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Abstract. In this paper we compute the most general non-diagonal reflection matrices of the
RSOS/SOS models and the hard hexagon model using the boundary Yang–Baxter equations.
We find a new one-parameter family of the reflection matrices for the RSOS model in addition
to the previous result obtained in (Ahn C and Koo W M 1996 Nucl. Phys.B 468 [FS] 461).
We also find three classes of the reflection matrices for the SOS model, which has one or two
free parameters. For the hard-hexagon model which can be mapped to the RSOS(5) model
by folding four RSOS heights into two, the solutions can be obtained similarly with a main
difference in the boundary unitarity conditions. Due to this, the reflection matrices can have
two free parameters. We show that these extra terms can be identified with the ‘decorated’
solutions. We also generalize the hard hexagon model by ‘folding’ the RSOS heights of the
general RSOS(p) model and show that they satisfy the integrability conditions such as the Yang–
Baxter and boundary Yang–Baxter equations. These models can be solved using the results for
the RSOS models.

1. Introduction

In the study of the two-dimensional integrable models of quantum field theories and
statistical models, the Yang–Baxter equation (YBE) plays an essential role in estabilishing
the integrability and solving the models. Recently much effort has been directed to
introducing boundaries into the integrable systems for possible application to condensed-
matter physics and statistical systems with non-periodic boundary conditions. The
boundaries entail new a physical quantity called reflection matrices which depend on the
boundary properties.

The boundary Yang–Baxter equation (BYBE) (also known as the reflection equation) [1]
is the necessary condition for integrable statistical models [2, 3] and quantum field
theories [4] with a boundary. The equation takes the form

R1(u)S12(u
′ + u)R2(u

′)S12(u
′ − u) = S12(u

′ − u)R2(u
′)S12(u

′ + u)R1(u) (1.1)

whereR1(2) is the boundary reflection matrix in the auxiliary space 1(2) and S12 is the
solution to the YBE.

To date, several solutions of the BYBE have appeared in the literature. Compared
with the vertex-type models, however, far less is known about the solution in the face-type
model, such as the solid-on-solid (SOS) or restricted-solid-on-solid (RSOS) model. Among
these, most of the known solutions are ‘diagonal’ in the sense that the reflection matrices
are diagonal [5, 6]. Using these, one can find the partition functions in the infinite lattice
limit [7]. In addition, diagonal reflection matrices have recently been applied to interesting
phenomena like condensed-matter physics.
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Non-diagonal solutions show more non-trivial boundary scattering and may also be
useful for physical applications. Furthermore, one can find an explicit vertex–face
correspondence if one can classify non-diagonal solutions completely. In addition to those
found in [6], we will show that different classes of non-diagonal reflection matrices are
possible. These new solutions include one or two free parameters which are related to those
in the boundary potential. The explicit formulae between two sets of parameters are still
not clear. We hope our complete non-diagonal solutions for the SOS model may be related
explicitly with those of the boundary sine-Gordon model.

From a physical point of view, many interesting models are of face type: the RSOS/SOS
models, the hard-hexagon model (HHM), etc. These models play very important roles in
statistical mechanics systems and in quantum field theories such as the perturbed conformal
field theories.

In this paper we derive complete non-diagonal reflection matrices for the RSOS/SOS
and the HHM in a unified way. We will express the BYBE as a linear equation which
should satisfy extra non-trivial conditions. Due to the linearity, the general solutions are
linear combinations of each solution with arbitrary coefficients. Some of these coefficients
are fixed by the boundary crossing and unitarity conditions [4]. The reflection matrices of
the HHM can be constructed from those of the RSOS model since the HHM can be mapped
to the RSOS(5). We consider a similar mapping for the generic RSOS(p) model and its
boundary reflection matrices.

