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Abstract. In this paper we compute the most general non-diagonal reflection matrices of the
RSOS/SOS models and the hard hexagon model using the boundary Yang-Baxter equations.
We find a new one-parameter family of the reflection matrices for the RSOS model in addition
to the previous result obtained in (Ahn C andd@ M 1996 Nucl. Phys.B 468 [FS] 461).

We also find three classes of the reflection matrices for the SOS model, which has one or two
free parameters. For the hard-hexagon model which can be mapped to the RSOS(5) model
by folding four RSOS heights into two, the solutions can be obtained similarly with a main
difference in the boundary unitarity conditions. Due to this, the reflection matrices can have
two free parameters. We show that these extra terms can be identified with the ‘decorated’
solutions. We also generalize the hard hexagon model by ‘folding’ the RSOS heights of the
general RSOS() model and show that they satisfy the integrability conditions such as the Yang—
Baxter and boundary Yang—Baxter equations. These models can be solved using the results for
the RSOS models.

1. Introduction

In the study of the two-dimensional integrable models of quantum field theories and
statistical models, the Yang—Baxter equation (YBE) plays an essential role in estabilishing
the integrability and solving the models. Recently much effort has been directed to
introducing boundaries into the integrable systems for possible application to condensed-
matter physics and statistical systems with non-periodic boundary conditions. The
boundaries entail new a physical quantity called reflection matrices which depend on the
boundary properties.

The boundary Yang—Baxter equation (BYBE) (also known as the reflection equation) [1]
is the necessary condition for integrable statistical models [2, 3] and quantum field
theories [4] with a boundary. The equation takes the form

R1(u)S12(u’ + u) Ro(u') S12(u’ — u) = S12(u’ — u) Ro(u') S12(u” + u) R1(u) (1.1)

where Ry(y is the boundary reflection matrix in the auxiliary spaa@)land Si» is the
solution to the YBE.

To date, several solutions of the BYBE have appeared in the literature. Compared
with the vertex-type models, however, far less is known about the solution in the face-type
model, such as the solid-on-solid (SOS) or restricted-solid-on-solid (RSOS) model. Among
these, most of the known solutions are ‘diagonal’ in the sense that the reflection matrices
are diagonal [5, 6]. Using these, one can find the partition functions in the infinite lattice
limit [7]. In addition, diagonal reflection matrices have recently been applied to interesting
phenomena like condensed-matter physics.
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Non-diagonal solutions show more non-trivial boundary scattering and may also be
useful for physical applications. Furthermore, one can find an explicit vertex—face
correspondence if one can classify non-diagonal solutions completely. In addition to those
found in [6], we will show that different classes of non-diagonal reflection matrices are
possible. These new solutions include one or two free parameters which are related to those
in the boundary potential. The explicit formulae between two sets of parameters are still
not clear. We hope our complete non-diagonal solutions for the SOS model may be related
explicitly with those of the boundary sine-Gordon model.

From a physical point of view, many interesting models are of face type: the RSOS/SOS
models, the hard-hexagon model (HHM), etc. These models play very important roles in
statistical mechanics systems and in quantum field theories such as the perturbed conformal
field theories.

In this paper we derive complete non-diagonal reflection matrices for the RSOS/SOS
and the HHM in a unified way. We will express the BYBE as a linear equation which
should satisfy extra non-trivial conditions. Due to the linearity, the general solutions are
linear combinations of each solution with arbitrary coefficients. Some of these coefficients
are fixed by the boundary crossing and unitarity conditions [4]. The reflection matrices of
the HHM can be constructed from those of the RSOS model since the HHM can be mapped
to the RSOS(5). We consider a similar mapping for the generic RgO86del and its
boundary reflection matrices.

