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Boundary action of N=2 super-Liouville theory
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We derive a boundary action df=2 super-Liouville theory which preserves bdils 2 supersymmetry and
conformal symmetry by imposing explicittf =T and G=G. The resulting boundary action shows a new
duality symmetry.
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I. INTRODUCTION the pseudosphere—has been maddli@]. For the N=1
SLFT, the one-point functions and the boundary two-point
Two-dimensional Liouville field theoryLFT) has been functions have been obtained[ih3,14] based on the conjec-
studied actively for its relevance to noncritical string theoriestured boundary action. It is desirable to show that indeed this
and two-dimensional quantum gravitg,2]. This theory has action preserves both supersymmetry and conformal symme-
been extended to the supersymmetric Liouville field theoried""
(SLFTS) whiph can describe the noncritical supe'rstring.theo—: 1,2 SLFTs by imposing the symmetries. This approach to
ries. In particular, thiN=2 SLFT has been studied actively obtain the boundary actions has been made beforE5h
because the world sheet supersymmetry can generate spaggsed on a superfield formulation, the=2 supersymmetric
time supersymmetry. In addition to applications to stringpoundary action has been derived for a genbral2 super-
theories, these models provide theoretically challengingymmetric quantum field theory. For integrable quantum
problems. The Liouville theory and its supersymmetric genield theories with infinite conserved charges, the situation
eralizations are irrational conformal field theori€SFT9 becomes much more complicated. As shown in a pioneering
which have a continuously infinite number of primary fields. work [16], the boundary action which preserves the integra-
Because of this property, most CFT formalisms developedility can be fixed by imposing a first few conservation laws.
for rational CFTs do not apply to this class of model. AnFor the supersymmetric integrable models, the two
interesting problem is to extend the conventional CFT for-conditions—the supersymmetry and integrability—have

malism to irrational CFTs. There has been a lot of progress iIL?een successfully imposed to get appropriate boundary ac-

S . . fions [17-19. We continue this approach to thg=1,2
this field. Various methods hfave bee_n propose_d 0 derlV%LFTS and impose the boundary superconformal invariance
structure constants and reflection amplitudes, which are ba

. Stonditions to derive the boundary actions. We will show that
building blocks to complete the conformal bootsti@-5].  gyen at the classical level, the boundary actions are deter-
These have been extended to the 1 SLFT in[6,7]. mined uniquely.

A more challenging problem is to extend these formalisms  This paper is organized as follows. In Sec. Il we review a
to the CFTs defined in the two-dimensional space-time gesyperfield formulation of theéN=1 SLFT boundary action
ometry with a boundary conditioBC) which preserves the proposed previously. Then, we show that this action satisfies
conformal symmetry. Cardy showed that the conformally in-the superconformal invariance. Our main result—the super-
variant BCs can be associated with the primary fields inconformally invariant boundary action of theN=2
terms of modulaiS-matrix elements for the case of rational 5| FT__is derived in Sec. 1II. After repeating the superfield

CFTs|[8]. It has been an issue whether the Cardy forma”S”TormuIation, we derive the boundary action by imposMg
can be extended to the irrational CFTs. There are active ef= superconformal symmetry. We conclude in Sec. IV with

forts to understand Fhe confo.rmally invariant boundary stateg fe\w discussions and provide technical details in the Appen-
in the context of string theories related to D-brap@4.0]. dixes.

Important progress in this direction was made [ir]
where the functional relation method developed4h was 1. BOUNDARY N=1 SUPER-LIOUVILLE THEORY
used in the boundary LFT. With a boundary action which ) ] ) ] )
preserves conformal symmetry, a one-point function of a In this section, we review a superﬁelq formulation of the
bulk operator in the presence of the boundary interaction anBoundary action of theN=1 SLFT which preserves the
two-point correlation functions of boundary operators have?oundaryN=1 supersymmetry. Then, we will show that the
been computed using the functional relation methad].  Same result can be obtained by imposing directly fthel
Here the conformal BC is denoted by a continuous parametéiuperconformal symmetry.
appearing in the boundary action. A similar treatment of the
LFT defined in the classical Lobachevskiy plane—namely,