2. The RSOS(p) model

In this section we solve the BYBE for the RSOS(p); p = 3, 4 . . . scattering theory. The
RSOS(p) scattering theory is based on a(p − 1)-fold degenerate vacuum structure, in
which vacua can be associated with nodes of theAp−1 Dynkin diagram. The quasiparticles
in the scattering theory are kinks that interpolate neighbouring vacua, they can be denoted
by non-commutative symbolsKab(u) where |a − b| = 1 with a, b = 1, . . . , p − 1 and
u is related to the the kink rapidityθ by u = −iθ/p, so that the physical strip is given
by 0 < Reu < π/p. In the rest of the paper, we will refer toa, b as heights or spins.
Formally, scattering between two kinks can be represented by the following equation:

Kda(u)Kab(u
′) =

∑
c

Sabdc (u− u′)Kdc(u′)Kcb(u) (2.1)

where theS-matrix is given by

Sabdc (u) = U(u)
(

[a][c]

[d][b]

)−u/2γ
Wab
dc (u). (2.2)

The Boltzmann weight

Wab
dc (u) = sinuδbd

(
[a][c]

[d][b]

)1/2

+ sin(γ − u)δac (2.3)

satisfies the YBE in the RSOS representation.
Here [a] denotes the usualq-number

[a] = sin(aγ )

sinγ
γ = π

p
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and the overall factorU(u) is a product of Gamma functions

U(u) = 1

π
0
(γ
π

)
0
(

1− u

π

)
0
(

1− γ
π
+ u

π

) ∞∏
l=1

Fl(u)Fl(γ − u)
Fl(0)Fl(γ )

Fl(u) = 0 (2lγ /π − u/π) 0 (1+ 2lγ /π − u/π)
0 ((2l + 1)γ /π − u/π) 0 (1+ (2l − 1)γ /π − u/π) .

(2.4)

This factor, satisfying the relations

U(u)U(−u) sin(γ − u) sin(γ + u) = 1

U(γ − u) = U(u)
together with the overallq-number factor ensures that theS-matrix satisfies both the crossing
and unitarity constraints:

Sbcad(γ − u) = Sabdc (u) (2.5)∑
c′
Sabdc′(u)S

c′b
dc (−u) = δac. (2.6)

Let us now consider the above scattering theory in the presence of a boundary. The
scattering between the kink and the boundary denoted formally byBa is described by the
equation

Kab(u)Ba =
∑
c

Rbac(u)Kbc(−u)Bc. (2.7)

Note that in this representation, the boundary naturally carries an RSOS spin.
The functionRbac is called the boundary reflection matrix and satisfies the BYBE, which

in the RSOS representation takes the form∑
a′,b′

Rabb′(u)S
ac
b′a′(u

′ + u)Ra′b′b′′(u′)Sa
′c
b′′a′′(u

′ − u)

=
∑
a′,b′

Sacba′(u
′ − u)Ra′bb′(u′)Sa

′c
b′a′′(u

′ + u)Ra′′b′b′′(u). (2.8)

In general, the functionRabc(u) can be written as

Rabc(u) = R(u)
(

[b][c]

[a][a]

)−u/2γ [
δb 6=cXabc(u)+ δbc

{
δb,a+1Ua(u)+ δb,a−1Da(u)

}]
(2.9)

whereR(u) has to be determined from the boundary crossing and unitarity constraints,
while Xabc and Ua,Da have to be determined from the BYBE. We have multiplied a
prefactor depending onq-numbers to simplify the BYBE. IfXabc does not vanish, the
boundaryR-matrix describes non-diagonal scattering process, otherwise the scattering is
called diagonal. Note that due to the restriction that the vacuum assumes the value
1, . . . , p − 1, X1

bc, X
p−1
bc ,D1, Up−1 are not defined. The casep = 3 has only diagonal

scattering, soXabc does not exist.
We will concentrate in what follows on the scattering where the off-diagonal component

Xabc is non-vanishing. To start, the caseb 6= c 6= b′′ in equation (2.8) gives

Xaa−1,a+1(u
′)Xa+2

a+1,a+3(u) = Xaa−1,a+1(u)X
a+2
a+1,a+3(u

′) 26 a 6 p − 4. (2.10)

This equation implies thatXaa±1,a∓1 can be written as

Xaa±1,a∓1(u) = h±(u)Xa±
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whereh±(u) depends only onu andXa± only on a.
On the other hand, the casec = b = b′′, a = a′′ gives

Xaa−1,a+1(u
′)Xaa+1,a−1(u) = Xaa−1,a+1(u)X

a
a+1,a−1(u

′) 26 a 6 p − 2 (2.11)

which implies that

h+(u′)h−(u) = h+(u)h−(u′)
from which we conclude that

h+(u) = (constant)h−(u).

