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Boundary action of NÄ2 super-Liouville theory

Changrim Ahn* and Masayoshi Yamamoto†

Department of Physics, Ewha Womans University, Seoul 120-750, Korea
~Received 17 October 2003; published 29 January 2004!

We derive a boundary action ofN52 super-Liouville theory which preserves bothN52 supersymmetry and

conformal symmetry by imposing explicitlyT5T̄ and G5Ḡ. The resulting boundary action shows a new
duality symmetry.
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I. INTRODUCTION

Two-dimensional Liouville field theory~LFT! has been
studied actively for its relevance to noncritical string theor
and two-dimensional quantum gravity@1,2#. This theory has
been extended to the supersymmetric Liouville field theo
~SLFTs! which can describe the noncritical superstring the
ries. In particular, theN52 SLFT has been studied active
because the world sheet supersymmetry can generate s
time supersymmetry. In addition to applications to stri
theories, these models provide theoretically challeng
problems. The Liouville theory and its supersymmetric ge
eralizations are irrational conformal field theories~CFTs!
which have a continuously infinite number of primary field
Because of this property, most CFT formalisms develop
for rational CFTs do not apply to this class of model. A
interesting problem is to extend the conventional CFT f
malism to irrational CFTs. There has been a lot of progres
this field. Various methods have been proposed to de
structure constants and reflection amplitudes, which are b
building blocks to complete the conformal bootstrap@3–5#.
These have been extended to theN51 SLFT in @6,7#.

A more challenging problem is to extend these formalis
to the CFTs defined in the two-dimensional space-time
ometry with a boundary condition~BC! which preserves the
conformal symmetry. Cardy showed that the conformally
variant BCs can be associated with the primary fields
terms of modularS-matrix elements for the case of ration
CFTs @8#. It has been an issue whether the Cardy formali
can be extended to the irrational CFTs. There are active
forts to understand the conformally invariant boundary sta
in the context of string theories related to D-branes@9,10#.

Important progress in this direction was made in@11#
where the functional relation method developed in@4# was
used in the boundary LFT. With a boundary action whi
preserves conformal symmetry, a one-point function o
bulk operator in the presence of the boundary interaction
two-point correlation functions of boundary operators ha
been computed using the functional relation method@11#.
Here the conformal BC is denoted by a continuous param
appearing in the boundary action. A similar treatment of
LFT defined in the classical Lobachevskiy plane—name
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the pseudosphere—has been made in@12#. For the N51
SLFT, the one-point functions and the boundary two-po
functions have been obtained in@13,14# based on the conjec
tured boundary action. It is desirable to show that indeed
action preserves both supersymmetry and conformal sym
try.

In this paper we derive the boundary actions of theN
51,2 SLFTs by imposing the symmetries. This approach
obtain the boundary actions has been made before. In@15#,
based on a superfield formulation, theN52 supersymmetric
boundary action has been derived for a generalN52 super-
symmetric quantum field theory. For integrable quantu
field theories with infinite conserved charges, the situat
becomes much more complicated. As shown in a pionee
work @16#, the boundary action which preserves the integ
bility can be fixed by imposing a first few conservation law
For the supersymmetric integrable models, the t
conditions—the supersymmetry and integrability—ha
been successfully imposed to get appropriate boundary
tions @17–19#. We continue this approach to theN51,2
SLFTs and impose the boundary superconformal invaria
conditions to derive the boundary actions. We will show th
even at the classical level, the boundary actions are de
mined uniquely.

This paper is organized as follows. In Sec. II we review
superfield formulation of theN51 SLFT boundary action
proposed previously. Then, we show that this action satis
the superconformal invariance. Our main result—the sup
conformally invariant boundary action of theN52
SLFT—is derived in Sec. III. After repeating the superfie
formulation, we derive the boundary action by imposingN
52 superconformal symmetry. We conclude in Sec. IV w
a few discussions and provide technical details in the App
dixes.

II. BOUNDARY NÄ1 SUPER-LIOUVILLE THEORY

In this section, we review a superfield formulation of th
boundary action of theN51 SLFT which preserves the
boundaryN51 supersymmetry. Then, we will show that th
same result can be obtained by imposing directly theN51
superconformal symmetry.