In this paper we derive the boundary actions of the

A. Superfield formulation of the N=1 boundary action
The action of theN=1 SLFT is given by[20]
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where® is a real scalar superfield: (i) Neumann boundary conditiorﬁn®|y:gn:0=0: For

) —_— theN=1 SLFT, these give
O=p+i0y—ioy+iooF. (2.2

" = — b =
(See Appendix A1 for our conventions of tiN=1 super- Yt mdly-0=0, dyp=2pmubey_o=0. (2.8
symmetry) This theory contains a dimensionless Liouville g6 poundary conditions correspond to the supersymmet-
coupling constanb and the cosmological constant Note fic version of the FZZT branfl1,2]]
that we consider a trivial background and omit a linear dila- |, [10], it is shown that one cém édd an additional term to

ton coupling. We can express the action in terms of the comg, boundary action
ponent fields,

_ 2
S fdz2

1 (> 4
iﬂ_(ﬁd)?qﬁ-l-zﬁ?t/ﬂ—@&l)-i-l,ubzdlaeb”ﬁ SB:—Ef_def det(FDtF‘l‘ BI,LLBFeb(blz , (29)

with a fermionic boundary superfieldl=a+i6;h. In fact,
: (2.3 this boundary action is equivalent to that considered previ-
ously in[13,14. We will show in the next subsection that
this action indeed preserves the boundary superconformal
symmetry.

+ %W}LzbZGZbd)

by integrating over the and 6 coordinates in Eq(2.1) and
eliminating the auxiliary field= from its equation of motion.
To introduce the boundary action, we consider first a gen-

eral N=1 supersymmetric theory on the lower half-plane: B. Boundary superconformal symmetry
—oo<x=Rez<w, —o<y=Imz=0. Following [10], we To derive a boundary action which preserves btk 1
can write the action as follows: supersymmetry and conformal symmetry, we start with a

. 0 general form of boundary action
Szf dxf dyf d?ec, (2.9 . P

o ss=f -+ sasa—f(¢)aly+y)+B(4)|,
whereL is the Lagrangian density in superspace. The super- (2.10
symmetry variation of the action is

dx

. 0 where a is a real fermionic boundary degree of freedom
55:j dxf dyf d260(£Q+(Q)L which anticommutes withy and . The boundary action
- — (2.10 was first proposed in the boundaN~=1 supersym-
. metric sine-Gordon moddl18]. f(¢) and B(¢) are func-
=— _f dX(LLIG+ L] p)]y=o- (2.5  tions of the scalar field) to be determined by the boundary
2) - conditions which preservid=1 supersymmetry. The fermi-
onic boundary degree of freedomwas first introduced in
the Ising model in a boundary magnetic fi¢lb] and in the
i . N=1 SLFT with appropriate kinetic terfri4].
Ss== nf dXL|g—pe0, =71, (2.6) The boundaryN=1 superconformal symmetry imposes
27 )-w the following constraints on the stress tensor and supercur-
rent:

To cancel the surface ter(2.5), we add a boundary action

which is defined ay=0. When{= WZ the supersymmetry
variation of the total action vanishe8S+ 6Sg=0. Only one T=T, G=G at y=0. (2.11)

superchargeQ+ 776 is preserved. Conservation of this
charge imposes the boundary condition on the supercurrentiere we choosey=—1 and preserve only one supercharge

G+ 7G=0 aty=0. The superderivatives in the tangential Q—Q. Hence, it is called sometimes &bk=1/2 supersym-
and normal directions are given Hy,=D+ 7D and D,  Mey. _
=D-— 7]5, respectively. Their conjugate coordinates &fe The stress tensof and the supercurrei@ are given by
=(6+ 76)/2 and6,= (60— n6)/2. 1 1. A

For the total variation o8+ Sg to vanish, two types of ~ T=— E[(<9¢)2+ ]+ §Q<92¢>1 G=i(ydp—Qay),

boundary conditions can be imposed. (2.12
(i) Dirichlet boundary conditionsDtd>|y:0n:0=0: For
theN=1 SLFT, this corresponds to whereQ is the background charge. By using the equations of

motion, one can easily show that the conservation laws

Y= 1ily=0=0. dxly-0=0. @7 =3T=0G=0G=0 are satisfied at the classical level with
These conditions can be identified with the supersymmetri€Q= 1/b.
version of the ZZ brangl2-14 Using the bulk equations of motion,
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(9345: ’7T,LLb3(i ¢J+ WMebqb)ebqb A. Superfield formulation
The action of theN=2 SLFT is given by
Y= — i ub2ye®?, Jy=miub2ye®®,  (2.13
S= f d?z