Absorbing the constant in the above equation intoXa− or Xa+, we can makeh+ equal toh−
so that we can absorb theh±(u) into the overallR(u) factor and treatXabc asu independent
from now on.

With this simplification, equation (2.8) can be broken down into the following
independent equations in addition to the above two equations:

U ′aDa+2f+

(
1+ f− [a]

[a + 1]

)
+D′a+2Da+2f−

(
1+ f+ [a + 2]

[a + 1]

)

+Xa+2
a+1,a+3X

a+2
a+3,a+1f− = UaD′a+2f+

(
1+ f− [a + 2]

[a + 1]

)

+U ′aUaf−
(

1+ f+ [a]

[a + 1]

)
+Xaa−1,a+1X

a
a+1,a−1f− (2.12)

for 16 a 6 p − 3,

D′a+1f−

(
1+ f+ [a + 1]

[a]

)
+ U ′a−1f+

(
1+ f− [a − 1]

[a]

)
= Ua−1f+ − Ua+1f− (2.13)

U ′af−

(
1+ f+ [a]

[a + 1]

)
+D′a+2f+

(
1+ f− [a + 2]

[a + 1]

)
= Da+2f+ −Daf− (2.14)

for 26 a 6 p − 3, and

U ′a−2f+f−
[a][a − 2]

[a − 1]2
− U ′a +D′a

(
1+ f− [a]

[a − 1]

)(
1+ f+ [a]

[a − 1]

)

= Da

(
1+ f+ [a]

[a − 1]

)
− Ua

(
1+ f− [a]

[a − 1]

)
(2.15)

D′a+2f+f−
[a][a + 2]

[a + 1]2
−D′a + U ′a

(
1+ f− [a]

[a + 1]

)(
1+ f+ [a]

[a + 1]

)

= Ua
(

1+ f+ [a]

[a + 1]

)
−Da

(
1+ f− [a]

[a + 1]

)
(2.16)

for 2 6 a 6 p − 2. In the above equations, we used a compact notation where
Ua = Ua(u), U ′a = Ua(u′) (similarly for Da) and

f± = sin(u′ ± u)/ sin(γ − u′ ∓ u).
In addition, it should also be mentioned that the last term on the right-hand side (left-

hand side) of equation (2.12) is present only whena 6= 1 (p − 3) and the first terms of
equations (2.15) and (2.16) are allowed only fora 6= 2 anda 6= p − 2, respectively.
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Before solving the equations directly, it is helpful to investgate the structure of the
BYBE. First of all, the BYBE is covariant under the transformation

a→ p − a Ua(u)→±Dp−a(u) (2.17)

and has the following symmetry for 26 a 6 p − 2:

Ua(u) = −Da(−u). (2.18)

Futhermore, since equations (2.13)–(2.16) are linear, their general solutions are linear
combinations of the ‘fundamental’ ones. Another important fact is that the amplitudes
with a even and those witha odd are completely decoupled in the BYBE and give different
solutions in general. However, ifp is odd, two sets are related by (2.17) and have the same
solutions.