A. Superfield formulation of the NÄ1 boundary action

The action of theN51 SLFT is given by@20#

S5E d2zd2uS 1

2p
D̄FDF1 imebFD , ~2.1!
©2004 The American Physical Society07-1
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whereF is a real scalar superfield:

F5f1 iuc2 i ūc̄1 iuūF. ~2.2!

~See Appendix A 1 for our conventions of theN51 super-
symmetry.! This theory contains a dimensionless Liouvil
coupling constantb and the cosmological constantm. Note
that we consider a trivial background and omit a linear d
ton coupling. We can express the action in terms of the co
ponent fields,

S5E d2zF 1

2p
~]f]̄f1c]̄c1c̄]c̄ !1 imb2cc̄ebf

1
1

2
pm2b2e2bfG , ~2.3!

by integrating over theu and ū coordinates in Eq.~2.1! and
eliminating the auxiliary fieldF from its equation of motion.

To introduce the boundary action, we consider first a g
eral N51 supersymmetric theory on the lower half-plan
2`,x5Rez,`, 2`,y5Im z<0. Following @10#, we
can write the action as follows:

S5E
2`

`

dxE
2`

0

dyE d2uL, ~2.4!

whereL is the Lagrangian density in superspace. The su
symmetry variation of the action is

dS5E
2`

`

dxE
2`

0

dyE d2u~zQ1 z̄Q̄!L

52
i

2E2`

`

dx~zLu ū1 z̄Luu!uy50 . ~2.5!

To cancel the surface term~2.5!, we add a boundary action

SB5
i

2
hE

2`

`

dxLuu5 ū50 , h561, ~2.6!

which is defined aty50. Whenz5hz̄, the supersymmetry
variation of the total action vanishes:dS1dSB50. Only one
superchargeQ1hQ̄ is preserved. Conservation of th
charge imposes the boundary condition on the supercur
G1hḠ50 at y50. The superderivatives in the tangent
and normal directions are given byDt5D1hD̄ and Dn

5D2hD̄, respectively. Their conjugate coordinates areu t

5(u1hū)/2 andun5(u2hū)/2.
For the total variation ofS1SB to vanish, two types of

boundary conditions can be imposed.
~i! Dirichlet boundary conditionsDtFuy5un5050: For

the N51 SLFT, this corresponds to

c2hc̄uy5050, ]xfuy5050. ~2.7!

These conditions can be identified with the supersymme
version of the ZZ brane@12–14#
02600
-
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~ii ! Neumann boundary conditionsDnFuy5un5050: For

the N51 SLFT, these give

c1hc̄uy5050, ]yf22hpmbebfuy5050. ~2.8!

These boundary conditions correspond to the supersym
ric version of the FZZT brane@11,21#.

In @10#, it is shown that one can add an additional term
the boundary action

SB852
1

2E2`

`

dxE du tS GDtG1
4

b
imBGebF/2D , ~2.9!

with a fermionic boundary superfieldG5a1 iu th. In fact,
this boundary action is equivalent to that considered pre
ously in @13,14#. We will show in the next subsection tha
this action indeed preserves the boundary superconfor
symmetry.

B. Boundary superconformal symmetry

To derive a boundary action which preserves bothN51
supersymmetry and conformal symmetry, we start with
general form of boundary action

SB5E
2`

`

dxF2
i

4p
c̄c1

1

2
a]xa2 f ~f!a~c1c̄ !1B~f!G ,

~2.10!

where a is a real fermionic boundary degree of freedo
which anticommutes withc and c̄. The boundary action
~2.10! was first proposed in the boundaryN51 supersym-
metric sine-Gordon model@18#. f (f) and B(f) are func-
tions of the scalar fieldf to be determined by the boundar
conditions which preserveN51 supersymmetry. The fermi
onic boundary degree of freedoma was first introduced in
the Ising model in a boundary magnetic field@16# and in the
N51 SLFT with appropriate kinetic term@14#.

The boundaryN51 superconformal symmetry impose
the following constraints on the stress tensor and super
rent:

T5T̄, G5Ḡ at y50. ~2.11!

