonalizable (lj = 1) 2-particle sectors the T̂ j(ξ1,ξ2,ξ3)(u) are instead known polynomials in u.
12The Jordan block structure of the transfer matrix (2.33) a priori does not have to coincide with the one

of the Hamiltonian, (2.26). However, we suspect that the two Jordan decompositions coincide. We have
found no counterexamples so far, but also could not yet find a proof of this conjecture.

13Every Jordan block possesses exactly one non-generalized, ordinary eigenstate, the state with mj = 1.
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3 Collapse of the Bethe states in the strong twisting limit

In this section, we will study the strong twisting ε → 0 transition from the integrable
three-state spin chain model twisted by three parameters q1, q2, q3 to the general eclec-
tic model with twisting parameters ξ1, ξ2, ξ3 on the level of the ABA. In particular, we
would like to understand the fate of the Bethe states (2.21) that diagonalize the trans-
fer matrix (2.17) for any ε > 0, and investigate whether any useful information on the
generalized eigenstates (2.32) may be gathered from the limiting procedure.

In section 3.1 we will analyze the BAE and their solutions in terms of Bethe roots in
the ε→ 0 limit. We uncover rather intricate and rich behavior, with, generically, fractional
scaling behavior of the Bethe roots. Reassuringly, this will be shown to lead to the correct
generalized eigenvalues (2.33) of the transfer matrix, thereby also explaining from the point
of view of the ABA why all three-particle eigenstates of the eclectic chain are zero-energy
states. However, despite the rich scaling behavior discovered in 3.1, it appears that no
further non-trivial information on the structure of the Jordan blocks (i.e. their number and
sizes) or the structure of the generalized eigenstates may be extracted from the ABA in
the scaling limit: we find strong evidence in 3.2 that all Bethe states collapse to, in each
cyclicity sector, a single “locked state” that happens to be the one true eigenstate of the
largest Jordan block.

In the below, we will only study the transition of the ABA to the eclectic spin chain
with “generic” scaled twist parameters ξ1, ξ2, ξ3. The limit to the hypereclectic chain would
have a different singularity structure and will not be analyzed. Therefore we may, without
loss of generality,14 assume that the number of 1’s making up the spin chain states is larger
or equal than the number of 2’s, while the latter is larger or equal than the number of 3’s.
Denoting these three numbers by L−M , M −K and K, respectively, this is represented
by the following inequalities:

L−M ≥M −K ≥ K ⇔ L ≥ 2M −K and M ≥ 2K. (3.1)

These inequalities are saturated in the case L = 3K,M = 2K for arbitrary K. This clearly
corresponds to the special case where the spin chain is made up from an equal number of
1’s, 2’s and 3’s.

3.1 Bethe ansatz for the eclectic spin chain

In a rather routine if somewhat tedious fashion one may derive a nested BAE for the
level-one Bethe roots u1, . . . , uM as well as the level-two Bethe roots v1, . . . , vK from the
ABA (2.21) and (2.23) for the eigenstates. The procedure employs integrability by using
the so-called fundamental commutation relations derived from the Yang-Baxter based (2.7),

14If these inequalities do not hold, one may suitably relabel the three pairs (φi, qi). This is possible,
since the twisted model is invariant under permutations of the three indices i = 1, 2, 3. Note that the
strongly twisted eclectic model (1.13), (1.14) is also invariant under permutations of the (φi, ξi), while the
hypereclectic model (1.15), (1.16) is not. Incidentally, this is ultimately the reason why the hypereclectic
model has a more complicated spectrum than the eclectic one, see section 4.
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see e.g. [14]. The final result15 for the system of BAE of the three-state model for general
twisting parameters q1, q2, q3 reads16

(
um + 1
um

)L
= q3

L

(q1q2q3)K
M∏
j=1
j 6=m

um − uj + 1
um − uj − 1

K∏
i=1

um − vi − 1
um − vi

, m = 1, . . .M, (3.2)

1 = (q2q3)L

(q1q2q3)M
M∏
j=1

vl − uj + 1
vl − uj

K∏
i=1
i 6=l

vl − vi − 1
vl − vi + 1 , l = 1, . . .K, (3.3)

while the eigenvalues of the transfer matrix (2.17) are then expressed as

T̃(q1,q2,q3)(u) = qK2
qM−K3

(u+ 1)L
M∏
m=1

u− um − 1
u− um

(3.4)

+qL−M3
qK1

uL
M∏
m=1

u− um + 1
u− um

K∏
l=1

u− vl − 1
u− vl

+ qM−K1
qL−M2

uL
K∏
l=1

u− vl + 1
u− vl

.

The shift operator eigenvalue (2.19) is extracted as

T̃(q1,q2,q3)(0) = ωkL = qK2
qM−K3

M∏
m=1

um + 1
um

, (3.5)

while the energy, i.e. the eigenvalue of the Hamiltonian (2.20), is given by

Ẽ(q1,q2,q3) =
d
du T̃(q1,q2,q3)(0)
T̃(q1,q2,q3)(0)

= L+
M∑
m=1

1
um(um + 1) = L+

M∑
m=1

( 1
um
− 1
um + 1

)
. (3.6)

We have omitted the index j, labelling the eigenstates, on T̃ j(q1,q2,q3)(u) and Ej(q1,q2,q3)
in (3.4), (3.5), (3.6). Of course the Bethe roots strongly depend on j.

Let us now understand what happens to the BAE and their solutions in the strong
twisting limit ε → 0, where one replaces according to (1.9) (in the case (+,+,+) with
ξ+
j = ξj) the qj ’s by

qj = ξj
ε

j = 1, 2, 3 (3.7)

15Surprisingly, we have not been able to explicitly find this result for general q1, q2, q3 in any of the
literature we know. However, we do not want to claim originality here, as the procedure is so standard.

16Actually, at finite twist it is not necessary to assume that the “filling inequalities” (3.1) hold. Fur-
thermore, there are six distinct (but fully equivalent) systems of BAE, related to (3.2), (3.3) by the six
permutations of the q1, q2, q3 as well as the corresponding interpretation of M and K. The reason is, that
we may choose any of the three particles 1, 2, 3 for the reference state of the first-level Bethe ansatz, and
any of the two remaining particles of the reference state of the (inhomogeneous) second-level Bethe ansatz.
However, the other five systems will behave differently in the strong twisting limit. Here we will only discuss
the case (3.1).
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in terms of new, finite deformation parameters ξj . Inserting this into (3.2), (3.3) one obtains(
um + 1
um

)L
= ε3K−L ξ3

L

ξK

M∏
j=1
j 6=m

um − uj + 1
um − uj − 1

K∏
i=1

um − vi − 1
um − vi

, m = 1, . . .M, (3.8)

1 = ε3M−2L ξL−M

ξL1

M∏
j=1

vl − uj + 1
vl − uj

K∏
i=1
i 6=l

vl − vi − 1
vl − vi + 1 , l = 1, . . .K, (3.9)

where we have introduced for conciseness of notation

ξ := ξ1ξ2ξ3 . (3.10)

Interestingly, for the special case

L = 3K , M = 2K , any K , (3.11)

the powers of ε drop out, and the BAE, and hence their solutions, are identical to the
ones of the twisted model before taking the scaling limit, (3.2), (3.3), with the original
qj ’s simply replaced by the ξj ’s. See 3.1.2 below. In all other cases the powers of ε lead
to inconsistencies, unless the Bethe roots exhibit a suitably singular behavior so as to
compensate these powers. Finding the correct scaling of the roots can be quite tricky,
especially for the level-two roots {vm}. We will now present a near-complete classification
(see 3.1.5 for the still unclear cases) of the possible scaling behaviors, and their consequences
for the “observables” (3.4), (3.5), (3.6).