2. The RSOSp) model

In this section we solve the BYBE for the RSQ8; p = 3,4... scattering theory. The
RSOSp) scattering theory is based on(a — 1)-fold degenerate vacuum structure, in
which vacua can be associated with nodes ofAhe; Dynkin diagram. The quasiparticles

in the scattering theory are kinks that interpolate neighbouring vacua, they can be denoted
by non-commutative symbol&,,(u) where|a — b| = 1 witha,b =1,...,p — 1 and

u is related to the the kink rapidity by u = —i6/p, so that the physical strip is given

by 0 < Reu < 7/p. In the rest of the paper, we will refer o, b as heights or spins.
Formally, scattering between two kinks can be represented by the following equation:

Kaa)Kap') =3 S — 1) K e ) K o (1) 2.1)

where theS-matrix is given by

—u/2y
S9 (1) = U(u)<[[fl}{;> W (). 2.2)

The Boltzmann weight
[a]l<]
[d][?]

satisfies the YBE in the RSOS representation.
Here [u] denotes the usual-number

1/2
Wab (u) = sinuabd< ) + SiN(y — u)8ac (2.3)

la] = sin(ay) , =

7T
siny p
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and the overall factot/(u) is a product of Gamma functions
1 (v u y . uNT1 F@Fi(y —u)
=r(&)r(i-—=-)r(1-<+— — L
U b4 (n) ( n) ( b4 +n)111 F(O)F(y)
r2y/m —u/m)T 1+ 2y/m —u/w)
F(@2+Vy/m —u/m)T AL+ @2 - VDy/m —u/m)
This factor, satisfying the relations

(2.4)

Fi(u) =

U)U(—u) sin(y —u)siny +u) =1

Uly —u) =U(u)

together with the overal}-number factor ensures that tRematrix satisfies both the crossing
and unitarity constraints:

Sho(y —u) = S8 (u) (2.5)
D SEh ) S5 (—u) = Sac (2.6)

Let us now consider the above scattering theory in the presence of a boundary. The
scattering between the kink and the boundary denoted formalB, big described by the
equation

Kap()By = > R () Kpe(—1)B,. 2.7)

Note that in this representation, the boundary naturally carries an RSOS spin.

The functionR?, is called the boundary reflection matrix and satisfies the BYBE, which
in the RSOS representation takes the form
> Ry ) S5, (@ + )Ry, (u) S (0 — u)

ab

= > Spe ' — w)Rg, (W) S5, ' + w) Ry, (u). (2.8)

ab

In general, the functioRj, (1) can be written as

—u/2y
Ry (u) = R(u)(%) (862 X5 ) + Sbe {8p,a1Ua (@) + 8p.0-1Da () }] (2.9)
where R(u) has to be determined from the boundary crossing and unitarity constraints,
while X;. and U,, D, have to be determined from the BYBE. We have multiplied a
prefactor depending og-numbers to simplify the BYBE. IfXj. does not vanish, the
boundary R-matrix describes non-diagonal scattering process, otherwise the scattering is
called diagonal. Note that due to the restriction that the vacuum assumes the value
1,...,p -1, X;C, Xfc’l, D1, U,_, are not defined. The cage = 3 has only diagonal
scattering, saX;. does not exist.

We will concentrate in what follows on the scattering where the off-diagonal component
X3, is non-vanishing. To start, the cabe“ ¢ # b” in equation (2.8) gives
X4 101X a0 = X410 WXGH @) 2<a<p—4 (2.10)

This equation implies thaxy,, ., can be written as
Xgil,aq:l(u) = hi(u)Xjat
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whereh, (1) depends only om and X only ona.
On the other hand, the case= b = b", a = a” gives

X 1041 W)DXG g o 1) = X0 g 01 W XG 10, 1 () 2<a<p-2 (2.11)
which implies that

hy (u)h-(u) = hy(u)h_(u)
from which we conclude that

hy(u) = (constanti_(u).

Absorbing the constant in the above equation iktbor X, we can make:, equal toh_
so that we can absorb thg (1) into the overallR (x) factor and treak;;,. asu independent
from now on.