By solving the linear equations (2.13)–(2.16), we find the most general non-diagonal
solution forp > 5:

Ua(u) = A sin(2u+ aγ )+ B

sin 2u
+ εpεa−1C

sinaγ
+ εp−1D

sinaγ

{
sin(2u+ aγ )

sin 2u
− (−1)a

}
Da(u) = A sin(2u− aγ )+ B

sin 2u
− εpεa−1C

sinaγ
− εp−1D

sinaγ

{
sin(2u− aγ )

sin 2u
− (−1)a

} (2.19)

whereεa is 0 (1) if a is odd (even) andA, B, C andD are free parameters.
Having foundUa,Da, the functionXabc can be easily obtained from equation (2.12),

after takingu′ to be−u sinceXabc does not depend on the rapidity. This gives

Xa+2
a+1,a+3X

a+2
a+3,a+1−Xaa−1,a+1X

a
a+1,a−1 = Ua(−u)Ua(u)−Da+2(−u)Da+2(u)

for 1 6 a 6 p − 3. SubstitutingUa,Da in the right-hand side and iterating the equations,
we get

Xaa−1,a+1X
a
a+1,a−1 = εpεaX2

13X
2
31+ A2

{
sin2(1+ εpεa)γ − sin2 aγ

}
− 2AB

{
cos(1+ εpεa)γ − cosaγ

}+ εpεa−1C
2

{
1

sin2 γ
− 1

sin2 aγ

}

+ 2εp−1D
2

{
1

sin2 γ
− 1

sin2 aγ

}
+ 2εp−1D

2

{
cosγ

sin2 γ
+ (−1)a

cosaγ

sin2 aγ

}
.

(2.20)

Since this equation fixes only the product,Xaa−1,a+1 andXaa+1,a−1 are determined up to a
gauge factor. Insertinga = 1 one getsX1

02X
1
20 = 0 as expected. Forp even,X2

13X
2
31 is not

yet determined.
Now consider the boundary unitarity and crossing symmetry conditions for the reflection

matrix Rabc(u). Due to these conditions, the overall factorR(u) should satisfy∑
c

Rabc(u)R
a
cd(−u) = δbd (2.21)

∑
d

Sacbd(2u)R
d
bc(γ /2+ u) = Rabc(γ /2− u). (2.22)

In terms of equations (2.9) and (2.18), the unitarity condition becomes

R(u)R(−u) [Xaa+1,a−1X
a
a−1,a+1− Ua(u)Da(u)

] = 1 26 a 6 p − 2

R(u)R(−u)U1(u)U1(−u) = 1

R(u)R(−u)Dp−1(u)Dp−1(−u) = 1.
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By inserting equations (2.19) and (2.20) in the above, we find the following non-trivial
constraints for the free parameters:

(i) AB = AC = AD = 0

(ii) X2
13X

2
31 = A2(sin2 γ − sin2 2γ )+ C2

sin2 γ
for evenp.

Note that all the cases satisfying the constraints, have at most one free parameter since
we can absorb overall constant intoR(u). We list each class of the reflection matrices as
follows.

Class I. For generalp (p 6= 3, 4): B = C = D = 0, A = 1

Ua(u) = sin(2u+ aγ )
Da(u) = sin(2u− aγ )
Xaa−1,a+1X

a
a+1,a−1 = sin2 γ − sin2 aγ.

(2.23)

These weights haveUp−a(u) = −Da(u) symmetry and no free parameter. This solution
is the one obtained in [6]. The unitarity condition gives

R(u)R(−u)(− sin2 2u+ sin2 γ ) = 1. (2.24)

The crossing symmetry condition becomes

U(2u)R(γ /2+ u) sin(γ − 2u) = R(γ /2− u). (2.25)

The factorR(u) can be determined from equations (2.24), (2.25) up to the usual CDD
ambiguity by separatingR(u) = R0(u)R1(u) whereR0 satisfies

R0(u)R0(−u) = 1

U(2u)R0(γ /2+ u) sin(γ − 2u) = R0(γ /2− u)
(2.26)

whose minimal solution reads

R0(u) = F0(u)

F0(−u) .
R1 satisfies

R1(u)R1(−u)(− sin2 2u+ sin2 γ ) = 1

R1(u) = R1(γ − u)
(2.27)

with the minimal solution

R1(u) = 1
2σ(γ /2, u)σ (π/2− γ /2, u).