3.1.1 K = 0 sector

This corresponds to an n = 2 chiral XY model, where only the um Bethe roots are kept. It
is not necessary to assume the filling condition L ≥ 2M . The nested BAE (3.8) turn into
the unnested set (

um + 1
um

)L
= ξ3

L

εL

M∏
j=1
j 6=m

um − uj + 1
um − uj − 1 , m = 1, . . .M. (3.12)

It is rather obvious, and discussed in considerable detail in [1], that the Bethe roots should
scale as um = ε u−m in the ε→ 0 limit. The BAE (3.12) then reduce to

(ξ3 u
−
m)L = 1 , m = 1, . . .M. (3.13)

The solutions {um} are immediately seen to be given in terms of subsets of the L L-th roots
of unity. It is easy to demonstrate completeness of states of these equations, in line with
the fact that the K = 0 sector is completely diagonalizable, despite the strongly twisted
two-state model’s nonhermiticity. No non-trivial (i.e. of size larger than one) Jordan blocks
appear. The transfer matrix eigenvalue (3.4) turns into

T̂(ξ1,ξ2,ξ3)(u) = (ξ3 u)L + (−1)M
M∏
m=1

ξ3 (u− u−m)
+ δL,M (ξ1 u)L . (3.14)
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The shift operator eigenvalue (3.5) is then given by

T̂(ξ1,ξ2,ξ3)(0) = ωkL =
M∏
m=1

1
ξ3 u

−
m
, (3.15)

while the energy, i.e. the eigenvalue of the Hamiltonian (3.6), is elegantly given by

Ê(ξ1,ξ2,ξ3) =
M∑
m=1

1
u−m

. (3.16)

3.1.2 L = 3K, M = 2K sector

In the ε→ 0 limit, the BAE (3.8) and (3.9) look singular except for the special case

L = 3K , M = 2K , (3.17)

where the ε-dependence simply drops out. In this curious case, for the strongly twisted
model the same BAE as for the original generic twisted model are satisfied, except that the
three twist parameters qi are replaced by ξi in (3.8), (3.9). This means that the Bethe roots
of a given state do not change at all as one approaches the strong twist limit! However,
the effects of the limit are still seen on the level of the expressions for the “observables”.
In particular, since we also need to replace u → ε u along with (3.7), we find that the
expression for the transfer matrix eigenvalue (3.4) becomes a u-independent constant, and
thus identical to the shift operator eigenvalue (3.5):

T̂(ξ1,ξ2,ξ3)(u) = T̂(ξ1,ξ2,ξ3)(0) = ωkL =
(
ξ2
ξ3

)K M∏
m=1

um + 1
um

, (3.18)

while the energy formula (3.6) formally yields

Ê(ξ1,ξ2,ξ3) = 0 . (3.19)

This is rather remarkable: even though the BAE keep their full complexity in the strong
twisting limit, and thus their solutions their full intricacy, the effect on the energy is
irrelevant: since the roots stay finite, and the energy formula (3.6) has to be multiplied
by ε, one trivially obtains zero in the limit. Likewise, even the result for the transfer
matrix eigenvalue does not really depend on the details of the Bethe roots, as the last
of the identities in (3.18) is a simple, direct consequence of the BAE.17 In conclusion, for
L = 3K,M = 2K at infinite twist there is no point in solving the BAE! The only two things
one needs to know are that they stay non-singular (i.e. 6= 0,−1) and finite in the limit,
and that they yield a complete set of states for this sector. On the other hand, the sector
turns out to become non-diagonalizable in the scaling limit, with an abundance of Jordan
blocks appearing. Unfortunately, this already gives a strong hint that the conventional
Bethe ansatz is useless as regards the explanation of the model’s Jordan block structure.
We will soon see better why this is the case, cf. section 3.2. However, for completeness, let
us first understand the scaling of the Bethe roots away from the special, symmetric filling
conditions of the L = 3K, M = 2K sector.

17To show this, using a standard trick, first take the product of the M equations (3.8), and then simplify
the resulting r.h.s. with the help of the product of the K equations (3.9).
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3.1.3 M = 2, K = 1 sector

It is illuminating to first analyze the two-excitation case M = 2,K = 1 with general L > 3
in some detail.18 From (3.8), (3.9) we then have a set of three BAE, which explicitly read(

u1 + 1
u1

)L
= ε3−L ξL3

ξ

(
u1 − u2 + 1
u1 − u2 − 1

)(
u1 − v1 − 1
u1 − v1

)
, (3.20)(

u2 + 1
u2

)L
= ε3−L ξL3

ξ

(
u2 − u1 + 1
u2 − u1 − 1

)(
u2 − v1 − 1
u2 − v1

)
, (3.21)

1 = ε6−2L ξL−2

ξL1

(
v1 − u1 + 1
v1 − u1

)(
v1 − u2 + 1
v1 − u2

)
. (3.22)

From these, one notices that the Bethe roots should have the following specific scaling form
in the ε→ 0 limit:

u1 = εα u−, u2 = −1 + εα u+, v1 = u2 − 1 + εγ v̂ , (3.23)

where α, γ are positive exponents and the “scaled” Bethe roots u± and v̂ are finite. Except
for the general powers of ε, the situation is as described in [1]: one of the excitations is a
“right-mover”, the other a “left-mover”. However, here we do not assume α = 1. Then,
inserting this ansatz into the BAE, one finds that the powers are generically19 given by

α = L− 3
L− 1 , γ = 2L− 6 . (3.24)

It is interesting to note that the exponent α is a fractional number. This is quite unex-
pected, and has not been noticed before in the existing literature on the subject. The
scaled Bethe roots then satisfy at generic ξi the simplified BAE

(u−)L = ξ

ξL3
(u− − u+) , (−u+)L = ξ

ξL2
(u− − u+) , v̂ = − 2ξL1

ξL−2 . (3.25)

The solutions of these equations can be found explicitly in terms of the L-th roots and the
(L−1)-th roots of unity. One easily shows completeness of all L(L−1) states of this sector.
These solutions show a somewhat intricate dependence on the scaled twist parameters ξi.
We will not exhibit them here, as they are not really needed, in close analogy with the
previous section 3.1.2. As we can see from (3.24), the scaling exponent α is bounded by
1
3 ≤ α < 1. Hence, the energy formula (3.6) yields again in the ε→ 0 limit

Ê(ξ1,ξ2,ξ3) = 0 , (3.26)

and the detailed values of the scaled Bethe roots u+, u− are wiped out. The same is again
true for the transfer matrix eigenvalue (3.4), which once more becomes a u-independent
constant, and hence identical to the shift operator eigenvalue (3.5):

T̂(ξ1,ξ2,ξ3)(u) = T̂(ξ1,ξ2,ξ3)(0) = ωkL = −ξ2
ξ3

u+

u−
. (3.27)

18For L = 3 we are back to the situation of section 3.1.2.
19This scaling behavior holds for “generic” values of the twist parameters ξi. It may be modified by a

suitable finetuning of the latter. Furthermore, note that for L = 3 (3.23) predicts α = γ = 0, which is
consistent with section 3.1.2: the roots in (3.23) stay finite.
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While this expression appears to depend on the detailed solution for u+,u−, one sees
from (3.25) that the constant must indeed be equal to the eigenvalue ωkL of the shift
operator. Vexingly, while we are able to find the scaling limit of the sector’s BAE, and
could even solve them exactly, we see no hint, in full analogy with section 3.1.2, on how
to derive the sector’s Jordan block structure. The latter is actually quite simple here, and
given by a single Jordan block of size L−1 in each of the L cyclicity sectors, cf. section 4.