With this simplification, equation (2.8) can be broken down into the following
independent equations in addition to the above two equations:

’ [a] / [a + 2]
UaDa+2f+ <1+f[a+1])+Da+2Da+2f< +f+[ +1]>
2
+ XZI% a+3XdI§a+lf - U Da+2f+ (1+ f {a 1 1})
U (L Fo ) 4 X XS (212)
forl<a<p-3,
D, 1 f- <1+ I+ [a[—i—] ]> + U1 fr ( [ B 1]) =Us-1ft+ — Uay1 /- (2.13)
(1 + f+[ n l]) + D, o f+ < ]> Dayafy — Do f- (2.14)
for2<a < p-3,and
Ui ofif- [‘[l][“ ~U,+D, <1+ /- ) ( )
[a]
=0, (1 %) - U"( fa - 1]) (229
Dot f- [c[l][jlj]g] D 4U < ) < N f+[ [+]1]>
=U<+f La] ) <1+f La] ) (2.16)
‘ avn) T Tla+1] '

for 2 < a < p— 2. In the above equations, we used a compact notation where
U,=U,(w), U, =U,) (similarly for D,) and
fr =sin £u)/sinly —u' Fu).

In addition, it should also be mentioned that the last term on the right-hand side (left-
hand side) of equation (2.12) is present only whegt 1 (p — 3) and the first terms of
equations (2.15) and (2.16) are allowed only dof 2 anda # p — 2, respectively.
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Before solving the equations directly, it is helpful to investgate the structure of the
BYBE. First of all, the BYBE is covariant under the transformation

a— p—a U,(w) - £D,_,(u) (2.17)
and has the following symmetry forQa < p — 2:
U,(u) = —Dy(—u). (2.18)

Futhermore, since equations (2.13)—(2.16) are linear, their general solutions are linear
combinations of the ‘fundamental’ ones. Another important fact is that the amplitudes
with a even and those with odd are completely decoupled in the BYBE and give different
solutions in general. However, if is odd, two sets are related by (2.17) and have the same
solutions.

By solving the linear equations (2.13)—(2.16), we find the most general non-diagonal
solution forp > 5:

. B €,€1C €, 1D [sin(2u + ay)
U,(u) = Asin(2 _ L P i — (=D“
(@) (2u+ay)+ Sin 2u sinay + sinay { Sin 2u =1 2.19)
. B €,6,.1C  €,_1D [sSinu — ay) '
D,(u) = Asin(2u — : -2 S : —(=D“
@) (@u —ay) + sin 2 sinay sinay { sin 2 =1

wheree, is 0 (1) if a is odd (even) andi, B, C and D are free parameters.
Having foundU,, D,, the functionXj.  can be easily obtained from equation (2.12),

after takingu’ to be —u since Xj,. does not depend on the rapidity. This gives
Xﬂiﬁsxﬂg,ﬁl - ngl,aJrlXZH,afl = Ua(—u)Uqs(u) — Dgi2(—u) Day2(ut)

for 1 < a < p — 3. SubstitutingU,, D, in the right-hand side and iterating the equations,
we get

X0 1 11 X101 = €p€aX55X51 + A? {SIP(L 4 €)€,)y — sifay}
2AB {coS1+ €pe,)y — COSay } + €pe C2{ 1 = }
peal¥ 4 pra-l Sinzy Sinzay
1 1 cosy
SN S D2{ _
sirt y sm%zy} 7 siry

+ (=D

COSa
+ 26p,1D2 { a Y } .

sirfay
(2.20)
Since this equation fixes only the produat; , .., and X7, , , , are determined up to a
gauge factor. Inserting = 1 one getsX3,X3, = 0 as expected. Fgr even,X2,X3, is not
yet determined.
Now consider the boundary unitarity and crossing symmetry conditions for the reflection
matrix Rj.(1). Due to these conditions, the overall fac®(:) should satisfy

> R )RS (—u) = 85 (2.21)

Y Sp@u) R (v 2+ u) = R (v /2 — u). (2.22)
In terms ofdequations (2.9) and (2.18), the unitarity condition becomes

R@R(—u) [ X8 101X 1001 — Ua@)D(w)] =1 2<a<p-2

R@WR(—u)Ur(u)Us(—u) =1

R@)R(=u)Dp—1(u) Dp_1(—u) = 1.
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By inserting equations (2.19) and (2.20) in the above, we find the following non-trivial
constraints for the free parameters:
(i) AB=AC=AD=0

CZ
sirt y
Note that all the cases satisfying the constraints, have at most one free parameter since

we can absorb overall constant ifR(uz). We list each class of the reflection matrices as
follows.