Hereσ(x, u) is a well known building block satisfying the relations

σ(x, u) = σ(x, γ − u)
σ(x, u)σ (x,−u) = [cos(x + u) cos(x − u)]−1

and is given by

σ(x, u) =
∏
(x, γ /2− u)∏(−x, γ /2− u)∏(x,−γ /2+ u)∏(−x,−γ /2+ u)∏2

(x, γ /2)
∏2
(−x, γ /2)

∏
(x, u) =

∞∏
l=0

0
(

1
2 + (2l + 1

2)γ /π + x/π − u/π
)

0
(

1
2 + (2l + 3

2)γ /π + x/π − u/π
) .
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Class II. For evenp (p 6= 4): A = 0, C = 1

Ua(u) = B

sin 2u
+ εa−1

sinaγ

Da(u) = B

sin 2u
− εa−1

sinaγ

Xaa−1,a+1X
a
a+1,a−1 =

1

sin2 γ
− εa−1

sin2 aγ
.

(2.28)

This solution satisfiesUp−a(u) = Up(u) (similarly for Da(u) andXabc) and includes
one free parameter. To fix the overall factorR(u), R0(u) is the same as for class I, while
R1(u) satisfies

R1(u)R1(−u)
(

1

sin2 γ
− B2

sin2 2u

)
= 1. (2.29)

The minimal solution is

R1(u) = sinγ
σ(x, u)σ (π/2− x, u)
σ (0, u)σ (π/2, u)

where

sin 2x = B sinγ.

Class III. For oddp (p 6= 3): A = 0, D = 1

Ua = B

sin 2u
+ 1

sinaγ

{
sin(2u+ aγ )

sin 2u
− (−1)a

}
Da = B

sin 2u
− 1

sinaγ

{
sin(2u− aγ )

sin 2u
− (−1)a

}
Xaa−1,a+1X

a
a+1,a−1 = 2

{
1

sin2 γ
− 1

sin2 aγ

}
+ 2

{
cosγ

sin2 γ
+ (−1)a

cosaγ

sin2 aγ

}
.

(2.30)

This solution hasUp−a(u) = Dp(u) symmetry and one free parameter. WhileR0(u)

does not change, theR1(u) satisfies

R1(u)R1(−u)
(

1

sin2 (γ /2)
− 2B cos 2u

sin2 2u
− 1+ B2

sin2 2u

)
= 1.

The minimal solution is

R1(u) = sin
γ

2

σ(x1, u)σ (x2, u)

σ (0, u)σ (π/2, u)

where

cos2 x1+ cos2 x2 = 1+ B sin2 γ

2

cosx1 cosx2 = 1

2
(1+ B) sin

γ

2
.

In the above analysis, we omit special cases ofp = 3, 4 sincep = 3 has only the
diagonal reflection matrices andp = 4 has been extensively studied in [8].
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3. The SOS model

In the beginning we have considered that the heights take values from 1 top− 1, which is
necessary for the bulk scattering weights to be finite, as the parameterπ/γ = p is a positive
integer. Whenπ/γ is not a rational number, there are no bounds on the heights and the
corresponding representation is known as solid-on-solid (SOS). Since there is no restriction
on the heights, we setεp = 1 in the solutions (2.19) of the BYBE. Thus the solutions of
BYBE in the SOS representation are

Ua(u) = A sin(2u+ aγ )+ B

sin 2u
+ εa−1C

sinaγ
+ D

sinaγ

{
sin(2u+ aγ )

sin 2u
− 1

}
Da(u) = A sin(2u− aγ )+ B

sin 2u
− εa−1C

sinaγ
− D

sinaγ

{
sin(2u− aγ )

sin 2u
− 1

}
Xaa−1,a+1X

a
a+1,a−1 = εaX2

13X
2
31+ A2

{
sin2(1+ εa)γ − sin2 aγ

}
− 2AB {cos(1+ εa)γ − cosaγ } + εa−1C

2

{
1

sin2 γ
− 1

sin2 aγ

}
− εa−1CD

{
1

cos2 (γ /2)
− 1

cos2 (aγ /2)

}
+D2

{
1

cos2 ((1+ εa)γ /2) −
1

cos2 (aγ /2)

}

(3.1)

redefiningC asC − 2D.
Inserting the above solution in the unitarity condition restricts the coefficients in the

same way as in the RSOS(p). We classify the solutions into three classes.