1
;J d*ed T d+ ('“f d20+eb‘1’*+c.c.)

and the boundary equations of motion,

3.1
of — B whered* are the chiral superfields which satisfy
dyp=4m—a(y+i)—4m—,
a(ls (9¢ + -~ +
D:®-=D.®~=0. (3.2
y—y=—4mifa, da=f(y+y), (2.14  Therefore®™* can be expanded as
we obtain D= (y Y ) IO Y )0 (YY)
_ 2 of +iOTOTF Ty yT), (3.3
G—G=2w(f—5— dypa B -
I wherey*=z+3676" andy“=z+36~60". (See Appendix
2B 4 1 A2 for conventions. The action can be written in terms of
tml - f+ube??—|oa. (2.15  the component fields as
fop b f
1 — _ _
— _ 25 _— 4+ + - =t
Here we eIiminatedb,_z,b assuming is not zero. S_J d°z 27(’9‘1’ 0"+ o+
The conditionG— G=0 can be satisfied by the following — - — = — N
f andB: HYT O YT YT oY) Hinb?y Ty e’
5 1 +ipb2yt Yyt eP? + mpulh2eb(@T o) | (3.4
f=puge®?, B= —E,u,é-i- K eb?, (2.19

Now we consider boundary conditions in tNe=2 SLFT on

where ug is the boundary cosmological constant. One canthe lower half-plane. The action can be written as

show similarly thatT—T=0 can be also satisfied. One can o 0
easily check that the boundary acti¢®.9) with (2.6) in S= f_wdxf_xdy
terms of the superfields is indeed the same as Ej40

fd“aK(cb*,qr)

with (2.16). Therefore, this action preserves not only bound-
ary N=1 supersymmetry but also conformal symmetry. +f d20+W+(d>+)—f dZG_W_(q’_)}
So far, we have considered only the classical equations of
motion. Even at this level, the boundary action has been =S+ Sy, (3.5

determined uniquely. We can consider quantum corrections

in a similar approach. For this, we interpret? in Eqs. whereK(®*,®7) is a Kzler potential andV*(d*) are
(2.13 as the normal-ordered exponentieP4:. The fields in  superpotentials. Consider first the case where only thedta
the stress tensor and the supercurrent in(Edq.2) should be  potential term exist$22]. The supersymmetric variation of

also normal ordered. With this change, we obtain Sk is
T 2 2_ A YRy ” 0 4ot —=
IT=mub™(1+b"—Qb)[mud(:e>’:) 6S=| dx| dy| d*6(("Q,+¢{" Q. +{ Q.
+igpo:eP?: —igay.e®?:]. (2.17

+{ QK(®T, ")

The conservation lawT=0 (and others can be satisfied

when the background charge is renormalized Qe 1/b =2 AX(E K| gegra+ K] gr g o
+b. We will show in Appendix B that the boundary super- w7
conformal symmetryT—T=0 and G—G=0 is also pre- +¢ K|+ Klgro-a-)ly—o- (3.6)

served at the quantum level with tHia
We can cancel Eq(3.6) by adding two types of boundary

actions
IIl. BOUNDARY N=2 SUPER-LIOUVILLE THEORY

. . . . i[> : .
In this section, we use previous method to derive the su- SBK:_J dx(€'PK |5+ g+ +€ 1 PK| 5 5-) 3.7)
perconformal boundary action of ti¢=2 SLFT. 4) -«

026007-3



C. AHN AND M. YAMAMOTO PHYSICAL REVIEW D 69, 026007 (2004

and PP ly0=0, 5 ly0=0. (314
SBK:iZJw dx(eiﬁK|0+§_+e—iBK|9_;+)' (3.9 (i) Neumann boundary conditions
U= ly=0=0, dy*|y—o=0. (3.19

wheree'? is an arbitrary phase. In the first case, the super-

symmetry variation of S¢+Ssx vanishes Whenzi While no additional condition is needed f@y, the additional