Class I. For genergh (p #3,4: B=C=D=0, A=1
U,(u) = sin(2u + ay)
D,(u) = sin(2u — ay) (2.23)

(ii) X2,X5, = A%(sirfy —sinf2y) + for evenp.

Xo1a11X04101 = si’ y — sirfay.

These weights havl,_,(u) = —D,(u) symmetry and no free parameter. This solution
is the one obtained in [6]. The unitarity condition gives

Ru)R(—u)(— Siré 2u + sirf y) = 1. (2.24)
The crossing symmetry condition becomes
UCHRy/2+ u)sin(y —2u) = R(y/2—u). (2.25)

The factorR(u) can be determined from equations (2.24), (2.25) up to the usual CDD
ambiguity by separatin® (1) = Ro(u)R1(u) whereR, satisfies

Ro)Ro(—u) =1

) (2.26)
Uu)Ro(y /2 + u) sin(y — 2u) = Ro(y /2 — u)
whose minimal solution reads
Ro(u) = 00
Fo(—u)
R1 satisfies
Ri()Ra(—u)(—sinf 2u +sify) =1
(2.27)

Ri(u) = Ra(y —u)
with the minimal solution
Ri(w) = 3o (y/2,uyo (/2 —y/2, u).
Hereo (x, u) is a well known building block satisfying the relations

ox,u)=0o(x,y —u)

o(x,u)o (x, —u) = [coSx + u) cogx — u)]~*
and is given by
[T y/2=w[l(=x,y/2=w) [, —y/2+w) [[(=x, —y/2+u)
[P v/ TP (=, 7/2)
1—[()“ 0 = ﬁ r (% + (2 + %)7//71 +x/m — u/n)'
o PG+ @&+ Dy/m+x/m —ujm)

o(x,u) =
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Class Il. Foreverp (p#4): A=0, C=1

B €a—1
U == A -
aln) sin2«  sinay
B €a_
Da(u) ! (2.28)

T sin2u sinay
1 €a—1
XZ—1,¢J+1XZ+1,a—1 = m - Sinzay .

This solution satisfied/,_,(u) = U,(u) (similarly for D,(x) and X;.) and includes
one free parameter. To fix the overall fac®(u), Ro(u) is the same as for class I, while
R1(u) satisfies

Ra()Ra )( 1L _ B ) 1 (2.29)
u —Uu —_ — = 1. .
! ! sirfy  sirf2u

The minimal solution is

o(x,u)o(w/2—x,u)
o0, u)o(r/2,u)

Ri(u) = siny
where

sin2¢ = Bsiny.
Class lll. Foroddp (p #3): A=0, D=1

B 1 Sin(2u + ay)
U, = — - . — (=D
“=sna * sinay { sin 2u =D
B 1 sin(2u — ay)
a = - T — (=D* 2.30
sin2zt  sinay { sin 2u =1 ( )
1 1 cosy cosay }
Xa- Xoe1=2V\—5 ——= (+t21=5 -+ D '——1.
a-barlBatla-t {smzy Slnzay} Sirf y = sirf ay

This solution hasU,_,(u) = D,(u) symmetry and one free parameter. WHRg(x)
does not change, th&;(u) satisfies

2B cos 1+BZ> _q

Ra@Ra(=) <sin2 (y/2 ©sirP2u sirPu

The minimal solution is

_ain Y 00, w)o (x2, u)
Ra(u) = sin 2 0(0,u)o ()2, u)

where

cos x1 + coS x; = 1+Bsinzg

1 .
COSx1 COSxp = §(1+ B) smg.