Here we chooseh521 and preserve only one superchar
Q2Q̄. Hence, it is called sometimes asN51/2 supersym-
metry.

The stress tensorT and the supercurrentG are given by

T52
1

2
@~]f!21c]c#1

1

2
Q̂]2f, G5 i ~c]f2Q̂]c!,

~2.12!

whereQ̂ is the background charge. By using the equations
motion, one can easily show that the conservation laws]̄T

5]T̄5 ]̄G5]Ḡ50 are satisfied at the classical level wi

Q̂51/b.
Using the bulk equations of motion,
7-2
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]]̄f5pmb3~ icc̄1pmebf!ebf,

]̄c52p imb2c̄ebf, ]c̄5p imb2cebf, ~2.13!

and the boundary equations of motion,

]yf54p
] f

]f
a~c1c̄ !24p

]B

]f
,

c2c̄524p i f a, ]xa5 f ~c1c̄ !, ~2.14!

we obtain

G2Ḡ52pS f 2
2

b

] f

]f D ]xfa

1pS 2
2

f

]B

]f
2

4

b
f 1mbebf

1

f D ]xa. ~2.15!

Here we eliminatedc,c̄ assumingf is not zero.
The conditionG2Ḡ50 can be satisfied by the followin

f andB:

f 5mBebf/2, B5S 2
2

b2
mB

21
1

2
m D ebf, ~2.16!

wheremB is the boundary cosmological constant. One c
show similarly thatT2T̄50 can be also satisfied. One ca
easily check that the boundary action~2.9! with ~2.6! in
terms of the superfields is indeed the same as Eqs.~2.10!
with ~2.16!. Therefore, this action preserves not only boun
ary N51 supersymmetry but also conformal symmetry.

So far, we have considered only the classical equation
motion. Even at this level, the boundary action has b
determined uniquely. We can consider quantum correcti
in a similar approach. For this, we interpretebf in Eqs.
~2.13! as the normal-ordered exponential :ebf:. The fields in
the stress tensor and the supercurrent in Eq.~2.12! should be
also normal ordered. With this change, we obtain

]̄T5pmb2~11b22Q̂b!@pm]~ :ebf: !2

1 icc̄]:ebf:2 i c̄]c:ebf:#. ~2.17!

The conservation law]̄T50 ~and others! can be satisfied
when the background charge is renormalized toQ̂51/b
1b. We will show in Appendix B that the boundary supe
conformal symmetryT2T̄50 and G2Ḡ50 is also pre-
served at the quantum level with thisQ̂.

III. BOUNDARY NÄ2 SUPER-LIOUVILLE THEORY

In this section, we use previous method to derive the
perconformal boundary action of theN52 SLFT.
02600
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A. Superfield formulation

The action of theN52 SLFT is given by

S5E d2zF 1

pE d4uF1F21S imE d2u1ebF1
1c.c.D G ,

~3.1!
whereF6 are the chiral superfields which satisfy

D7F65D̄7F650. ~3.2!

Therefore,F6 can be expanded as

F65f6~y6,ȳ6!1 iu6c7~y6,ȳ6!2 i ū6c̄7~y6,ȳ6!

1 iu6ū6F6~y6,ȳ6!, ~3.3!

wherey65z1 1
2 u6u7 and ȳ65 z̄1 1

2 ū6ū7. ~See Appendix
A 2 for conventions.! The action can be written in terms o
the component fields as

S5E d2zF 1

2p
~]f2]̄f11]f1]̄f21c2]̄c1

1c1]̄c21c̄2]c̄11c̄1]c̄2!1 imb2c2c̄2ebf1

1 imb2c1c̄1ebf2
1pm2b2eb(f11f2)G . ~3.4!

Now we consider boundary conditions in theN52 SLFT on
the lower half-plane. The action can be written as

S5E
2`

`

dxE
2`

0

dyF E d4uK~F1,F2!

