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We use the orbifold approach to confirm the formula of Felder, Gawedzki and Kupiainen for the one-loop partition function of 
strings on nonsimply-connected group manifolds. 

Wess-Zumino-Witten models [ 1 ] are prototypical rational conformal field theories. The classification of 
rational conformal field theories has been the focus of  much recent attention. But even the small subclass con- 
sisting of Wess-Zumino-Witten models is not well understood; all consistent models are not known. 

One powerful restriction is modular invariance. For example, the states of the theory must be such that the 
one-loop partition function is modular invariant. A list of possible modular invariant partition functions has 
been compiled and proven complete only for the simplest case, that of SU (2) [ 2 ]. 

Remarkably, the SU (2) partition functions may be labelled by the simply-laced Lie algebras, i.e. those of  the 
A, D and E types. There are the trivial diagonal modular invariants (A type) and also exceptional ones (E type) 
occurring for isolated values of KaY-Moody central charge k. The remaining modular invariants (D type) are 
the partition functions for strings propagating on the group manifold SO(3 ) [3,4]. So besides the trivial and 
exceptional, all SU (2) modular invariants are partition functions for strings on nonsimply-connected group 
manifolds. I f  this pattern continues for other Lie groups ~, strings on nonsimply-connected group manifolds are 
certainly important. 

Felder, Gawedzki and Kupiainen [6] have studied the canonical quantization of Wess-Zumino-Witten 
models. Using the geometry of line bundles over the loop groups of G, they derive consistent spectra for arbitrary 
nonsimply-connected groups G = G/B,  where G is the covering group, and B a subgroup of its centre B ( ~ ) .  In 
this letter we use the orbifold [7 ] approach advocated in ref. [ 3 ] to construct the partition functions, thus 
providing a simple confirmation of their results. 

The crucial mathematical relation we use is the isomorphism between the outer automorphism group O (~) 
of  the (untwisted) KaY-Moody algebra g and the centre B ( ~ ) ,  and its relation to the modular transformations 
of  the torus. Bernard [ 8 ] has shown that in the space of characters of highest weight representations of  ~, it is 
the modular transformation S ( r ~ -  1/z) that transforms an element A~O(~) into an element a e B ( G ) ,  and 
vice versa. He and others [ 9 ] use this fact to derive many modular invariants ~2. These are now understood to 
be some, but not all, of the partition functions for strings on nonsimply-connected group manifolds. 

A Wess-Zumino-Witten model one-loop partition function is a sesquilinear combination of specialised 
characters 

X~(r) =tr~ exp [ 2zti (Lo - ~4c) r] ( 1 ) 
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~ This was conjectured for SU (3) in ref. [ 5 ]. 
~2 Many of these may also be derived from the branching rules for the conformal embedding~u (p)q®~u (q)P c~u (pq) ~ [ 10]. 
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of  highest weight representations o f  a KaY-Moody algebra ~. Here 2=2~o9 ~ is the highest weight of  the corre- 
sponding representation, 2asZ,  and o) ~ are the fundamental  affine weights. For a unitary representation, we 
must have 2~,k"u=k, where k is the KaY-Moody central charge and k vu are the dual Ka~ labels, c denotes the 
Virasoro central charge. 

In particular, the partition function for strings propagating on the nonsimply-connected group manifold G = G /  
B, B c B ( G ) ,  is o f  the form 

z(Q/B)= Z z~,z2,~z~. (2) 
2',2 

It can also be written as an orbifold [ 7 ] partition function [ 3 ]. I f  al + a2r are the coordinates of  the torus and r 
its modulus, we let (oq, 0~2) denote the contribution to the partition function from fields obeying the twisted 
boundary  conditions 

0(a~ +2n ,  O'2) =a10(O '1 ,  0"2) , 0(19"1, a2 " t - 2 n ) =  O/20(0"1, O'2). (3 )  

Then the partition function can be written as 

Z ( Q / B ) -  1 2 (oq, ee2), (4)  
IBI ~ , ~ B  

[cq .c~2l =0 

where I B I is the order o f  B. The modular  invariance of  this expression is guaranteed, since under any transfor- 
mation r--, (ar+b)/(cr+d) (ad-bc= 1; a, b, c, d~g) ,  (a~, ol2) transforms to (O~laO~, b a O~IOL2) [7,11]. I fB=ZN,  
(4) reduces to 

1 N--I 
Z(QII'~-N)-~- ~m,n~= 0 ( a ]  n, OLd). (5 )  

The trivial example is the partit ion function on the simply-connected group manifold Q [ 3 ]: 

Z(Q)2,x = ( 1, 1 )2,2 = Oa'a. (6) 

Untwisted fields are those obeying (3) with ~Xl = 1. The contribution to (5) from the untwisted sector is denoted 
Z~: 