Class I.C = 0, A = 1

Ua(u) = sin(2u+ aγ )+ B

sin 2u
+ D

sinaγ

{
sin(2u+ aγ )

sin 2u
− 1

}
Da(u) = sin(2u− aγ )+ B

sin 2u
− D

sinaγ

{
sin(2u− aγ )

sin 2u
− 1

}
Xaa−1,a+1X

a
a+1,a−1 = sin2 γ − sin2 aγ − 2B (cosγ − cosaγ )

+D2

(
1

cos2 (γ /2)
− 1

cos2 (aγ /2)

)
.

(3.2)

The overall factorR0 is the same as that for RSOS(p), butR1(u) now contains all the
information about the boundary conditions and has to satisfy

R1(u)R1(−u)
(
− sin2 2u− 2D cos 2u+ sin2 γ − 2B cosγ + D2

cos2 (γ /2)

− 2BD cos 2u

sin2 2u
− B

2+D2

sin2 2u

)
= 1

R1(u) = R1(γ − u)

(3.3)

whose minimal solution is

R1(u) = σ(x1, u)σ (x2, u)σ (x3, u)σ (x4, u)

2σ(0, u)σ (π/2, u)
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wherex1, . . . , x4 are related toB,D via
4∑
i=1

cos 2xi = −2D

4∑
i>j=1

cos 2xi cos 2xj = −2+ sin2 γ − 2B cosγ + D2

cos2 (γ /2)

4∑
i>j>k=1

cos 2xi cos 2xj cos 2xk = 2(1+ B)D

cos 2x1 cos 2x2 cos 2x3 cos 2x4 = (cosγ + B)2+D2 tan2 γ

2
.

Class II.A = 0, C = 1

Ua(u) = B

sin 2u
+ εa−1

sinaγ
+ D

sinaγ

{
sin(2u+ aγ )

sin 2u
− 1

}

Da(u) = B

sin 2u
− εa−1

sinaγ
− D

sinaγ

{
sin(2u− aγ )

sin 2u
− 1

}
(3.4)

Xaa−1,a+1X
a
a+1,a−1 =

{D(1− cosγ )− 1}2
sin2 γ

− {D(1− cosaγ )− εa−1}2
sin2 aγ

.

Now

R1(u)R1(−u)
[ {D(1− cosγ )− 1}2

sin2 γ
+D2− 2BD cos 2u

sin2 2u
− B

2+D2

sin2 2u

]
= 1

whose minimal solution is

R1(u) = sinγ√
{D(1− cosγ )− 1}2+D2 sin2 γ

σ(x1, u)σ (x2, u)

σ (0, u)σ (π/2, u)

wherex1, x2 are related toB,D via

cosx1 cosx2 = (B +D) sinγ

2
√
{D(1− cosγ )− 1}2+D2 sin2 γ

cos2 x1+ cos2 x2 = 1+ BD sinγ

{D(1− cosγ )− 1}2+D2 sin2 γ
.

Class III.A = C = 0, D = 1

Ua(u) = B

sin 2u
+ 1

sinaγ

{
sin(2u+ aγ )

sin 2u
− 1

}

Da(u) = B

sin 2u
− 1

sinaγ

{
sin(2u− aγ )

sin 2u
− 1

}
(3.5)

Xaa−1,a+1X
a
a+1,a−1 =

1

cos2 (γ /2)
− 1

cos2 (aγ /2)
.

Now

R1(u)R1(−u)
(

1

cos2 (γ /2)
− 2B cos 2u

sin2 2u
− 1+ B2

sin2 2u

)
= 1
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with the minimal solution

R1(u) = cos
γ

2

σ(x1, u)σ (x2, u)

σ (0, u)σ (π/2, u)

where

cos2 x1+ cos2 x2 = 1+ B cos2 (γ /2)

cosx1 cosx2 = 1
2(1+ B) cos(γ /2).