1E d2u1W1~F1!2E d2u2W2~F2!G
5SK1SW , ~3.5!

where K(F1,F2) is a Kähler potential andW6(F6) are
superpotentials. Consider first the case where only the Ka¨hler
potential term exists@22#. The supersymmetric variation o
SK is

dSK5E
2`

`

dxE
2`

0

dyE d4u~z1Q11 z̄1Q̄11z2Q2

1 z̄2Q̄2!K~F1,F2!

5
i

4E2`

`

dx~z1Kuu1ū1ū21 z̄1Kuu1ū1u2

1z2Ku ū1u2ū21 z̄2Kuu1u2ū2!uy50 . ~3.6!

We can cancel Eq.~3.6! by adding two types of boundar
actions

SBK5
i

4E2`

`

dx~eibKu ū1u11e2 ibKu ū2u2! ~3.7!
7-3
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and

SBK5
i

4E2`

`

dx~eibKuu1ū21e2 ibKuu2ū1!, ~3.8!

whereeib is an arbitrary phase. In the first case, the sup
symmetry variation of SK1SBK vanishes when z̄6

5e6 ibz7. The conserved supercharges areQ11e2 ibQ̄2

andQ21eibQ̄1 . This leads to a condition on the supercu
rents:G61e7 ibḠ750 at y50. This case is called A-type
boundary conditions@23#. The second case isz̄65e7 ibz6

where conserved supercharges areQ11e2 ibQ̄1 and Q2

1eibQ̄2 . Associated boundary conditions on the superc
rents will be called B-type boundary condition:G6

1e7 ibḠ650 at y50. In this paper, we will considereib

521 for simplicity.
With nonvanishing superpotentialW6, the supersymmet

ric variation becomes

dSW5
1

2E2`

`

dxF ~ z̄2c22z2c̄2!
]W1

]f1

1~z1c̄12 z̄1c1!
]W2

]f2 G . ~3.9!

We classify the boundary conditions into two classes follo
ing @15,22#.

1. A-type boundary condition

We setz̄652z7 in Eq. ~3.9! and assume that the ferm
ons satisfy the condition

c62c̄7uy5050. ~3.10!

The boundary conditions for the bosons are given by

]x~f12f2!50, ]y~f11f2!50. ~3.11!

If the superpotentialsW6 satisfy

]W1

]f1
2

]W2

]f2 U
y50

50, ~3.12!

dSW50 can be achieved.

2. B-type boundary condition

If z̄652z6, Eq. ~3.9! becomes

dSW5
1

2E2`

`

dxF2z2~c21c̄2!
]W1

]f1

1z1~c11c̄1!
]W2

]f2 G . ~3.13!

This vanishes for two types of boundary conditions.
~i! Dirichlet boundary conditions
02600
r-

r-

-

c61c̄6uy5050, ]xf
6uy5050. ~3.14!

~ii ! Neumann boundary conditions

c62c̄6uy5050, ]yf
6uy5050. ~3.15!

While no additional condition is needed for~i!, the additional
conditions

]W6

]f6 U
y50

50 ~3.16!

are necessary for case~ii !. To avoid this unphysical situation
one must add an additional boundary term

SBW5
i

2
hE

2`

`

dx~W12W2!U
u65 ū650

. ~3.17!

The variation of this term cancelsdSW in Eq. ~3.13! if z2

1hz150 is satisfied. This leads to the boundary conditio
for f6:

]yf
672p ih

]W7

]f7 U
y50

50. ~3.18!

Therefore, onlyN51 supersymmetry is preserved.

B. Boundary action of NÄ2 super-Liouville theory

Here we construct the boundary action with a B-ty
boundary condition which preservesN52 superconformal
invariance. We start with

SB5E
2`

`

dxF2
i

4p
~c̄1c21c̄2c1!1

1

2
a2]xa

1

2
1

2
~ f 1~f1!a11 f̃ 1~f1!a2!~c21c̄2!

2
1

2
~ f 2~f2!a21 f̃ 2~f2!a1!~c11c̄1!

1B~f1,f2!G , ~3.19!

wherea6 are complex fermionic boundary degrees of fre
dom, which anticommute withc6 and c̄6. The boundary
action of the form~3.19! was first proposed in the context o
theN52 supersymmetric sine-Gordon model@19#. f 6(f6),
f̃ 6(f6), and B(f1,f2) are functions off6 to be deter-
mined by the boundary conditions.