1 N - I  
ZI(Q/7fN)= Nrl~o (1, ~") .  (7)  

Using these last two objects and the generators S ( r ~ -  l / q )  and T ( r ~ r +  1 ) o f  the modular  group, it is in 
principle possible to obtain the full partit ion function Z(G/Y_N) [ 3 ]. The following formula is valid for N prime: 

Z(G/ZN)= 1+ ~ T~S Z,(G/ZN)-Z(G). (8) 
v=O 

For N not prime, the situation is more complicated. For  example, one can verify 

Z(Q/774)= ( l"I- t3.~=o TVS) Z,(Q/ZN)-Z(G)-I Z(Q/Z2). (9) 

The Z2 group of  the last term is generated by c~ 2 if  c~ generates Z4. For general N not prime, we expect subtraction 
o f  terms proportional to Z(Q/71p) for pIN would be necessary. For simplicity, we therefore restrict to N prime, 
and use (8)  ~3 

~3 This is a significant restriction only for g =A (g is the Lie algebra of G); ZN with N prime covers all other cases, except for half the 
possibilities with g = D. 
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The T transformation is of quite simple form: 

(~i l2+Pl  2 rdlPl2) 
T~,~=da,~exp\ - k ~  ~ -  } .  (10) 

Here p=  Y~u o9~ and the dual Coxeter number is h v = Zu kvuogu- But the dimension of the S-transformation 
matrix grows rapidly with k, and the expression for its elements involves a sum over the Weyl group of g. So 
explicitly constructing the S-transformation matrix is extremely tedious. This is the main obstruction to using 
formulae like (8) to derive orbifold partition functions. 

However, identities proved by Bernard [ 8 ] allow us to bypass this difficulty. Consider an element A of the 
outer automorphism group O (~) of ~ acting on a highest weight 2 for a given value of the KaY-Moody central 
charge k (2uku=k).  [An example is the generator of O(su (N)) ,  which permutes the fundamental weights as 
follows: Ao9" = o9 u + 1; o9 N_= 090. ] Restricting to the weight lattice of the finite Lie algebra g, one can write 

A (2+p)  = (k+h ~ )OgAtO)WWA(,~.+p). ( 11 ) 

Here g= Zi,o x iof  is the restriction of an affine weight x to the g weight lattice, OgA(°)=Ao)°, and WA is an 
element of the Weyl group of g acting in the following way: 

WA( o9 i) =ogA(i)--kv iogA(O). (12) 

Using ( 11 ) it is easy to show [ 8 ] 

SA~)x, =S:~,e(WA) exp[2ni(ogAt°)12' +p)  ]. (13) 

Here e(WA) is the signature of wa; i.e. ~= + 1 ( -  1 ) for the product of an even (odd) number of reflections. 
Now for all outer automorphisms A, we have [ 6 ] 

e(WA ) = exp [27ri(o9 At°) [p) ] = exp (rcih ~ I OgA(0) [2). (14) 

So (13) reduces to 

SA~)~, =S~, exp [ 2zri(o9 A~°) 12' ) ]. ( 15 ) 

This last equation is the starting point. Considering it with A replaced by A ~ yields 

(ogA~(°)I2)=r(ogAW)I2) mod 1 (16) 

implying 

N(o9 A(°) 12) =0  mod 1 (17) 

if AN= 1. SO we see that the phase on the right hand side of (15) is an Nth root of unity. In fact, it is the 
eigenvalue of an element of B ((3) of order N. So, as mentioned above, the modular transformation S maps 
elements of O (~,) into elements of B ( ~J ). 

Now the untwisted sector partition function Z~ (G/Y-N) is built from the diagonal partition function Z(CJ) by 
projecting onto 7/N invariant states [compare (7) and (5) ]. So 

1N--l 
Z1 (G/~u).~') .  ~--- t~2'). ~/ r=~O exp [2nir(o9 At°) 12) ] = 8a,zO, { (ogAt0)IA)} (18) 

where we have defined 

¢~1 (x) = 1, i fx=O mod 1, 

= 0 otherwise. 

Using ( 15 ) it is then easy to show 

(19) 
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1 N--I 
sz ,  (g/ZN),,~ = ~ r~=o 6~,~,(~). (20) 

Applying successive T-transformations yields 

[ ( : ) ]  TvSZI(~/ZN)2,2 ~r~= 0 6~,A,(a) exp - 2 n i v  [ A r ( 2 + p ) I 2 -  + P i t  (21)  
= 2 ( k + h "  " 

Since k vA(°) = 1, 

(O)A(O)Iw (U) ) = (o)A(O) I U) m o d  1 (22)  

for any element w of  the Weyl group of  g, and any integral weight u. This and eqs. ( 11 ) and ( 14 ) simplify (21 ) 
to 