=e"B/7. The conserved supercharges &g +e 'AQ_ conditions

andQ_+ eiﬁa+ . This leads to a condition on the supercur- IW=
rents:G*+e"'AG*=0 aty=0. This case is called A-type IYE
boundary condition§23]. The second case is-=e*'A;*
where conserved supercharges @e+e '’Q. and Q_  are necessary for ca&é). To avoid this unphysical situation,

+e'#Q_ . Associated boundary conditions on the supercurone must add an additional boundary term
rents will be called B-type boundary conditionG™*

=0 (3.1
y=0

+eI‘B§ifO aty=0. In this paper, we will considee'? SBW:'EWJOC dx(WH—W") (3.17
= —1 for simplicity. —o 0t 0
With nonvanishing superpotenti#¥/=, the supersymmet-
ric variation becomes The variation of this term cancel8S,, in Eq. (3.13 if ¢~
+ n¢* =0 is satisfied. This leads to the boundary conditions
55 1 (= X (T v g_J_)ﬁw+ for ¢
= — X ol —
2) -« v ™ . OW*
Ay~ F2min—— =0. (3.18
- ap" | _
T, W y=0
Y=Y ) | (3.9 .
d¢ Therefore, onlyN=1 supersymmetry is preserved.
?/r\]/g [cllgs;lafy the boundary conditions into two classes follow- B. Boundary action of N=2 super-Liouville theory

Here we construct the boundary action with a B-type
1. A-type boundary condition boundary condition which preservé$é=2 superconformal

We set{*=—¢* in Eq. (3.9 and assume that the fermi- invariance. We start with

ons satisfy the condition % i _ 1
_ SB:f dx —E(l/f+'lf+¢7l/f+)+§afﬁxa+
v = ly=0=0. (3.10 o
The boundary conditions for the bosons are given by - %(f*(qﬁ*)a+ T (pHa )y +y)
I(p"—¢7)=0, d(d"+¢ )=0. (3.1) 1
If the superpotentialsV* satisfy — 5t (¢)a +17(dT)a")(y" +y7)
AW GW~
————| =0 (3.12 +B(¢", 7)), (3.19
AT R
5S,=0 can be achieved. whereat. are cqmplex fermignici boungritry degrees of free-
dom, which anticommute withy~ and ¢~. The boundary
2. B-type boundary condition action of the form(3.19 was first proposed in the context of

the N=2 supersymmetric sine-Gordon modi&®]. f=(4*),

T*(¢™), andB(¢",¢ ") are functions ofp* to be deter-
mined by the boundary conditions.

If £*=—¢*, Eq. (3.9 becomes

. +
5Sw:£ dx _((WJFE*)(?W The stress tensoF, the supercurrenG™, and theU(1)
2 + .
—o d¢ currentJ are given by
+t ot W _ - + 1 + + 90—
HEWTH (3.13 T=—0¢"9¢" =5 " +y oy")

This vanishes for two types of boundary conditions.

1.
- 2+ 24—
(i) Dirichlet boundary conditions * 2Q((9 ¢ e, (320
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G*= \Ei(wiaqsi—(gmﬁ) (3.21) Substituting the bulk equations of motion,
I=—y pt + QI —ae ), (322 00¢% = mub* (g + mue)en
whereQ is the background charge. Pt = — i ub?yT e
One can s@w that the conservation la#ls= gT=9G™ -
=9G =0J=9J=0 are satisfied at the classical level when ™ =miub?yTe? (3.249

Q=1 in the same way as thi=1 case. One major dif-

ference for theN\=2 SLFT is thatQ has no quantum correc-
tion. The above conservation laws hold at the quantum level
with Q=1b due to &P ::eP :=:eP? ::eP": This P ¢t:277(
means that a classical level computation is sufficient for our
consideration. Also, without the correction, dual symmetry
b—1/b disappears. The lack of dual symmetry makes th_Zt:_zﬂ_i(ftat +¥ra"),
much harder to solve even butk=2 SLFT[24].