The stress tensorT, the supercurrentG6, and theU(1)
currentJ are given by

T52]f2]f12
1

2
~c2]c11c1]c2!

1
1

2
Q̂~]2f11]2f2!, ~3.20!
7-4
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G65A2i ~c6]f62Q̂]c6!, ~3.21!

J52c2c11Q̂~]f12]f2!, ~3.22!

whereQ̂ is the background charge.
One can show that the conservation laws]̄T5]T̄5 ]̄G6

5]Ḡ65 ]̄J5] J̄50 are satisfied at the classical level wh
Q̂51/b in the same way as theN51 case. One major dif-
ference for theN52 SLFT is thatQ̂ has no quantum correc
tion. The above conservation laws hold at the quantum le
with Q̂51/b due to :ebf1

::ebf2
ª:ebf2

::ebf1
:. This

means that a classical level computation is sufficient for
consideration. Also, without the correction, dual symme
b→1/b disappears. The lack of dual symmetry makes
much harder to solve even bulkN52 SLFT @24#.

To preserveN52 superconformal symmetry, we impos
the following boundary conditions on the conserved curre

T5T̄, G65Ḡ6, J5 J̄ at y50. ~3.23!
y

02600
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r
y
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s:

Substituting the bulk equations of motion,

]]̄f65pmb3~ ic6c̄61pmebf6
!ebf7

,

]̄c652p imb2c̄7ebf6
,

]c̄65p imb2c7ebf6
, ~3.24!

and the boundary equations of motion,

]yf
652pS ] f 7

]f7
a71

] f̃ 7

]f7
a6D ~c61c̄6!24p

]B

]f7
,

c62c̄6522p i ~ f 6a61 f̃ 6a7!,

]xa
65 f 7~c61c̄6!1 f̃ 6~c71c̄7!, ~3.25!

into G62Ḡ6 and eliminatingc6 and c̄6, we obtain
G62Ḡ65pS f 62
2

b

] f 6

]f6D ]xf
6a61pS f̃ 62

2

b

] f̃ 6

]f6D ]xf
6a71pS 2

2 f 6

f 6 f 72 f̃ 6 f̃ 7

]B

]f7
2

2

b
f 6

2
mb f̃7

f 6 f 72 f̃ 6 f̃ 7
ebf6D ]xa

61pS 2 f̃ 6

f 6 f 72 f̃ 6 f̃ 7

]B

]f7
2

2

b
f̃ 61

mb f7

f 6 f 72 f̃ 6 f̃ 7
ebf6D ]xa

7. ~3.26!
y by

ves
The conditionG62Ḡ650 determinesf 6, f̃ 6, and B as
follows:

f 65C6ebf6/2, f̃ 65C̃6ebf6/2, ~3.27!

B52
2

b2
~C1C21C̃1C̃2!eb(f11f2)/2, ~3.28!

where C6 and C̃6 are complex constants which obe
C6C̃65mb2/4.

We next consider the stress tensor. Eliminatinga6 from
Eq. ~3.25! and using Eq.~3.27! and ~3.28!, we obtain

]yf
65 i

b

2
~c72c̄7!~c61c̄6!

1
4p

b
~C1C21C̃1C̃2!eb(f11f2)/2, ~3.29!

]xc
62]xc̄

65
b

2
]xf

6~c62c̄6!

22p i ~C1C21C̃1C̃2!eb(f11f2)/2

3~c61c̄6!24p iC6C̃6ebf6
~c71c̄7!.

~3.30!
Substituting the above equations intoT2T̄ and J2 J̄, one
can show that our solution satisfies bothT5T̄ andJ5 J̄.

We have obtained the boundary action~3.19! with Eqs.
~3.27! and~3.28!. Moreover, we impose the invariance ofLB
under complex conjugation. This invariance impliesC1

5(C2)* andC6 can be written asC65mBe6 ia, wherea is
a real parameter. This phase factor can be gauged awa
redefining the fermionic zero modesa6→e7 iaa6. There-
fore, the final form of the boundary action is

SB5E
2`

`

dxF2
i

4p
~c̄1c21c̄2c1!1

1

2
a2]xa

1

2
1

2
ebf1/2S mBa11

mb2

4mB
a2D ~c21c̄2!