3.1.4 Generic (L, M, K) sector with L > 3(M − K)

Let us generalize the analysis of the M = 2,K = 1 case of 3.1.3, and assume that the level-
one roots um (m = 1, . . . ,M) can be split into classes (I) and (II) of right/left-movers:

(I) uj = εα u−j , j = 1, · · · ,M ′ := M −K , (3.28)

(II) ul+M ′ = −1 + εβ u+
l , l = 1, · · · ,K . (3.29)

For each class (II) root, we associate a level-two Bethe root vk, which we term class (III).
For its scaling behavior we make the ansatz

(III) vl = ul+M ′ − 1 + εγ v̂l = −2 + εβ u+
l + εγ v̂l, l = 1, · · · ,K . (3.30)

Our main assumption is that the Bethe roots in each class become degenerate in the leading
order of ε → 0, with small deviations appearing at subleading order with positive powers
α, β, γ of ε. While α = β for the case of M = 2,K = 1 in (3.23), we need to assume α 6= β

for the general case. Inserting this ansatz into the system of BAE (3.8), (3.9), the class (I)
roots from (3.8) satisfy

(u−j )L = (−1)M ′−1+K ξK

ξL3

K∏
l=1

u+
l , (3.31)

αL = L− 3K + min(α, β)K. (3.32)

Similarly, (3.8) for the class (II) roots gives

(u+
l )L−M ′ = (−1)L−M ξL3

2M ′ξK v̂l

K∏
i=1
i 6=l

(u+
l − u

+
i ), (3.33)

β L = L− 3M ′ + min(α, β)M ′. (3.34)

Finally, (3.9) for the class (III) roots along with (3.37) yields

1 = − ξ
L−M

2M ′ξL1
v̂l

K∏
i=1
i 6=l

(u+
l − u

+
i ), (3.35)

2L− 3M = γ + β(K − 1). (3.36)

We have assumed
γ > β (3.37)
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in deriving (3.34) and (3.36), which will be justified shortly. From the difference of (3.32)
and (3.34), one deduces α ≥ β if M ′ ≥ K, which is consistent with (3.1). Furthermore,
solving (3.32), (3.34), and (3.36), one finds for the scaling exponents

α = L− (M +K)
L− (M −K) , (3.38)

β = L− 3(M −K)
L− (M −K) , (3.39)

γ = 2L− 3M − L− 3(M −K)
L− (M −K) (K − 1). (3.40)

Note that the exponents (3.24) for the special cases K = 0 in 3.1.1 and M = 2,K = 1 in
section 3.1.3 are consistent with these results. For the smallest exponent β to be positive,
the inequality

L > 3 (M −K) (3.41)

should be satisfied. It is consistent20 with (3.1). The assumption (3.37) is valid, since

γ − β = (2L− 3M ′)(L−M −K)
L−M ′

> 0 , (3.42)

as long as (3.1) and (3.41) are satisfied. Now we can even explicitly solve for the scaled
Bethe roots in (3.28), (3.29), (3.30). By plugging (3.35) into (3.33), we get

(u+
l )L−M ′ = (−1)L−M+1 (ξ1ξ3)L

ξL−M ′
⇒ u+

l = 1
ξ

(ξ1ξ3)
L

L−M′ ωnlL−M ′ , (3.43)

recalling the notation ωL = exp(2πi/L) in (2.18). For each root u+
l with l = 1, · · · ,K, the

K integer exponents nl should be distinctly chosen among the set {1, · · · , L−M ′}. Once
the u+

l are determined, the Bethe roots v̂l are uniquely fixed by (3.35). In the same way,
the Bethe roots u−j can be determined from (3.31):

u−j =
[
(−1)M ′−1+K ξ

K

ξL3

K∏
l=1

u+
l

]1/L

ω
ij
L , (3.44)

where the M ′ integer exponents ij should be chosen without repetition from the set
{1, · · · , L}.

Let us quickly check completeness of states. The number of solutions of the BAE may
easily be computed using the standard combinatorial identity(

L−M ′

K

)(
L

M ′

)
= L!

(L−M)!(M −K)!K! , (3.45)

where we recall M ′ = M − K. Notice that this is exactly the dimension of the transfer
matrix in the (L,M,K) sector, and hence the number of its generalized eigenvalues. This
shows that the above set of solutions of the BAE in the scaling limit is indeed complete.

20This limit does not apply to K = 0, cf. section 3.1.1, where the level-two Bethe roots are not needed.
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Using our scaling solution, we may now again formally compute the transfer matrix
eigenvalue (3.4), which once more becomes a u-independent constant, entirely due to the
first of the three terms in (3.4):

T̂(ξ1,ξ2,ξ3)(u) = (−ξ2)K

ξM−K3
εM−2KεβK−α(M−K)

K∏
l=1

u+
l

/
M ′∏
j=1

u−j . (3.46)

Here we made use of the fact that α, β < 1. Note that the power of ε cancels with the scaling
exponents α, β from (3.38), (3.39). Also, using the explicit solutions (3.43) and (3.44), we
find the eigenvalues are given by

T̂(ξ1,ξ2,ξ3)(u) = ωkL , k =
K∑
l=1

nl −
M−K∑
j=1

ij + 1
2(M −K)(M −K − 1) + 1

2K(K − 1) . (3.47)

Since the exponent k is an integer, the eigenvalues are indeed the L-th roots of unity, as
expected. Note that k explicitly depends on the quantum numbers introduced to label the
solutions for the Bethe roots. In appendix A, we show that this result is consistent with
the famous Pólya enumeration theorem for cyclic states.

The expression (3.46) actually also comprises the results for the earlier cases (3.18)
(where α = β = 0) and (3.27). Clearly, we find from (3.46) that, once again, the (general-
ized) energy eigenvalues, given by logarithmic derivatives of the transfer matrix eigenvalues
at u = 0, are all found to be

Ê(ξ1,ξ2,ξ3) = 0 . (3.48)

Curiously, while we were able to understand the rather involved scaling limit of this
large sector’s BAE, and could even solve them exactly, we see no hint, in full analogy with
the more special results of sections 3.1.2, 3.1.3, on how to derive the sector’s Jordan block
structure. As opposed to section 3.1.3, the latter is actually very complicated here, and we
currently do not understand its general pattern, cf. section 4.

3.1.5 Remaining values for (L, M, K)

The results of the previous sections do not fully cover all the regions in (3.1). They are
not valid for the (relatively small) “window” where (3.1) holds but (3.41) fails, namely,

3(M −K) ≥ L ≥ 2M −K . (3.49)

The special case L = 3K,M = 2K in 3.1.2 actually happens to be the boundary case
of this domain, where the above inequalities turn into equalities. As we argued in 3.1.2,
there the Bethe roots do not scale at all and remain finite. We therefore suspect that
the Bethe roots of the missing region exhibit some mixed scaling behavior, where some
of the roots stay finite, while others turn to zero or −1. While it would be technically
pleasing to untangle this, we are convinced that it will not really bring any new insights:
the (generalized) eigenvalue of the transfer matrix will presumably still be given by the
r.h.s. of (3.46) as a u-independent constant equal to the eigenvalue of the shift operator.
The (generalized) energy eigenvalue will once more be zero. And no information on the
Jordan block structure will be contained in the details of the Bethe roots, unfortunately.
For these reasons we will not pursue the further study of this region.
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3.2 Collapse of the Bethe states

As explained in section 2.3, in the framework of the standard quantum inverse scattering
method, the eigenstates are constructed by acting with certain creation operators on the
level-one and level-two reference states as in (2.21) and (2.23), respectively. Each set
of Bethe roots satisfying the BAE (3.2), (3.3) defines a corresponding eigenstate. This
leads to an explicit construction of these eigenstates, in principle. Now we want to study
the eigenstates of the strongly twisted model by taking the ε → 0 limit of these Bethe
states. We have already shown that the Bethe roots become highly degenerate in this
limit, uj = 0,−1 and vl = −2, in the leading order as summarized in (3.28), (3.29), (3.30)
with small corrections suppressed by various positive powers of ε. Hence, it is natural to
expect that the eigenstates will also become degenerate.