In the above analysis, we omit special casespof 3,4 sincep = 3 has only the
diagonal reflection matrices angd= 4 has been extensively studied in [8].
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3. The SOS model

In the beginning we have considered that the heights take values fronp %t which is
necessary for the bulk scattering weights to be finite, as the parampgtet p is a positive
integer. Whenr/y is not a rational number, there are no bounds on the heights and the
corresponding representation is known as solid-on-solid (SOS). Since there is no restriction
on the heights, we set, = 1 in the solutions (2.19) of the BYBE. Thus the solutions of
BYBE in the SOS representation are

€,-1C D {Sin(Zu +ay) l}
sin2t  sinay = sinay sin2u
B €,.1C D {Sin(Zu —ay) B 1}
sin2t sinay  sinay sin 2u
Xg 1011 X0110-1= eﬁ,X%Xgl + A? {sinz(l + €,)y — Sir? ay}
1 1 3.1
sify W}

U,(u) = Asinu + ay) +

D,(u) = Asin(2u —ay) +

—2AB{co91+ €,)y — cosay} + €,_1C? {

1 1
e { cof (y/2)  cof (ay/2) }

+D2{ 1 — ! }
co2 ((1+¢€,)y/2) co(ay/2)

redefiningC asC — 2D.
Inserting the above solution in the unitarity condition restricts the coefficients in the
same way as in the RSOg( We classify the solutions into three classes.

ClassI.C =0, A=1

U, (u) = sin(2u + ay) + D {Sln(Zu +ay) 1}

sinZt  sinay sin2u
D sin(2u —
D,(u) =sin(2u — ay) + — - = n u w) _ 1
sint  sinay sin 2u (3.2)

X4 1411X4414 1 =SIPy —sirfay — 2B (cosy — cosay)

D2< 1 1 )
cof (y/2) co(ay/2))

The overall factorR is the same as that for RSQ8( but R, (1) now contains all the
information about the boundary conditions and has to satisfy

2
coZ (y/2)
_ 2BDcos2  B*+ D2) _q (3.3)

R1(u)R1(—u) <— Sir? 2u — 2D cos A + Sirf y — 2B cosy +

Sin? 2u Bl sir? 2u
Ri(u) = Ra(y —u)
whose minimal solution is

o (x1, u)o (x2, u)o (x3, u)o (xa, u)
200, u)o (r/2, u)

Ri(u) =
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wherexy, ..., x4 are related taB, D via

4
Z cos; = —2D
i=1

1)2

4
cos;cosX; = —2+sify —2Bcosy + ———
2 ! ey Yt 0272

i>j=1
4
Z oS 2; cos &, cos &y = 2(1+ B)D

i>j>k=1

cOs 21 COS 2, COS 3 COS %, = (COSy + B)? + D?tarf g
Classl.LA=0, C=1

B €a_1 D sin(2u + ay)
Us(w) = — - - - -1
sinzt  sinay  sinay sin 2
B _ D sin(2u —
Do) = —— — 2L _ (G —ay)
sin2zt sinay  sinay Sin 2u
ya oy _{P@—cosy) —1)* {D(L-cosay) — €;-1}?
a—l,a+1*a+1l,a—1 — Sinz)/ Sinzlly .
Now

{D(1 - cosy) — 1)? L D? 2BD cos 2 BZ+D2} _q
Siré y sin? 2u sif2u |
whose minimal solution is

R1i(@)Rai(—u) |:

siny 0 (x1, u)o (x2, u)
\/{D(l — cosy) — 1j2 + D2si?y °Owo(@/2u)

wherexy, xo are related taB, D via

Ra(u) =

(B + D)siny

COSx1 COSxp =

2\/{D(1 —cosy) —1}2 + D2sirfy

BDsiny
{D(1—cosy) —1)2+ D2sirfy

coSx;+cofx, =1+

ClasslLA=C=0, D=1

B 1 sin(2u + ay)
U, = — - - -1
a) sinae sinay { sin 2u }
1 sinu — ay)
D,(u) = — — — - -1
@) sinzt  sinay { sin 2
1 1