2
1

2
ebf2/2S mBa21

mb2

4mB
a1D ~c11c̄1!

2
2

b2 S mB
21

m2b4

16mB
2 D eb(f11f2)/2G . ~3.31!

This is the main result of this paper. This action preser
two conserved superchargesQ12Q̄1 andQ22Q̄2 .
7-5
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We can rewrite this boundary action in terms of bound
superfields. Defining supertranslation operatorsDt65D6

2D̄6 , which satisfy

$Dt1 ,Dt2%5]x , Dt1
2 5Dt2

2 50, ~3.32!

and their conjugate coordinatesu t
65(u62 ū6)/2, we intro-

duce fermionic boundary chiral superfieldsG6:
ve
d
f
is

d
as

th
m
io
n
e
he

a

e
lu
i

n
e

nd
p
N

02600
y Dt7G650. ~3.33!

The boundary superfieldsG6 can be expanded as

G65a6~x6!1 iu t
6h6~x6!, ~3.34!

where x65x1 1
2 u t

6u t
7 . In terms of these superfields, th

boundary action can be written as
SB5E
2`

`

dxH 2
i

4p
~F1F2uu1ū21F1F2uu2ū1!2

1

2
m~ebF1

1ebF2
!U

u65 ū650

1
1

2E du t
1du t

2G1G22F i

bE du t
1S mBG1ebF1/21

mb2

4mB
~G2ebF1/22G1ebF2/2! D U

u
t
250

1c.c.G . ~3.35!
When the terms including the superfieldsG6 do not exist,
Eq. ~3.35! reduces to the boundary action which preser
only N51 supersymmetry under Neumann boundary con
tions. In this case theN52 supersymmetry transformation o
the actionS1SB has a nonvanishing surface term which
canceled by those of the terms includingG6.

IV. DISCUSSION

Our result contains one boundary parametermB which
generates a continuous family of conformal boundary con
tions. One remarkable result is that the boundary action h
dual symmetry

mB→ mb2

4mB
. ~4.1!

This means that two conformal boundary conditions of
N52 SLFT can be identified. To understand the further i
plications of this, we need to derive some exact correlat
functions such as boundary one-point functions. Our bou
ary action is a first step toward this. It is possible to deriv
functional relation for the one-point functions using t
boundary action as a screening boundary operator. The m
difficulty arises, as in the bulk case@24#, from the lack of
coupling constant duality. In a recent paper@25#, the one-
point functions for theN52 SLFT are conjectured from th
modular transformations of the characters for a special va
of the coupling constant. It would be interesting to see
these one-point functions are consistent with the functio
relations based on our boundary action and to derive th
for arbitrary values of the coupling constant.
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APPENDIX A: CONVENTIONS

In this appendix we present our conventions forN51,2
supersymmetries.

1. NÄ1 supersymmetry

We use (1,1) superspace with bosonic coordinatesz, z̄ and
fermionic coordinatesu, ū. Here we definez5x1 iy , z̄5x

2 iy and ]5(]x2 i ]y)/2, ]̄5(]x1 i ]y)/2. The integration
measure is*d2zd2u5*dxdydudū. The covariant deriva-
tives are given by

D5
]

]u
1u], D̄5

]

]ū
1 ū ]̄, ~A1!

which satisfy

$D,D%52], $D̄,D̄%52]̄, $D,D̄%50. ~A2!

The supercharges

Q5
]

]u
2u], Q̄5

]

]ū
2 ū ]̄ ~A3!

satisfy

$Q,Q%522], $Q̄,Q̄%522]̄, $Q,Q̄%50, ~A4!

and anticommute withD, D̄.