An important initial observation from (2.8) is the commutation relation21[
T̃(u), T̃(0)

]
= 0, (3.50)

which imposes that any eigenstate |ψ〉 of T̃(u) should also be one of T̃(0), the shift operator
U in (2.19). Since T̃(0)L = I, the Bethe states should satisfy

T̃(u)|ψΛ,k〉 = Λ|ψΛ,k〉, T̃(0)|ψΛ,k〉 = ωkL |ψΛ,k〉, k = 0, · · · , L− 1. (3.51)

For a given configuration f , we define a shifted configuration π(f)

f = (n1, n2, · · · , nL−1, nL), nj = {1, 2, 3} :⇒ π(f) = (nL, n1, n2, · · · , nL−1). (3.52)

Then, the action of the shift operator on a state gives

T̃(0)|f〉 = |π(f)〉. (3.53)

In terms of these notations, we can find eigenstates22 of the shift operator for a given
configuration f as follows:

|fk〉 =
L∑
`=1

(ωkL)−`|π`(f)〉, (3.54)

where π` means a shift by ` steps. The case of k = 0 corresponds to the cyclic states.
Now the simultaneous eigenstate |ψΛ,j〉 in (3.53) can be expressed as a linear combi-

nation of the eigenstates |fk〉 of the shift operator:

|ψΛ,k〉 =
∑

f
a(f)|fk〉, (3.55)

where the sum is over all possible configurations that are not related by shifts. The Bethe
states in (2.21) constructed by the creation operators and associated Bethe roots, in prin-
ciple, determine the coefficients aj(f), although actual computations for generic (L,M,K)

21We will omit the subscripts (q1, q2, q3) and (ξ1, ξ2, ξ3) for simplicity in this section.
22Note that it may happen that for some |f〉 and k one might have |fk〉 = 0, in which case |fk〉 is not an

eigenstate, of course. A trivial example is |f〉 = |11 . . . 1〉 for k 6= 0. A second example would be |f〉 = |1212〉,
where |f1〉 = |f3〉 = 0, while |f0〉 and |f2〉 are eigenstates with eigenvalues 1, −1, respectively. This is related
to Pólya counting, see appendix A.
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can be very complicated. However, in the strong twisting limit ε→ 0, it is possible to find
a configuration f that makes the coefficient a(f) most dominant in powers of ε by analyzing
the creation operators and their actions on the reference state.

The creation operators B1 = M̃12 and B2 = M̃13 in the Bethe state (2.21) are composed
of the R̃ matrices as defined in (2.2). Our strategy is to express the Bethe states graphically
by two-dimensional square lattices, where each vertex corresponds to Boltzmann weights
defined by the R̃ matrix. In the ε → 0 limit, we can determine how these Boltzmann
weights scale with ε, thereby yielding the leading configurations for each eigenstate.

The R̃a,n(u) in (2.1) may be written as

R̃a,`(u) = (u+ 1)
3∑
i=1

eaii⊗ e`ii + u
∑
even

(i,j,k)

(
ξj
ε

)
eaii⊗ e`kk + u

∑
odd

(i,j,k)

(
ε

ξj

)
eaii⊗ e`kk +

∑
i 6=j

eaij ⊗ enji,

(3.56)
where “even/odd” in the sum mean even/odd permutations of (ijk). Here we use the
concise notation eaij , e`ij for 3×3 matrices acting on auxiliary space (a) or the `-th quantum
space, respectively, whose elements are given by (eij)ab = δaiδbj . We should evaluate
R̃a,`(uj) with a Bethe root uj since the arguments of the creation operators in the Bethe
state (2.21) are Bethe roots, the solutions of the BAE (3.2), (3.3). For the generic (L,M,K)
sector with L > 3(M −K), which corresponds to sections 3.1.3 and 3.1.4, the Bethe roots
are scaling as either class (I) (3.28) or class (II) (3.29) in the strong twisting limit.

For the Bethe roots uI of class (I), R̃a,` in (3.56) can be expanded as

R̃a,`(uI) = u−

ε1−α

∑
even

(i,j,k)

ξje
a
ii⊗e`kk+

∑
i 6=j

eaij⊗e`ji+
3∑
i=1

eaii⊗e`ii+u−ε1+α ∑
odd

(i,j,k)

1
ξj
eaii⊗e`kk, (3.57)

in increasing powers of ε. Similarly, R̃a,` with the Bethe root uII of class (II) becomes

R̃a,`(uII) = −1
ε

∑
even

(i,j,k)

ξje
a
ii⊗e`kk+

∑
i 6=j

eaij⊗e`ji+u+εβ
3∑
i=1

eaii⊗e`ii−ε
∑
odd

(i,j,k)

1
ξj
eaii⊗e`kk. (3.58)

If we interpret R̃a,` as the Boltzmann weights on a vertex with a horizontal line for the
auxiliary space and a vertical line for the quantum space, the first and the fourth terms
of (3.58) represent crossings of two different states; the second term represents reflection
while the third one arises when both lines carry identical states. These Boltzmann weights
are given graphically in figures 1 and 2 .

A Bethe state M1a1(uI
1) · · ·M1aM′ (u

I
M ′)M1b1(uII

1 ) · · ·M1bK (uII
K)|0〉 may then be repre-

sented by a two-dimensional square lattice as shown in figure 3. Here the indices ai and
bj are either 2 or 3, with the condition that the total numbers of 2’s and 3’s should be M ′

and K, respectively. The Boltzmann weights imposed on the vertices belonging to the top
M ′ horizontal lines are given by (3.57) (figure 1); those belonging to the bottom K lines
by (3.58) (figure 2). The configuration |11 · · · 11〉 at the bottom of the graph defines the
reference state |0〉; that of the top |n1n2 · · ·nL〉 defines the Bethe state. Among L numbers
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i

k

i

k

ξju
−

ε1−α 1 1 ε1+αu−

ξj

(a) even (ijk) (b) i 6= j (c) (d) odd (ijk)

Figure 1. The Boltzmann weights of R̃a,` for Bethe roots of the class (I).

i

k

i

k

i

j

j

i

i

i

i

i

i

k

i

k

− ξj
ε 1 εβu+ − ε

ξj

(a) even (ijk) (b) i 6= j (c) (d) odd (ijk)

Figure 2. The Boltzmann weights of R̃a,` for Bethe roots of the class (II).

n1, · · · , nL, the number of 2’s should be M ′, that of 3’s be K, and that of 1’s be L −M ,
since the indices ai and bj on the left side, which are either 2 or 3, should appear on the
top side since the numbers of 1, 2, 3 states are individually conserved by the Boltzmann
weights. (Notice that states on the bottom and the right sides are all 1’s.) Therefore, the
resulting state should contain exactly the same number of configurations as (3.45).