X tar1Xiira1 = B '
arbarlTarlaml ™ 0o (y/2)  coZ (ay/2)
Now

1 2B cos 1+B2>_1

Ra(@)Ra(u) (C0§ (v/2)  sirP2u  sirP2u

2117

(3.4)

(3.5)
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with the minimal solution

_onoY o, u)o(xo, u)
Ra(u) = COSZ o0, u)o(r/2, u)

where
cog x1 +coS x, = 1+ Bcog (y/2)
cosxy Cosx, = 3(1+ B) cos(y/2).

Note that the number of free parameters in the boundary reflection matrices of both the
vertex (the sine-Gordon model) and SOS class |, Il representations are the same: two for
the non-diagonal and one for the diagonal [5, 6]. This strongly suggests that a well-defined
transformation between the two models can exist even with a boundary.

4. The hard hexagon model

The paticle spectrum of the HHM consists of a triplet of fundamental kink stgesK 1o
and Koo [9]. The bulk S-matrix is given [10, 11] by

Oap —6/27i
$52(6) = U(®) (—) Wie (u) (4.1)
Ld Pb
with Boltzmann weights

8bd + 8ac (42)

papc>1/2 sinu

de PdPb sin(u — u)
where
po = 2COSi p1=1

o _9i0
=% “=5

UO) = Uo(0) Usr(u)

sinhd — isin(/9) sinhd + isin(27/9)
sinhé + isin(x/9) sinhd —isin(2x/9)

Uo(0) = —

sin(u —u) sin(2u + u)
sin(u +u) sinu —u)’
By mappinga = 2, 3 (1, 4) of the RSOS(5) tar = 0 (1) of the HHM, one can reproduce
the bulk S-matrix of the HHM from that of the RSOS(5). This means the RSOS(5) is
homeomorphic to the HHM with differences in the overall fadt@) and the relations
between the spectral parameteand the rapidityd.

These mean that the two BYBEs can be mapped to each other and the solutions of the
HHM can be obtained by that of the RSOS. Writing the reflection amplitude of the HHM
as

Ur(u) =

—6/2xi
RS.(0) = R(0) (@> [85o2 X2, (1) + Spe {80120 () + 840V () + 8501 D(w)}]

(lIO(l
(4.3)
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the non-diagonal solution is

. B
Uu) = Asinu + 3u) + +

D {Sin(Zu + 3u) N 1}

sin2t  sin3u sin 2
- B D (sin(2u —3w)
V(1) sin(2u — 3u) + sinzt sin3u { sin 2u }
o D [sinCu + ) (4.4)
D(u) = Asin(2u + u) + sin 2 + sinu { sin 2u * 1}

X0, X3 = A? (Sinf 1 — sin? 3p) — 2AB (cosu — cos )

5 ( 1 1 )
D —
Sir? (u/2)  sir? (3u/2)
which can easily be read from equations (2.19),(2.20).
The unitarity and crossing symmetry conditions now reduce to

ROYR(=0)Du)D(—u) = 1 (4.5)
. _ sin(2u + 2u) .

It is remarkable that for the HHM the unitarity condition cannot further reduce the
arbitrary coefficientsA, B and D. Of these theB and D terms are ‘decorated’ solutions
which can be constructed from a fundamental solutijp by

RS Wbpicd = Y Sty (0 — 1) St (u + uy) R (u). (4.7)
a

It is easy to check this satisfies the BYBESIjZf(u) is the solution of the bulk YBE with
arbitraryus1. Using the trivial solutionRj,. oc 8., one can check thak and D terms can
be obtained in this way. We will therefore sBt= D =0, A = 1 from now on.