2. NÄ2 supersymmetry

We use (2,2) superspace with bosonic coordinatesz, z̄ and
fermionic onesu1, ū1, u2, ū2. Complex conjugation of
fermionic coordinates is defined by (u6)* 5 ū7. The cova-
riant derivatives
7-6
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D65
]

]u6
1

1

2
u7], D̄65

]

]ū6
1

1

2
ū7]̄ ~A5!

satisfy

$D1 ,D2%5], $D̄1 ,D̄2%5 ]̄,

all other~anti!commutators50. ~A6!

The supercharges are given by

Q65
]

]u6
2

1

2
u7], Q̄65

]

]ū6
2

1

2
ū7]̄, ~A7!

which obey

$Q1 ,Q2%52], $Q̄1 ,Q̄2%52 ]̄,

all other~anti!commutators50, ~A8!

and anticommute withD6 , D̄6 . Chiral superfieldsF i
6 sat-

isfy D7F i
65D̄7F i

650. An N52 supersymmetric action i
constructed fromD terms andF terms1 and is written as

S5E d2zd4uK~F i
1 ,F i

2!1S E d2zd2u1W1~F i
1!1c.c.D ,

~A9!

whereK(F i
1 ,F i

2) is an arbitrary differentiable function o
superfields andW1(F i

1) is a holomorphic function of chira
superfieldsF i

1 . The integration measures in Eq.~A9! are
defined by

E d2zd4uK~F i
1 ,F i

2!5E dxdydu1dū1du2dū2

3K~F i
1 ,F i

2!, ~A10!

E d2zd2u1W1~F i
1!5E dxdydu1dū1

3W1~F i
1!uu25 ū250 .

~A11!

APPENDIX B: QUANTUM CORRECTIONS OF THE NÄ1
BOUNDARY SUPERSYMMETRY

In this appendix we show how the classical boundary
tion ~2.10! with Eqs.~2.16! is modified at the quantum leve
At the quantum level, we replaceeaf with the normal-
ordered exponential :eaf:. Therefore, we cannot eliminat
c,c̄ from G,Ḡ becausef 21 may not be well defined. There
fore, we need to keep the fermionic fields. Then, Eq.~2.15!
becomes

1One can also consider twistedF terms which we do not mention
here.
02600
-

G2Ḡ52p f a]xf12p~c1c̄ !
] f

]f
a~c1c̄ !

22p~c1c̄ !
]B

]f
24pQ]xf a24pQ f2~c1c̄ !

1Qpmb2~c1c̄ !L22b2
~ :ebf/2: !2, ~B1!

whereL is a cutoff scale andf 5mB :ebf/2:.
The first and second terms on the right-hand side of

~B1! can be dealt with the point-splitting technique dev
oped in@26#. The first term can be calculated as

f a]xf5
mB

2
lim

x1→x2

@ :ebf(x1)/2:a~x1!]xf~x2!1~x1↔x2!#

5mB :ebf/2]xf:a1b lim
x1→x2

1

x12x2

3@ f ~x1!a~x1!2 f ~x2!a~x2!#

5
2

b
]xf a1b]xf a1b f2~c1c̄ !, ~B2!

where we used Eq.~2.14!. Similarly the second term be
comes

~c1c̄ ! f a~c1c̄ !52]xf a12 f 2~c1c̄ !. ~B3!

This leads to

G2Ḡ5p~c1c̄ !F S 2
4

b
mB

21Q̂mb2L22b2D ~ :ebf/2: !2

22
]B

]fG , ~B4!

where we usedQ̂51/b1b. The conditionG2Ḡ50 gives

B5S 2
2

b2
mB

21
1

2
Q̂bmL22b2D ~ :ebf/2: !2. ~B5!

Compared with the classical result~2.16!, B gets the quan-
tum correction.

The conditionT2T̄50 can be also satisfied in this wa
Substituting Eqs.~2.13! and ~2.14! into T2T̄, we obtain

T2T̄5p i @2]xf a~c1c̄ !2]x„f a~c1c̄ !…#

1
1

2
~ c̄]xc̄2c]xc!. ~B6!

Using Eq.~2.14! for c and c̄, one can show that Eq.~B6!
vanishes. Therefore, the boundary action~2.10! along with f
andB given above preserves boundary conformal symme
up to the quantum level.
7-7
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