Since the creation operators do not commute, the orderings of the operators in the
definition the Bethe state (2.21) matter. Among possible orderings, we start with a state
M12(uI

1) · · ·M12(uI
M ′)M13(uII

1 ) · · ·M13(uII
K)|0〉. In fact, as we will show later, this is only

ordering which can contribute in the ε → 0 limit. A generic configuration (and its shifts)
in the (L,M,K) sector can be written, for example, as

f = (
f ′︷ ︸︸ ︷

2132 · · · 2321 · · · 3 11 · · · 11), |π`(f)〉 = |
`︷ ︸︸ ︷

1 · · · 1
f ′︷ ︸︸ ︷

2132 · · · 2321 · · · 3 1 · · · 1 〉. (3.59)

We express states 1, 2, 3 with black, blue, and red colors, respectively, as well as the lines
carrying these states in the graphs for better visibility. We have denoted a sub-configuration
f ′ in f which is certain sequence of all 2-states, all 3’s and some 1 states whose number is
b. The length of f ′ is M + b.

The state |π`(f)〉 is represented graphically in figure 4. The blue and red horizontal
lines entering from the left side can move only in the right or the upward directions, as one
can see from the Boltzmann weights listed above. Therefore, all blue and red lines should
be contained in the large box at the center. We define S(f ′) for sum of all the weights for
many different paths of blue, red, and black lines in this box. Although this factor turns out
to be quite complicated, see below, it depends only on f ′ and is obviously independent of `.
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· · ·1 1 1 1 1 1 1 11 1

n1 n2 n3 n4 nL−1 nL· · · · · ·· · · · · · · · ·

bK

...
...

...
...

...

...

b2

b1

aM′

a2

a1 1

1

1

1

1

1

M1a1(uI
1)

M1a2(uI
2)

MaM′ (u
I
M ′)

M1b1(uII
1 )

M1b2(uII
2 )

M1bK (uII
K)

Figure 3. Graph for a state M1a1(uI
1) · · ·M1aM′ (uI

M ′)M1b1(uII
1 ) · · ·M1bK

(uII
K)|0〉.

The vertices in other parts of the lattice are “frozen” in the sense that the states
(colors) are all fixed. While the right part of the box contains only black lines, the left
part contains horizontal color lines, such that only vertical black lines are allowed. Since
states are arranged uniquely, it is straightforward to compute the products of the vertex
weights. Using the Boltzmann weights in figure 1 and figure 2, we find that the products
of the vertex weights in the upper-right, upper-left, lower-right, and lower-left dash boxes
in figure 4 are, respectively, given by

1,
M−K∏
j=1

(
ξ3u
−
j

ε1−α

)`
,

K∏
l=1

(
εβu+

l

)L−M−`−b
,

(
− ε

ξ2

)`K
. (3.60)

Combining, and factoring out constant terms, we obtain23

|ψ(f)〉 =
(
εβK

K∏
l=1

u+
l

)L−M−b L∑
`=1

ε`[(1−β)K−(1−α)(M−K)]


ξM−K3
(−ξ2)K

M−K∏
j=1

u−j

K∏
l=1

u+
l



`

|π`(f) 〉.

(3.61)
The power of ε inside the sum, `[(1 − β) − (1 − α)(M − K)], vanishes from (3.38)

and (3.39) so that all terms in the sum are of the same order in ε as required. The
factor inside the square bracket in (3.61) has been identified already as a root of unity ω−kL
in (3.46) and (3.47). This proves that the vertices outside the box give the eigenstates
of the shift operator |fk〉. It is important to notice that only this special combination of
ξi’s and the Bethe roots can yield this root of unity, and that the other orderings such as
M13(uI

1)M12(uI
2)M13(uII

1 )M12(uII
2 )|0〉 cannot yield the required states.24 In summary, the

23This result is not valid if the box extends over the left or right boundaries. We have computed these
boundary cases separately and found that the result (3.61) still holds for the most leading configuration f̄ .

24This is also observed by direct computations and Mathematica code for some simple cases.
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· · ·· · ·· · ·· · ·1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 11 1 1

11 1 1

1

1
1
1
1

1
1
1
1

· · ·· · · · · ·· · ·

...
...

...
...

3

3
3
3
2

2
2
2
2

2 1 3 2 2 3 2 1 3

`︷ ︸︸ ︷ L−M−`−b︷ ︸︸ ︷M+b (f ′)︷ ︸︸ ︷

Figure 4. Graph for M12(uI
1) · · ·M12(uI

M ′)M13(uII
1 ) · · ·M13(uII

K)|0〉.

Bethe state in the strong twist limit can be written, up to an f -independent coxnstant, as

|ψΛ,k〉 =
∑

f

[
ε−bβKS(f ′)

]
| fk 〉. (3.62)

This determines the coefficients a(f) in (3.55).
Now we need to compute S(f ′) from the vertices inside the box. Since these are

not frozen, there are too many possibilities, rendering the computation of all weights in
generality unfeasible. Therefore, we will first examine a rather simple, yet representative
case: M = 3, K = 1 with arbitrary L. Based on this analysis, we identify the dominant
configuration for a generic (L,M,K) sector.

The graphs with leading contributions to each f ′ for M = 3, K = 1 are illustrated in
figure 5 along with the powers of ε computed from the Boltzmann weights. For b = 0,
(a) (223) is strongly dominant compared with (b) (232) and (c) (322). For b = 1, it is
natural to consider sub-configurations with 1-state inserted into (a); (d) (2213) and (e)
(2123). Considering powers of ε, where we include an ε−bβ factor in (3.62), we conclude
that (e) (2123) is dominant among all b = 1 configurations since α < 1. If b ≥ 2, more
vertices inside the box with two different color lines crossing appear. These lead to further
positive powers of ε. Comparing (a) with (e), we conclude that (a) (223) is dominant for
M = 3,K = 1 since α > β.

To extend this argument to a generic (L,M,K) sector, we need to compare two leading
configurations for b = 0, 1, namely, generalizations of figure 5 (a), (2 · · ·23 · · ·3), and (e),
(212 · · ·23 · · ·3). The graph of the former case is an M ×M lattice with M −K blue lines
andK red lines moving monotonically increasing from bottom-left to top-right. Notice that
no crossings of two different color lines appear here. The power of ε is K[M − (K+ 1)/2]β,
as determined by the number of black vertices strung up along the K lines at the bottom,
using the weight in figure 2 (c). The graph of the latter case is an (M + 1) ×M lattice
with one additional black line among the outgoing vertical lines. It can be obtained from
(a) (2 · · ·23 · · ·3) by stretching all horizontal edges in the first column by one lattice unit to
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(223) : ε2β (232) : ε1+α+2β (322) : ε2+2α+2β (2213) : ε1+β (2123) : εα+β

(a) (b) (c) (d) (e)

Figure 5. The vertices inside the box for M = 3,K = 1 for the leading configurations. For (d)
and (e), ε−β in (3.62) is multiplied. (a) is the most dominant.

the right, except for the one in the upper left corner. We also add one new vertical black
line, as well as a single vertical black edge, namely to the right of the blue upper-left-corner
edge. An example for this may be found in figure 5, where the procedure creates (e) from
(a). The ensuing power of ε is (2K + 1 −M) + (M − K − 1)α + K[M − (K + 3)/2]β.
Using (3.38) and (3.39), we find a suppression factor of εν with ν = 2K/(L −M + K).
Therefore, (2 · · ·23 · · ·3) has to be the dominant configuration. In conclusion, the dominant
state is given by |̄fk〉 in (3.54) with

f̄ = (
M−K︷ ︸︸ ︷

22 · · · 2
K︷ ︸︸ ︷

3 · · · 3
L−M︷ ︸︸ ︷

11 · · · 11). (3.63)

This implies that the Bethe eigenstates in (3.62) all collapse in the strong twisting limit to
| f̄k 〉, up to a constant of proportionality. We call (3.63) and in fact all associated cyclicity
eigenstates |̄fk〉 locked states.