1N--I  
TvSZI ( G /TY N);~,;~ = ~ r~=O (~2"Ar(,l) exp{--  2~ziv[ ( O)Ar(o) l )t ) + ½kl ooA'(O)12] }. ( 2 3 )  

Twisting a string by aN= 1 must  make  no difference. Replacing v with v+ N in (23)  therefore demands  

½Nkl o)Ar(°) 12 = 0  mod  1 (24) 

for all r. This can be simplified, however,  since 

½Nkl ogA(°)12= 0 rood 1 (25) 

is sufficient to ensure (24)  and fur thermore  that  

½k(o) At(°) [ o)A~(°) +o9 A'(°) ) = ½k(o) A~(°) lo) A'+'(°) ) m o d  I. (26) 

Eq. (25 ) disallows certain integer values of  KaY-Moody central charge k. It was derived in ref. [ 6 ] by requir- 
ing consistency of  the Wess -Zumino  te rm on a toms,  with one of  its cycles mapped  into a nontrivial  closed path 
in G. Thus it is a consequence of  the nontrivial  fundamenta l  group r~l (G  = G/ZN) = ZN. 

Substituting (23)  into the general formula  (8) ,  and using (26) ,  we finally obtain 

N--I 1 N--I 
Z(G/ZN)2'2 =ZI (G//~N))t '2 "]- 2 dA'Ar(~.) N E e x p { - 2 z f i r [  (o9 A~(°) 12+ ½ko)A'(°))] }. ( 2 7 )  

r= 1 v=0 

Since N is pr ime the factor r outside the square brackets may  be dropped,  and we can write 

1 N--l 
Z(CJ/ZN)~,~ = ~ m,~=o &'A,-(~) exp [ - 2~zi(ogA"(0) 12+ ½k¢o A"(°) ) ]. (28)  

This is exactly the form found by Felder, Gawedzki  and Kupia inen [ 6 ] ~4. Furthermore,  it is easy to convince 
oneself  that  

( a  m, an)),,2 ~-(~2,A,n(A ) exp[ - 2 h i  (o9 A"(°) 12+ ½k¢.o A'(O) ) ]. (29)  

The condit ion (25) guarantees the integrality of  the elements of  the matrix Z(G/ZN) .  This must  be, since 
these quantit ies count the numbers  of  pr imary  fields. We may  rewrite the final result in a way that manifests this 
property: 

N--1 
Z(Gll~-N)2')" : Z 6)-'Am(2) 61 {(O)A(0) I 2 +  ½kmc°A(°))} • ( 3 0 )  

m=O 

#4 The authors of ref. [ 6 ] also considered the unique semi-simple possibility for G simple: B = •2 X ~2 for g= Dl, l even. 

346 



Volume 223, number 3,4 PHYSICS LETTERS B 15 June 1989 

We should emphasise here that (28) is a modular invariant for all cases, whether or not it is integer valued. But 
it reduces to the physically sensible partition function (30) (with integral values) only when the KaY-Moody 
central charge k obeys (25). 

We will now write the partition function in a more compact notation, and use it to verify modular invariance. 
Considering an outer automorphism A as acting on the space of highest weights of unitary representations, we 
have 

A~,~ = ~'A(~). (31) 

Then ( 15 ) becomes in matrix notation 

AS=Sot, (32) 

where ot~B(~)  is of course diagonal 

ot~,~ =6~,~ exp [ 2rci (tn A(°) 12) ]. (33) 

Thus the modular transformation S diagonalises the outer automorphisms of ~. 
If we have another related pair A' e O (~), ot' e B ( ~ ) ,  i.e. A' S=  Sot', we define 

A 'oa=A '  ot exp[ +nik(tnA'(°)logA(°)) ] , otoA'=~A' exp[--rdk(toA(°)ltoA'(°))], (34) 

SO that 

A'oa=aoA ' .  (35) 

Then the partition function may be written simply as 

1 N--I 

Z(~/ZN)  = ~ rn,n~= 0 Am o ot~. (36) 

If C is the charge conjugation matrix, we have 

$2=C, CA=A-IC ,  (37) 

so that (32) also implies 

S*OtS=A - ~ (38) 

Therefore 

S Z ( ~ / Z N )  = 1 E a"°A-"=Z(g?J/T/N). (39) 
m,n 

Finally, it is straightforward to prove 

T* (Aoot' ) T=Aootot', (40) 

establishing the T-invariance of Z(~/ZN) .  
The simple structure just discussed may exist in a more general class of rational conformal field theories, 

perhaps those obtained by the coset construction [ 12 ]. Then partition functions for these theories of the type 
( 36 ) could he easily obtained. We hope to report on this possibility in the future. 

In conclusion, let us emphasise that the advantage of the orbifold approach used here is simplicity, and con- 
sequent generality. It remains to be seen if the elegant methods ofref. [ 6 ] are applicable to more general rational 
conformal field theories. 
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