The overall factorR(9) is can be determined from equations (4.5), (4.6). Let

R(0) = Ro(0)Ra(u) (4.8)
such that

Ro(0)Ro(—0) =1 Ro(mi/2 — 0) = Up(20)Ro(rwi /2 + 6)

R1)R1(—u) (—sirf 2u +sirf p) = 1
sin(2u + 2u)
sin(2u — 2u)

(4.9)

Ri(u/2—m —u) = Ri(u/2— 7 +u)

then the minimal solutions are
sinh(®/2 4 wi/4) sinh®/2 — i /36) sin(@/2 + 57i/18)

Rol®) = Giihe,2 = i /) sin@,2 + 71/36) Sin®,/2 — 51/18)
sinh(0/2 4 i/18) sin® /2 + 7i/36)
" Sinh6,/2 — 71/18) sinh(6/2 — 7xi/36)
o — 1
1) = sin(u + 2u)

By generalizing the mapping of the RSOS(5) to the HHM, we can construct some
generalized HHMs whose particle spectrum consists of kikikswhere|a — b| = 1 with
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a,b=0,...,n—1andKq. Denoting these as HHMJ, the bulkS-matrix of the HHM)
can be obtained from that of the RSOS(2n + 1) by folding the heights as

a, 2n+l—a — n-—a 1<a<n. (4.10)

The above one is well-defined without ambiguity, due to the symmetry of-tfmatrix. The
integrability conditions such as the YBE and BYBE are transformed accordingly, maintaing
the structure. These mean that we can write the reflection amplitude of the /) Higl(

—0/27i
RL(0) = R(6) (%) [802e X2 () + 8 {80.a1Ua ) + 85,0V (@) + 8p.0-1Da(0)}]
(4.12)
wherep, denotes the;-number
sinai _ N b4
g = — a=n-—a = .
p sinA 2n+1
Then the solution of the BYBESs for the HHM) are
- . _ D sin(2u — al) _
U, () = (=1 A sin(2u — ax - — (=1
=D n(2u —a )+sin2u sin&k{ sin2u b }
i . _ D Sin(2u + a) .
D, (u) = (=) A sinu + ar) + — . . - (=D
@ =1 (u+a)+sm2u sm&k{ sin 2 ( )}
, D [ sin(2u + ni) (4.12)
_ (_1\n+1 _(_1\"
V@) = (—=1)" A sin(2u + ni) + sz T s { e (-1 }

X0 4 g1 X1, 1 = A?[sinf A —sifar} — 2AB {cosh — (—1)"** cosaxr}

1 1 COSA -1 COSaA
e A R P - S i)
siPx  sirfax Sire A ( Sir? ax
which can be read from equations (2.19), (2.20) witbdd.

5. Conclusion

In this paper we derived the most general non-diagonal reflection matrices of the RSOS/SOS
models and the hard hexagon model using the boundary Yang—Baxter equations. We find a
new one-parameter family of the reflection matrices for the RSOS model which generalizes
the previous result in [6] where there is no free parameter. This free parameter can be
used to control the flow between the fixed and free boundary conditions. Since the bulk
RSOS theory describes the perturbed conformal theories by the least relevent operator, the
boundary conditions can show how the conformal boundary conditions can change under
renormalization group flows.

The vertex—face correspondence between the sine-Gordon and SOS theories in the
presence of a boundary remains an open problem: our three classes of SOS reflection
matrices may be useful for this purpose.

For the hard-hexagon model which can be mapped to the RSOS(5) model by folding
four RSOS heights into two, the solutions can be obtained similarly with a main difference
in the boundary unitarity conditions. Due to this, the reflection matrices can have two free
parameters. We show that these extra terms can be identified with the ‘decorated’ solutions.
This means the general solutions of the BYBE are linear combinations of fundamental
solutions and their decorated ones.
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Considering that the HHM is related to the perturbed conformal theory by the most
relevent operator, it will be interesting to consider how the two different perturbations can
make difference in the boundary interactions.
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