This is a disappointing result, considering the model’s rich structure of Jordan blocks,
see next section 4. For each Jordan block, there is exactly one true eigenstate. However,
the limiting process of the standard quantum inverse scattering method yields only one of
them per cyclicity sector: a locked state. This shows that the understanding of the Jordan
block structure from integrability needs a new approach; the traditional methodology of
the ABA does not suffice.

4 Jordan normal forms for (hyper)eclectic spin chains

As we argued in the last section 3, the ABA does not seem to yield any useful information
on the eclectic spin chain models: in the strong twisting limit, all Bethe states collapse to a
family of locked states with fixed shift operator eigenvalue, despite the fact that the models
stay integrable in the limit. This is closely related to the fact that the Hamiltonian, and
actually the entire transfer matrix at non-zero spectral parameter, fail to be diagonalizable
in this limit. As already explained in section 2.3, the standard basis change to a diagonal
form is to be replaced by a basis change to JNF, see (2.26), (2.34). However, it is currently
unclear how to find this basis change from integrability. In this section, we will demonstrate,
by way of examples, that the JNF, while highly intricate, shows very promising regularity
properties and seemingly iterative patterns that appear when increasing the length of
the spin chain at fixed values of M and K. It is natural to conjecture, but currently
hard to prove, that these are due to the integrability of the model. To numerically see
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the emerging recursive structures, we needed to go to lengths of up to around L ∼ 20.
Unfortunately, so far we were only able to do this on the level of the, exceedingly simple,
Hamiltonian (1.13), (1.14) of the hypereclectic chain, which we could program directly into
the computer algebra programs Wolfram Mathematica andMatlab. However, in a few of the
simplest cases, manual calculations based on basic combinatorial considerations sufficed.
Of course it would be interesting and actually crucial to extend these explorations to the
tower of commuting charges, and to the transfer matrix encoding them.25

4.1 Eclectic spin chain

Let us recall the Hamiltonian (1.13), (1.14) of the general eclectic model, acting on 3⊗L.
In an alternative but standard notation, we may also write it as

Ĥ(ξ1,ξ2,ξ3) =
L∑
`=1

(
ξ3 e`12e`+1

21 + ξ1 e`23e`+1
32 + ξ2 e`31e`+1

13

)
, (4.1)

where e`12 acts only on site `, with turning a state 2 into a state 1 being its only non-zero
action, etc. It is clear that this Hamiltonian does not change the length L of the spin chain,
nor the numbers L−M of states 1, M−K of states 2, K of states 3, respectively. Thus its
action is closed on all the states spanned by

|
L−M︷ ︸︸ ︷
1 · · · 1

M−K︷ ︸︸ ︷
2 · · · 2

K︷ ︸︸ ︷
3 · · · 3〉 (4.2)

and all of its possible permutations. We call the associated state space the (L,M,K)
sector. The dimension of this vector space is obviously

L!
(L−M)! (M −K)!K! , (4.3)

which, therefore, gives the size of the Hamiltonian matrix in this sector, see also (3.45).
It is furthermore clear that (4.1) commutes with the shift operator. By a suitable

similarity transformation within each (L,M,K) sector, along the lines of (3.54), we may
form a new basis spanned by eigenstates of the shift operator with fixed eigenvalue ωkL,
k = 0, . . . , L−1, see (2.18), (2.19). Thereby the Hamiltonian in (4.1) becomes block-
diagonal, with the L blocks26 labelled by k. Indexing such a block by the label (L,M,K, k),
we find from (2.26), (2.30) that it may be similarity-transformed to the JNF

S · Ĥ(L,M,K,k)
(ξ1,ξ2,ξ3) · S

−1 =


Jl1 (0) 0

. . .
0 Jlb (0)

 , (4.4)

where Jl(0) are Jordan matrices (2.25) of size l with generalized eigenvalue 0, b is the total
number of Jordan matrices, and their sizes add up to the size l1 + . . . + lb of the matrix

25C. Ahn, L. Corcoran, M. Staudacher, work in progress.
26Note that the size of a block is roughly but not exactly equal to 1

L
L!

(L−M)! (M−K)!K! . The exact size
is determined by Pólya counting, see appendix A. Related is the fact that the eigenstates to-be (3.54) are
sometimes zero for some values of k.
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L Size of Ĥ(L,2,1,k)
(ξ1,ξ2,ξ3) JNF

5 6 1 5
7 15 1 5 9
9 28 1 5 9 13
6 10 3 7
8 21 3 7 11
10 36 3 7 11 15

Table 1. JNF for L, M = 3,K = 1 (numerical analysis).

Ĥ(L,M,K,k)
(ξ1,ξ2,ξ3) . Let us simplify the notation for the rest of this section by defining Jl := Jl(0),

as appropriate for the JNF of the model’s Hamiltonian.
In general, the specifics of the Jordan decomposition also depend on the scaled twist

parameters ξ1, ξ2, ξ3. However, we found that there always exists a generic JNF for generic
parameters. It holds for “most” triplets of parameters. However, by finetuning the param-
eters different decompositions might appear. Let us give the simplest non-trivial example
of this phenomenon: for L = 3, M = 2, K = 1 one has six states. For generic ξi’s one has

S · Ĥ(3,2,1)
(ξ1,ξ2,ξ3) · S

−1 =

 J2 0
J2

0 J2

 with J2 =
(

0 1
0 0

)
, (4.5)

where the three 2×2 Jordan blocks correspond to the three cyclicity sectors with k = 0, 1, 2.
On the other hand, by way of example, if the three twist parameters are all equal, i.e.
ξ := ξ1 = ξ2 = ξ3, only the k = 0 sector stays non-diagonalizable, while the two non-cyclic
sectors k = 1, 2 become diagonalizabe. One therefore has instead of (4.5)

S · Ĥ(3,2,1)
(ξ,ξ,ξ) · S

−1 =


J2 0

J1
J1

J1
0 J1

 =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (4.6)

Before proceeding, let us introduce the concept of a multiset, which provides a useful
notation for our JNF. Multisets, unlike sets, allow for multiple occurrences for each of their
elements. The union ∪ of two multisets means joining them, adding the multiplicities of
identical elements. The relative complement \ of two multisets is defined in an analogous
fashion. In multiset notation, we would describe the Jordan decomposition (all three cyclic-
ity sectors) of (4.5) by the multiset {2, 2, 2}, while for (4.6) we would write {2, 1, 1, 1, 1}.
An even more concise notation, which we will use extensively below in tables 2, 3 would
be 23 for the first example, and 14 2 for the second example.

Let us next discuss the generalization of (4.5) to general L ≥ 3. It is possible to
analytically prove (and easily checked numerically for various values of L) that in this case
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the generic JNF is

S · Ĥ(L,2,1)
(ξ1,ξ2,ξ3) · S

−1 =


JL−1 0

. . .
0 JL−1

 = (L− 1)L (4.7)

where the L Jordan blocks of size L−1 correspond to the L cyclicity sectors (k = 0, . . . L−1).
This simple pattern quickly gets significantly more involved as one increases M and K.

Let us show some of the emerging structure by fixing K = 1 (ifK > 1, the complexity of the
decompositions further increases). This has the advantage that Pólya counting trivializes,
as one may consider the position of the single state 3 as a marker on the spin chain: there
is an equal number of states in all L sectors labelled by (L,M, 1, k), namely

(L− 1)!
(L−M)! (M − 1)! . (4.8)

We list the decomposition of Ĥ(L,3,1,k)
(ξ1,ξ2,ξ3), any cyclicity sector k, for L = 5, . . . , 10 in table 1.