Note that the number of free parameters in the boundary reflection matrices of both the
vertex (the sine-Gordon model) and SOS class I, II representations are the same: two for
the non-diagonal and one for the diagonal [5, 6]. This strongly suggests that a well-defined
transformation between the two models can exist even with a boundary.

4. The hard hexagon model

The paticle spectrum of the HHM consists of a triplet of fundamental kink statesK01,K10

andK00 [9]. The bulkS-matrix is given [10, 11] by

Sabdc (θ) = U(θ)
(
ρaρc

ρdρb

)−θ/2π i

Wab
dc (u) (4.1)

with Boltzmann weights

Wab
dc (u) =

(
ρaρc

ρdρb

)1/2 sinu

sin(µ− u)δbd + δac (4.2)

where

ρ0 = 2 cosµ ρ1 = 1

µ = π

5
u = 9i

5
θ

U(θ) = U0(θ) U1(u)

U0(θ) = −sinhθ − i sin(π/9)

sinhθ + i sin(π/9)

sinhθ + i sin(2π/9)

sinhθ − i sin(2π/9)

U1(u) = sin(µ− u)
sin(µ+ u)

sin(2µ+ u)
sin(2µ− u) .

By mappinga = 2, 3 (1, 4) of the RSOS(5) toa = 0 (1) of the HHM, one can reproduce
the bulk S-matrix of the HHM from that of the RSOS(5). This means the RSOS(5) is
homeomorphic to the HHM with differences in the overall factorU(u) and the relations
between the spectral parameteru and the rapidityθ .

These mean that the two BYBEs can be mapped to each other and the solutions of the
HHM can be obtained by that of the RSOS. Writing the reflection amplitude of the HHM
as

Rabc(θ) = R(θ)
(
ρbρc

ρaρa

)−θ/2π i [
δb 6=cXabc(u)+ δbc

{
δb,a+1U(u)+ δb,aV (u)+ δb,a−1D(u)

}]
(4.3)
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the non-diagonal solution is

U(u) = A sin(2u+ 3µ)+ B

sin 2u
+ D

sin 3µ

{
sin(2u+ 3µ)

sin 2u
+ 1

}
V (u) = A sin(2u− 3µ)+ B

sin 2u
− D

sin 3µ

{
sin(2u− 3µ)

sin 2u
+ 1

}
D(u) = A sin(2u+ µ)+ B

sin 2u
+ D

sinµ

{
sin(2u+ µ)

sin 2u
+ 1

}
X0

01X
0
10 = A2

(
sin2µ− sin2 3µ

)− 2AB (cosµ− cos 3µ)

+D2

(
1

sin2 (µ/2)
− 1

sin2 (3µ/2)

)
(4.4)

which can easily be read from equations (2.19),(2.20).
The unitarity and crossing symmetry conditions now reduce to

R(θ)R(−θ)D(u)D(−u) = 1 (4.5)

R(π i/2− θ) = U0(2θ)
sin(2µ+ 2u)

sin(2µ− 2u)
R(π i/2+ θ). (4.6)

It is remarkable that for the HHM the unitarity condition cannot further reduce the
arbitrary coefficientsA,B andD. Of these theB andD terms are ‘decorated’ solutions
which can be constructed from a fundamental solutionRabc by

Re
f d(u)bf ;cd =

∑
a

S
f e

ba (u− u1)S
ae
cd (u+ u1)R

a
bc(u). (4.7)

It is easy to check this satisfies the BYBE ifSf eba (u) is the solution of the bulk YBE with
arbitraryu1. Using the trivial solutionRabc ∝ δbc, one can check thatB andD terms can
be obtained in this way. We will therefore setB = D = 0, A = 1 from now on.