To preserveN=2 superconformal symmetry, we impose e p—
the following boundary conditions on the conserved currents: 9@ = = +y)+i7 (7 +y7), (329

and the boundary equations of motion,

ot _  oft |
a"+——a-

I ddp*

:+_:)_4£
(9" +g7)=dm =,

T=T, G*=G*, J=J at y=0. (3.23 into G*—G™* and eliminatingy™ and 4", we obtain

G-t x 2 gf* 5tat 4 a2 2 of* sta 2f* B 2.
—GT=m{ T — = attm| T — - “at+mw| — — = —— 1"
b opr| b o) T 9™ D
bf+ . 2t B 2. bf*
- — ® ——e" gatt T —— e ——— T+ — il ——e? |ga” (3.26
i R et e f5f7—FF7 99 D i R et

The conditionG*—G*=0 determinesf*, T*, andB as  Substituting the above equations iffe-T and J—J, one

follows: can show that our solution satisfies bdts T andJ=1J.
t + We have obtained the boundary actith19 with Egs.
*_(rabdT2 Fr_@ o beTi2 k ; ;
fr=Ce’® % f==C"e> (329 (3.27) and(3.28. Moreover, we impose the invariance 0§
5 under complex conjugation. This invariance impli€s’
B=— S (CTC +C C)eb# +o7) @28 =(C)* andC™ can be written a€~ = uge™'*, wherea is
b? ' a real parameter. This phase factor can be gauged away by

. . . redefining the fermionic zero modes™ —e*'*a™. There-
where C= and C~ are complex constants which obey fore, the final form of the boundary action is

C*C* = ub?4.

We next consider the stress tensor. Eliminatig from . i 1
Eq. (3.295 and using Eq(3.27 and(3.28), we obtain :f e (Ut Y a9 ot
) Sk %dx 477(1// A/ )+2a dya
b= =i (T =)+ ) 2
2 1 + ub® T
—Eebd’ ? IUvBa++4_MBa (Y +4¢7)
4 -~ _
+ L (CTCTHTTT)E 02, (329 . b N
—Eeb(b ? pgd” + g —a’ (YY)
b MB
&xlpt_ﬁx‘pi:_ﬁxﬁbi(wt_'ﬁt) 214
2 2 b _
e A e CCAA R (3.3)
—27i(CTC™+CHC e #4712 b 160
X (Y= + ) —4mCTCTTE®? (Y + ). This is the main result of this paper. This action preserves

(3.30 two conserved supercharg@s — Q. andQ_—-Q_.
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We can rewrite this boundary action in terms of boundary D-I'*=0. (3.33
superfields. Defining supertranslation operat®rs. =D .
—~D., which satisfy The boundary superfields*™ can be expanded as

{D{; ,D\_}=0d,, D% =D2 =0, (3.32 f=a®(xT)+io h* (xF), (3.39

and their conjugate coordinatés = (6~ — 67)/2, we intro-  where x*=x+36; 67 . In terms of these superfields, the

duce fermionic boundary chiral superfielBls: boundary action can be written as
° i 1 _
So= | - (@70 | @ - (e )
— oo 47T 2 o
0 =0*=0
1 N + + b2 ub? bd T /2_ o+ abd /2
t3 do;de, ' — b do; | ugl' e +4_,U«B(F e -I'"e ) +c.c (3.39
6, =0
|
When the terms including the superfiells do not exist, APPENDIX A: CONVENTIONS

Eqg. (3.35 reduces to the boundary action which preserves : . .
- -~ In this appendix we present our conventions o 1,2

only N=1 supersymmetry under Neumann boundary condi- i

! : = . supersymmetries.

tions. In this case thBl=2 supersymmetry transformation of

the actionS+ Sz has a nonvanishing surface term which is

canceled by those of the terms includifig . 1.N=1 supersymmetry

We use (1,1) superspace with bosonic coordinatesnd
fermionic coordinate®), 6. Here we defing=x+iy, z=x

Our result contains one boundary parametgy which  —iy and d=(dx—id,)/2, 3=(ﬁx+ic9y)/2. The integration

generates a continuous family of conformal boundary condimeasure isfd?zd?6= fdxdydddé. The covariant deriva-
tions. One remarkable result is that the boundary action hastives are given by
dual symmetry