Based on this, it is fairly straightforward to formulate a conjecture for the JNF; it reads,
in (multi)set notation, {

2L− 4 j − 1
∣∣∣∣ j = 1, · · · ,

[
L− 1

2

]}
. (4.9)

Another point of view to see this are recursion relations. Let S(M)
L (with K = 1) be the

multiset of the Jordan block sizes for a given L and M in the cyclic (k = 0) sector. Then,
the following relation holds

S
(3)
L+2 = S

(3)
L ∪ {2L− 1}, (4.10)

with initial conditions
S

(3)
1 = S

(3)
2 = {}. (4.11)

As M increases, the JNF decomposition patterns get much richer. To uncover these,
it is necessary to go to sufficiently high values of L. This is not straightforwardly done for
the eclectic chain. However, we can get the wanted results for lengths up to L ∼ 20 for the
hypereclectic model, see next section 4.2. As we shall explain, they are then also expected
to hold for the generic eclectic model.

4.2 Hypereclectic spin chain

The Hamiltonian of the hypereclectic model (1.15), (1.16) is obtained from the one of the
eclectic chain by setting ξ1 = ξ2 = 0, ξ3 = 1. In the alternative notation of (4.1) it reads

H =
L∑
`=1

e`12e`+1
21 . (4.12)

From our exploratory studies at low L,M,K it turns out that this hypereclectic
model (4.12) seems to have the same JNF decomposition as the eclectic model (4.1) for
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generic parameters ξ1, ξ2, ξ3, as long as the filling conditions (3.1) are satisfied. (If they are
not, the JNF decomposition is different.) Let us call this the universality hypothesis for the
eclectic spin chain models. Let us give one highly non-trivial example, picking L= 7. We
first consider M=3, K=1. The 15× 15 matrix representations of the respective Hamilto-
nian matrices in the cyclic k = 0 sector decompose (with different similarity transforms S,
S′, of course) as

S · H(7,3,1,k=0) · S−1 = S′ · Ĥ(7,3,1,k=0)
(ξ1,ξ2,ξ3) · S

′−1 =

 J9 0
J5

0 J1

 . (4.13)

In the multiset notation introduced in the previous section, this JNF decomposition reads

{9, 5, 1} = 1 5 9 . (4.14)

For the eclectic model, this is valid for “most” values of ξ1, ξ2, ξ3, including the hypereclectic
case ξ1 = ξ2 = 0, ξ3 = 1. If we permute the three states 1, 2, 3, this decomposition will
remain true for the generic eclectic model for all six permutations of these states due
to symmetry. On the other hand, the hypereclectic model behaves very different under
permutations of the states. The reason is, that the dynamics only involves the states 1 and
2, while 3 is just an inert “spectator”, forming some kind of wall. So it makes a significant
difference whether 3 is the least numerous state, second least numerous state, or else the
most numerous state. In our specific L = 7 example, for the cyclic sector, we have again

{9, 5, 1} = 1 5 9 for permutations of |1111223〉 and |2222113〉, (4.15)

with, respectively, M=3, K=1 and M=5, K=1. On the other hand, we find the JNF

{5, 4, 3, 2, 1} = 1 2 3 4 5 for permutations of |1111332〉 and |2222331〉, (4.16)

corresponding, respectively, to M=3, K=2 and M=6, K=2. Finally, one has the JNF

{3, 2, 2, 2, 1, 1, 1, 1, 1, 1} = 16 23 3 for permutations of |3333112〉 and |3333221〉, (4.17)

with, respectively, M=5, K=4 and M=6, K=4.
In conclusion, the JNF decompositions of the hypereclectic chain are definitely not

invariant under a permutation of the states. This means, its “spectrum” is much richer
than the one of the generic eclectic chain, despite its simpler looking Hamiltonian.

The hypereclectic model is simple enough to allow for the derivation of a few exact
results by some straightforward combinatorics. Let us present one example. Consider
cyclic eigenstates with K = 1, i.e.

|1 · · · 121 · · · 12 · · · 21 · · · 121 · · · 13〉〉 :=
L∑
`=1
|1 · · · 121 · · · 12 · · · 21 · · · 121 · · · 1

[`]
↓
3 1 · · · 1〉.

(4.18)
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Acting with the Hamiltonian H on this state, any 2 situated to the left of a 1 exchanges
with it, thereby moving one step to the right. None of the remaining 1’s, 2’s and none of
the 3’s can move. In a hopefully intuitive notation we have

|1 · · · 1
→
2 1 · · · 1

→
2 · · ·

→
2 1 · · · 1

→
2 1 · · · 13 · · · 〉〉 (4.19)

Clearly, one can immediately write down an eigenstate that trivially annihilated by the
action of the Hamiltonian, a “locked state”, cf. (3.63):

H |
L−M︷ ︸︸ ︷

11 · · · 11
M−1︷ ︸︸ ︷

22 · · · 2 3〉〉 = 0. (4.20)

Here it is easy to write down the lowest Jordan descendent:

|
M−1︷ ︸︸ ︷

22 · · · 2
L−M︷ ︸︸ ︷

11 · · · 11 3〉〉. (4.21)

By acting H on this descendent l times, we obtain the locked state:

Hl |
M−1︷ ︸︸ ︷

22 · · · 2
L−M︷ ︸︸ ︷

11 · · · 11 3〉〉 = |
L−M︷ ︸︸ ︷

11 · · · 11
M−1︷ ︸︸ ︷

22 · · · 2 3〉〉, (4.22)

where l is found to be l = (M − 1)(L −M). Hence, the size of the largest Jordan block
should be given by

(M − 1)(L−M) + 1 . (4.23)

Let us end the section by verifying this numerically for M = 4, 5 and K = 1.
In order to reach sufficiently high values of L, a direct numerical approach that builds

up the hypereclectic Hamiltonian matrix at fixedM , K for the cyclic sector is quite feasible
up to values of about L ∼ 20. However, built-in algorithms that subsequently reduce the
matrix to JNF are already taking too much computational time. Luckily, a result from
Linear Algebra comes in handy. Let H be a matrix over the complex numbers whose
generalized eigenvalues are all zero. Let

as := dim kerHs with s = 0, 1, 2, . . . , (4.24)

i.e. as is the dimension of the kernel of Hs. One then has

a0 = 0 , a1 = Number of Jordan blocks of H , (4.25)
2 as − as−1 − as+1 = Number of Jordan blocks of size s of H . (4.26)

Knowing the as clearly determines the structure of the Jordan normal form decomposition
of H. And (4.24) allows to efficiently compute the as by Gaussian elimination on a com-
puter, wherewith one brings Hs into echelon form. Clearly we may restrict s to be at most
the size of H plus one.