The overall factorR(θ) is can be determined from equations (4.5), (4.6). Let

R(θ) = R0(θ)R1(u) (4.8)

such that

R0(θ)R0(−θ) = 1 R0(πi/2− θ) = U0(2θ)R0(π i/2+ θ)
R1(u)R1(−u)

(− sin2 2u+ sin2µ
) = 1

R1(µ/2− π − u) = sin(2µ+ 2u)

sin(2µ− 2u)
R1(µ/2− π + u)

(4.9)

then the minimal solutions are

R0(θ) = sinh(θ/2+ π i/4)

sinh(θ/2− π i/4)

sinh(θ/2− π i/36)

sinh(θ/2+ π i/36)

sinh(θ/2+ 5π i/18)

sinh(θ/2− 5π i/18)

× sinh(θ/2+ π i/18)

sinh(θ/2− π i/18)

sinh(θ/2+ 7π i/36)

sinh(θ/2− 7π i/36)

R1(u) = 1

sin(µ+ 2u)
.

By generalizing the mapping of the RSOS(5) to the HHM, we can construct some
generalized HHMs whose particle spectrum consists of kinksKab where|a − b| = 1 with



2120 C Ahn and C-K You

a, b = 0, . . . , n−1 andK00. Denoting these as HHM(n), the bulkS-matrix of the HHM(n)
can be obtained from that of the RSOS(2n + 1) by folding the heights as

a, 2n+ 1− a → n− a 16 a 6 n. (4.10)

The above one is well-defined without ambiguity, due to the symmetry of theS-matrix. The
integrability conditions such as the YBE and BYBE are transformed accordingly, maintaing
the structure. These mean that we can write the reflection amplitude of the HHM(n) as

Rabc(θ) = R(θ)
(
ρbρc

ρaρa

)−θ/2π i [
δb 6=cXabc(u)+ δbc

{
δb,a+1Ua(u)+ δb,aV (u)+ δb,a−1Da(u)

}]
(4.11)

whereρa denotes theq-number

ρa = sināλ

sinλ
ā = n− a λ = π

2n+ 1
.

Then the solution of the BYBEs for the HHM(n) are

Ua(u) = (−1)ā+1A sin(2u− āλ)+ B

sin 2u
− D

sināλ

{
sin(2u− āλ)

sin 2u
− (−1)ā

}
Da(u) = (−1)ā+1A sin(2u+ āλ)+ B

sin 2u
+ D

sināλ

{
sin(2u+ āλ)

sin 2u
− (−1)ā

}
V (u) = (−1)n+1A sin(2u+ nλ)+ B

sin 2u
+ D

sinnλ

{
sin(2u+ nλ)

sin 2u
− (−1)n

}
Xaa−1,a+1X

a
a+1,a−1 = A2

{
sin2 λ− sin2 āλ

}− 2AB
{
cosλ− (−1)ā+1 cosāλ

}
+ 2D2

{
1

sin2 λ
− 1

sin2 āλ

}
+ 2D2

{
cosλ

sin2 λ
− (−1)ā+1 cosāλ

sin2 āλ

}
(4.12)

which can be read from equations (2.19), (2.20) witha odd.

5. Conclusion

In this paper we derived the most general non-diagonal reflection matrices of the RSOS/SOS
models and the hard hexagon model using the boundary Yang–Baxter equations. We find a
new one-parameter family of the reflection matrices for the RSOS model which generalizes
the previous result in [6] where there is no free parameter. This free parameter can be
used to control the flow between the fixed and free boundary conditions. Since the bulk
RSOS theory describes the perturbed conformal theories by the least relevent operator, the
boundary conditions can show how the conformal boundary conditions can change under
renormalization group flows.

The vertex–face correspondence between the sine-Gordon and SOS theories in the
presence of a boundary remains an open problem: our three classes of SOS reflection
matrices may be useful for this purpose.

For the hard-hexagon model which can be mapped to the RSOS(5) model by folding
four RSOS heights into two, the solutions can be obtained similarly with a main difference
in the boundary unitarity conditions. Due to this, the reflection matrices can have two free
parameters. We show that these extra terms can be identified with the ‘decorated’ solutions.
This means the general solutions of the BYBE are linear combinations of fundamental
solutions and their decorated ones.
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Considering that the HHM is related to the perturbed conformal theory by the most
relevent operator, it will be interesting to consider how the two different perturbations can
make difference in the boundary interactions.
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