IV. DISCUSSION

d _ 9
b2 D=—+6d, D=—+ 69, (A1)
MB—>“—. 4.1 24 30
4up

. . which satis
This means that two conformal boundary conditions of the fy

N=2 SLFT can be identified. To understand the further im-
plications of this, we need to derive some exact correlation
functions such as boundary one-point functions. Our boun
ary action is a first step toward this. It is possible to derive
functional relation for the one-point functions using the

boundary action as a screening boundary operator. The main Q
difficulty arises, as in the bulk cag@4], from the lack of

coupling constant duality. In a recent pag@6], the one-

point functions for theN=2 SLFT are conjectured from the satisfy

modular transformations of the characters for a special value

of the coupling constant. It would be interesting to see if - 0O0l—_27 ol —

these one-point functions are consistent with the functional {Q.Q}=-20, {Q.Q}=~27, {Q.Q}=0. (A4)
relations based on our boundary action and to derive them . . -
for arbitrary values of the coupling constant. and anticommute wittD, D.

{D,D}=24, {D,D}=24, {D,D}=0. (A2)
(;"I'he supercharges

= 95, 0= L 95 A3
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J 1 — d 1 — — of —
Di=——+-679, Da=—+-60"0 (A5) G—G=27Tfa(9x¢>+277(w+t//)@a(wﬂ//)
6= 2 6= 2
. — JB _
satisfy —27(y+ )£—4wanfa—4Ter2(¢+ W)
e +Quub2(y+ A (P2 ), ®D)
all other(antijcommutators-0. A6
(ant) . (A6) whereA is a cutoff scale and= ug:e°#?.
The supercharges are given by The first and second terms on the right-hand side of Eq.

(B1) can be dealt with the point-splitting technique devel-
oped in[26]. The first term can be calculated as

fadyh= "2 lim [:eDP0V2 a(x,)dyb(Xp) + (X3 Xo)]
which obey X1— X

{Q:,Q_}=—4, {Q;.Q_}=—94,

=ug:e®?29, pra+b lim —
X1—Xp 1 2

X[f(xp)a(xy) —f(xz)a(xz)]

all other(anti)commutators-0, (A8)

and anticommute witiD . , D . Chiral superfieldsb;” sat-
isfy D-®; =D-®;”=0. AnN=2 supersymmetric action is

constructed fronD terms andF terms and is written as = Baxfa+bﬁ7xfa+bf2(‘/f+ ), (B2)
S:j d2zd* oK (. ,q>.—)+(J’ d2zd2 W (d)+c.cl, where we used Eq(2.14). Similarly the second term be-
Pt ' comes
(A9)
_ — 5 _
whereK (®;" ,®;") is an arbitrary differentiable function of (Yt ptaly+y)=20fa+2f%(y+4¢). (B3
superfields andv* (®;") is a holomorphic function of chiral This leads to
superfields®;" . The integration measures in E(A9) are
defined by B B 4 ,
B B G-G=m(¢y+¢) —B,u%JrQ,ubzA‘Zb )(:eb¢/2:)2
f dzzd“aK(CDr,(I)i‘):f dxdydd*detde deo-
JB
—2—]|, B4
XK(D; D)), (A10) a¢>} (B4)

j d22d20+W+(<I>i+)=J’ dxdyds*dg" where we use=1/b+b. The conditionG—G=0 gives
et — 2 5, 1. -2b2 bep/2.2
XWT (D) g~ =o- B= - ket 5QbuA (:eb¥2)2 (Bb)
(A11)
Compared with the classical resf.16), B gets the quan-
APPENDIX B: QUANTUM CORRECTIONS OF THE N=1 tum correction.
BOUNDARY SUPERSYMMETRY The conditionT—T=0 can be also satisfied in this way.

In this appendix we show how the classical boundary acSubstituting Eqs(2.13 and(2.14) into T—T, we obtain
tion (2.10 with Egs.(2.16) is modified at the quantum level.

At the quantum level, we replace®® with the normal- T-T=mi[20,fa(y+ ) — d(fa(y+ ¥))]
ordered exponentiale®?:. Therefore, we cannot eliminate

W, from G,G becausd ~* may not be well defined. There- + E(E(;XZ_ Pop). (B6)
fore, we need to keep the fermionic fields. Then, Eq15 2

becomes

Using Eq.(2.14 for ¢ and ¢, one can show that E¢B6)
vanishes. Therefore, the boundary acti@ril0 along withf

10ne can also consider twist&dterms which we do not mention andB given above preserves boundary conformal symmetry
here. up to the quantum level.
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