The result of this procedure for M = 4,K = 1 is summarized for L = 6, . . . 21 in
table 2. One noticeable feature is that some Jordan blocks are repeating several times with
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L Sizes of Jordan Blocks
6 3 7
10 3 72 9 11 13 15 19
14 3 72 9 112 132 152 17 192 21 23 25 27 31
18 3 72 9 112 132 152 172 192 212 232 252 272 29 312 33 35 37 39 43
8 1 5 7 9 13
12 1 5 7 92 11 132 15 17 19 21 25
16 1 5 7 92 11 133 152 172 192 212 23 252 27 29 31 33 37
20 1 5 7 92 11 133 152 173 193 213 232 253 272 292 312 332 35 372 39 41 43 45 49
7 4 6 10
11 4 6 8 102 12 14 16 18 22
15 4 6 8 102 122 142 162 182 20 222 24 26 28 30 34
19 4 6 8 102 122 142 163 183 202 223 242 262 282 302 32 342 36 38 40 42 46
9 4 6 8 10 12 16
13 4 6 8 102 122 14 162 18 20 22 24 28
17 4 6 8 102 122 142 163 182 202 222 242 26 282 30 32 34 36 40
21 4 6 8 102 122 142 163 183 203 223 243 262 283 302 322 342 362 38 402 42 44 46 48 52

Table 2. Structures of Jordan blocks for the sector of M = 4,K = 1, k = 0 (cyclic states).
Exponents denote multiplicities.

definite multiplicities denoted as exponents in the table. One may again conjecture some
simple recursion relations, in generalization of (4.10), (4.11). Let S(4)

L be the multiset of
the Jordan block sizes for a given L with M = 4 and K = 1. Then, the following relation
appears to hold in general:

S
(4)
L+4 = S

(4)
L ∪ {L+ 2 j + 1 | j = 0, · · · , L− 2, L}, (4.27)

with initial conditions

S
(4)
2 = S

(4)
3 = {}, S

(4)
4 = {1}, S

(4)
5 = {4}. (4.28)

On easily verifies the result (4.23) for the size of the largest Jordan block for all entries of
table 2.

By the same method, one finds the Jordan block decompositions for M = 5, K = 1.
The emerging structure is even more intricate, as shown in table 3 for L = 8, . . . , 18. If we
denote the multisets of block sizes for a given L with M = 5, K = 1 as S(5)

L , we find the
following recursion relation:

S
(5)
L+5 \ S

(5)
L+2 =

(
S

(5)
L+3 \ S

(5)
L

)
∪ { 2L+ 2j + 1 | j = 0, · · · , L− 2, L}. (4.29)

Once again one may verify the result (4.23) for the size of the largest Jordan block for all
entries of table 3.
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L Sizes of Jordan Blocks
8 1 5 7 9 13
9 1 52 92 11 13 17
10 1 52 7 92 11 132 15 17 21
11 12 52 7 93 11 133 15 172 19 21 25
12 1 53 7 93 112 133 152 173 19 212 23 25 29
13 12 53 7 94 112 134 152 174 192 213 23 252 27 29 33
14 12 53 72 94 112 135 153 174 193 214 232 253 27 292 31 33 37
15 12 54 7 95 113 135 153 176 193 215 233 254 272 293 31 332 35 37 41
16 12 54 72 95 113 136 154 176 194 216 234 255 273 294 312 333 35 372 39 41 45
17 13 54 72 96 113 137 154 177 195 217 234 257 274 295 313 334 352 373 39 412 43 45 49
18 12 55 72 96 114 137 155 178 195 218 236 257 275 297 314 335 353 374 392 413 43 452 47 49 53

Table 3. Structures of Jordan blocks for the sector of M = 5,K = 1, k = 0 (cyclic states).
Exponents denote multiplicities.

5 Conclusions and open questions

We have begun the systematic study of a class of non-diagonalizable, integrable, chiral
spin chains which were christened eclectic spin chains in [1]. They still contain three free,
complex twist parameters (ξ1, ξ2, ξ3), and were originally inspired by parts of the one-
loop dilatation operator of a strongly twisted, double-scaled deformation of N = 4 Super
Yang-Mills Theory [3–11]. However, here we systematically study these models on their
own right, without further exploring their relation to gauge theory. We also introduced a
seemingly even simpler version of these models, which we called hypereclectic spin chain.

Being non-diagonalizable, the goal is to bring Hamiltonian and transfer matrix of these
models into JNF. We found ample evidence for a highly intricate yet subtly structured
“spectrum” of Jordan blocks, in dire need of a systematic understanding. Interestingly, the
spectrum of the hypereclectic chain is richer than the one of the eclectic model at generic
twist parameters (ξ1, ξ2, ξ3), even though the first model possesses a simpler Hamiltonian.

A puzzling aspect is that, despite the easily demonstrated integrability of these models,
the traditional means of the quantum inverse scattering method appear to fail to describe
these models’ Jordan decompositions. We demonstrated this in some detail for the ABA
method. Particularly vexing is the fact that the BAE remain sensible in the limit, and
exhibit a mathematically rich set of solutions that even lead to the correct counting of
states. However, the associated Bethe states collapse to a small set of locked states that
are, apparently, essentially useless for finding the spectrum of Jordan blocks.

To summarize, the ultimate goal for the future is then to solve the eclectic models, i.e.
to find their intricate spectrum of Jordan blocks, by using integrability. Here we would like
to draw attention to [17], where this was understood for a different non-diagonalizable spin
chain model. However, the model is quite different; in particular, it only contains blocks
of size one or two.

– 32 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
9

In our case, it is not clear which model will be “easier” to treat: the eclectic or
hypereclectic one? It is also not obvious whether it is best to concentrate on their scaled
R-matrix, or to better proceed from the finitely twisted R-matrix in conjunction with
a suitable limiting procedure. Furthermore, is it better to concentrate on the models’
Hamiltonians, or else on their commuting transfer matrices? Finally, could it be that
these models may be solved by some suitable combinatorial methods, thereby bypassing
the power of integrability?
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A Pólya counting of cyclic states

As a consistency check of our rather non-trivial solutions of the scaled BAE for generic
(L,M,K) sectors with L > 3(M − K), see section 3.1.4, we would like to verify that
the counting of cyclic states is combinatorially consistent. The correct combinatorics is
encoded in the famous Pólya enumeration theorem. The latter allows to count the number
of inequivalent “necklaces” of length L made of “beads” of n distinct “colors”. For our case
we have n = 3, with L−M beads of color 1, M−K beads of color 2, and K beads of color
3. The number of distinct, cyclically symmetric configurations d(L,M,K) is then found
from the generating function

Z(x, y, z) = −
∞∑
n=1

φ(n)
n

log [1− xn − yn − zn] =
∑

L,M,K
L≥M≥K

d(L,M,K) · xL−MyM−KzK ,

defined with the help of Euler’s totient function.27 The consistency check then involves
testing whether the multiplicities d(L,M,K) match with the degeneracies of the eigenvalues
ωkL = 1 in (3.47), which were obtained from the Bethe ansatz. This is done by counting
the number of configurations {ij}, {nl} in (3.47). For the cyclic states, it is the number
of cases that give k = 0 mod L. While we did not bother to analyze this analytically, we
made an extensive numerical comparison, see table 4, finding a perfect match in all cases
considered. We also found it interesting to compare to a “naive”, only approximately true
counting of cyclic states, obtained by dividing the total configuration number (3.45) by L.

27Also known as Euler’s phi function. φ(n) counts the positive integers up to a given integer n that are
relatively prime to n.
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L M K naive counting Pólya counting Bethe ansatz
14 6 2 6435/2 3225 3225
16 6 2 15015/2 7518 7518
18 6 2 15470 15484 15484
20 6 2 29070 29088 29088
20 8 2 176358 176400 176400
20 10 4 1939938 1940064 1940064
21 9 3 1175720 1175730 1175730
22 6 2 101745/2 50895 50895
22 8 2 406980 407040 407040
22 10 4 6172530 6172740 6172740
24 6 2 168245/2 84150 84150
24 8 2 1716099/2 858132 858132
24 9 3 4576264 4576278 4576278
24 10 4 17160990 17161320 17161320

Table 4. Agreement of the Bethe ansatz solutions of section 3.1.4 with Pólya counting.
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